From Wikipedia, the free encyclopedia
Screen shot of the screensaver for SETI@home, a distributed computing project in which volunteers donate idle computer power to analyze radio signals for signs of extraterrestrial intelligence

The search for extraterrestrial intelligence (SETI) is the collective name for a number of activities undertaken to search for intelligent extraterrestrial life.[1][2] SETI projects use scientific methods in this search. For example, electromagnetic radiation is monitored for signs of transmissions from civilizations on other worlds.[3][4] Some of the most well-known projects are run by Harvard University, the University of California, Berkeley, or the SETI Institute. In 1995, the United States federal government ceased funding to SETI projects, forcing them to turn to private funding to continue the search, though in recent years, government funding of SETI has resumed at modest levels.[5]

There are great challenges in searching the cosmos for signs of intelligent life, including their identification and interpretation. SETI projects use the best available scientific knowledge to conduct experiments, which has traditionally led to searches for electromagnetic radiation emitted by advanced technologies. Radio telescopes are used to investigate the cosmos using large radio antennas. A 1959 paper explored the possibility of searching the microwave spectrum. In 1960, the first modern SETI experiment was done with a 26 meter radio telescope. The first SETI conference took place in 1961. Soviet scientists took a strong interest in SETI during the 1960s and performed a number of searches with omnidirectional antennas. In 1979 the University of California, Berkeley, launched a SETI project. In 1986, UC Berkeley initiated their second SETI effort. The university began an all-sky survey using the Arecibo radio telescope in March 2014.

In the early 1980s, physicist Paul Horowitz proposed the design of a spectrum analyzer to search for SETI transmissions on 131,000 narrow band channels. In 1985 Project "META" analyzed 8.4 million channels.The follow-on to META commenced observation on October 30, 1995. In 1978, the NASA SETI program had been heavily criticized by Senator William Proxmire, and funding for SETI research was removed from the NASA budget by Congress in 1981;[6] Funding was restored in 1982, after Carl Sagan intervened. Founded in 1994 in response to the US Congress cancellation of the NASA SETI program, The SETI League, Inc. is a membership-supported nonprofit organization. It pioneered the conversion of backyard satellite TV dishes 3–5 m (10–16 ft) in diameter into research-grade radio telescopes of modest sensitivity.[7] SETI@home was conceived by David Gedye along with Craig Kasnoff and is a popular volunteer distributed computing project that was launched by the University of California, Berkeley, in May 1999. The SETI Institute collaborated with the Radio Astronomy Laboratory at UC Berkeley to develop a specialized radio telescope array for SETI studies, something like a mini-cyclops array.

As various SETI projects have progressed, some have criticized early claims by researchers as being too "euphoric". SETI has also occasionally been the target of criticism by those who suggest that it is a form of pseudoscience. In particular, critics allege that no observed phenomena suggest the existence of extraterrestrial intelligence, and furthermore that the assertion of the existence of extraterrestrial intelligence has no good Popperian criteria for falsifiability.[8]

Radio experiments


Microwave window as seen by a ground based system. From NASA report SP-419: SETI – the Search for Extraterrestrial Intelligence

Many radio frequencies penetrate Earth's atmosphere quite well, and this led to radio telescopes that investigate the cosmos using large radio antennas. Furthermore, human endeavors emit considerable electromagnetic radiation as a byproduct of communications such as television and radio. These signals would be easy to recognize as artificial due to their repetitive nature and narrow bandwidths. If this is typical, one way of discovering an extraterrestrial civilization might be to detect non-natural radio emissions from a location outside the Solar System.

Early work

As early as 1896, Nikola Tesla suggested that an extreme version of his wireless electrical transmission system could be used to contact beings on Mars.[9] In 1899 while investigating atmospheric electricity using a Tesla coil receiver in his Knob Hill lab, Tesla observed repetitive signals, substantially different from the signals noted from storms and Earth noise, that he interpreted as being of extraterrestrial origin. He later recalled the signals appeared in groups of one, two, three, and four clicks together. Tesla thought the signals were coming from Mars. Analysis of Tesla's research has ranged from suggestions that Tesla detected nothing, he simply was misunderstanding the new technology he was working with,[10] to claims that Tesla may have been observing naturally occurring Jovian plasma torus signals. In the early 1900s, Guglielmo Marconi, Lord Kelvin, and David Peck Todd also stated their belief that radio could be used to contact Martians, with Marconi stating that his stations had also picked up potential Martian signals.[11]

On August 21–23, 1924, Mars entered an opposition closer to Earth than any time in a century before or the next 80 years.[12] In the United States, a "National Radio Silence Day" was promoted during a 36-hour period from the 21–23, with all radios quiet for five minutes on the hour, every hour. At the United States Naval Observatory, a radio receiver was lifted 3 kilometers (2 miles) above the ground in a dirigible tuned to a wavelength between 8 and 9 kilometers (~5 miles), using a "radio-camera" developed by Amherst College and Charles Francis Jenkins. The program was led by David Peck Todd with the military assistance of Admiral Edward W. Eberle (Chief of Naval Operations), with William F. Friedman (chief cryptographer of the US Army), assigned to translate any potential Martian messages.[13][14]

