Search This Blog

Thursday, January 23, 2014

Water found in stardust suggests life is universal

22 January 2014 by Catherine Brahic
Magazine issue 2953. Subscribe and save

 
A SPRINKLING of stardust is as magical as it sounds. The dust grains that float through our solar system contain the ingredients to make water, which forms when the dust is zapped by a blast of charged wind from the sun.
 
The chemical reaction causing this to happen had previously been mimicked in laboratories, but now water has been found trapped inside real stardust.
Combined with previous findings of organic compounds in interplanetary dust, this suggests that these grains contain the basic ingredients needed for life. As similar dust grains are thought to be found in solar systems all over the universe, this bodes well for the existence of life across the cosmos.
 
"The implications are potentially huge," says Hope Ishii of the University of Hawaii in Honolulu, one of the researchers behind the study. "It is a thrilling possibility that this influx of dust on the surfaces of solar system bodies has acted as a continuous rainfall of little reaction vessels containing both the water and organics needed for the eventual origin of life."
 
Solar systems are full of dust – a result of many processes, including the break-up of comets. John Bradley of the Lawrence Livermore National Laboratory in California and his colleagues used high-resolution imaging and spectroscopy to look beneath the surface of interplanetary particles extracted from Earth's stratosphere. Inside these specks, which measured just 5 to 25 micrometres across, they found trapped pockets of water (PNAS, DOI: 10.1073/pnas.1320115111).
 
Laboratory experiments offer clues to how the water forms. The dust is mostly made of silicates, which contain oxygen. As it travels through space, it encounters the solar wind. This stream of charged particles, including high-energy hydrogen ions, is ejected from the sun's atmosphere. When the two collide, hydrogen and oxygen combine to make water.
 
As interplanetary dust is thought to have rained down on early Earth, it is likely that the stuff brought water to our planet, although it is difficult to conceive how it could account for the millions of cubic kilometres of water that cover Earth today. A more likely origin is wet asteroids that pummelled early Earth. Comets are also a candidate: the European Space Agency's Rosetta spacecraft, due to send a lander to a comet later this year, is tasked with probing their role.
 
However, the results are relevant to the quest for life on other planets. The water-producing reaction is likely to happen in any corner of the universe with a star, says Ishii.
 
What's more, interplanetary dust in our solar system – and in others – contains organic carbon. If stardust contains carbon and water, it means the essentials of life could be present in solar systems anywhere in the universe and raining down on their planets.
 
This article appeared in print under the headline "Fountain of life may be a shower of dust"
Issue 2953 of New Scientist magazine

Act of Contrition

From Wikipedia, the free encyclopedia For Battlestar Galactica episode, see Act of Contrition (...