A 1959 paper by Philip Morrison and Giuseppe Cocconi first pointed out the possibility of searching the microwave spectrum, and proposed frequencies and a set of initial targets[15][16]

In 1960, Cornell University astronomer Frank Drake performed the first modern SETI experiment, named "Project Ozma", after the Queen of Oz in L. Frank Baum's fantasy books.[17] Drake used a radio telescope 26 meters in diameter at Green Bank, West Virginia, to examine the stars Tau Ceti and Epsilon Eridani near the 1.420 gigahertz marker frequency, a region of the radio spectrum dubbed the "water hole" due to its proximity to the hydrogen and hydroxyl radical spectral lines. A 400 kilohertz band was scanned around the marker frequency, using a single-channel receiver with a bandwidth of 100 hertz. The information was stored on tape for off-line analysis. He found nothing of great interest, but has continued a pro-active involvement in the search for life beyond Earth for 50 years.

The first SETI conference took place at Green Bank, West Virginia in November 1961. The ten attendees were conference organiser Peter Pearman, Frank Drake, Philip Morrison, businessman and radio amateur Dana Atchley, chemist Melvin Calvin, astronomer Su-Shu Huang, neuroscientist John C. Lilly, inventor Barney Oliver, astronomer Carl Sagan and radio astronomer Otto Struve. From the agenda points of the conference Drake derived the Drake equation by multiplying the various factors that were discussed at the conference. The Drake equation is an estimation of how many planets in the Milky Way are inhabited by intelligent life forms.[18]

The Soviet scientists took a strong interest in SETI during the 1960s and performed a number of searches with omnidirectional antennas in the hope of picking up powerful radio signals. Soviet astronomer Iosif Shklovskii wrote the pioneering book in the field Universe, Life, Intelligence (1962), which was expanded upon by American astronomer Carl Sagan as the best-selling Intelligent Life in the Universe (1966).[19]

The first Kraus-style radio telescope was powered up in 1963. It was 360 ft wide, 500 ft long and 70 ft high (110 m × 150 m × 21 m). In the March 1955 issue of Scientific American, John D. Kraus described a concept to scan the cosmos for natural radio signals using a flat-plane radio telescope equipped with a parabolic reflector. Within two years, his concept was approved for construction by Ohio State University. With US$71,000 total in grants from the National Science Foundation, construction began on a 20-acre (8.1 ha) plot in Delaware, Ohio. This Ohio State University radio telescope was called Big Ear. Later, it began the world's first continuous SETI program, called the Ohio State University SETI program.

View of Arecibo Observatory in Puerto Rico with its 300 m (980 ft) dish- the world's largest. A small fraction of its observation time is devoted to SETI searches.

In 1971, NASA funded a SETI study that involved Drake, Bernard Oliver of Hewlett-Packard Corporation, and others. The resulting report proposed the construction of an Earth-based radio telescope array with 1,500 dishes known as "Project Cyclops". The price tag for the Cyclops array was US$10 billion. Cyclops was not built, but the report[20] formed the basis of much SETI work that followed.

The WOW! Signal
Credit: The Ohio State University Radio Observatory and the North American AstroPhysical Observatory (NAAPO).

The OSU SETI program gained fame on August 15, 1977, when Jerry Ehman, a project volunteer, witnessed a startlingly strong signal received by the telescope. He quickly circled the indication on a printout and scribbled the exclamation "Wow!" in the margin. Dubbed the Wow! signal, it is considered by some[who?] to be the best candidate for a radio signal from an artificial, extraterrestrial source ever discovered, but it has not been detected again in several additional searches.[21]

In 1979 the University of California, Berkeley, launched a SETI project named "Search for Extraterrestrial Radio Emissions from Nearby Developed Intelligent Populations (SERENDIP)".[22]
In 1986, UC Berkeley initiated their second SETI effort, SERENDIP II, and has continued with four more SERENDIP efforts to the present day. The latest incarnation of the SERENDIP project is SERENDIP VI, a commensal all-sky survey using the Arecibo radio telescope began in March 2014.

Sentinel, META, and BETA[edit]

In 1980, Carl Sagan, Bruce Murray, and Louis Friedman founded the U.S. Planetary Society, partly as a vehicle for SETI studies.

In the early 1980s, Harvard University physicist Paul Horowitz took the next step and proposed the design of a spectrum analyzer specifically intended to search for SETI transmissions. Traditional desktop spectrum analyzers were of little use for this job, as they sampled frequencies using banks of analog filters and so were restricted in the number of channels they could acquire. However, modern integrated-circuit digital signal processing (DSP) technology could be used to build autocorrelation receivers to check far more channels. This work led in 1981 to a portable spectrum analyzer named "Suitcase SETI" that had a capacity of 131,000 narrow band channels. After field tests that lasted into 1982, Suitcase SETI was put into use in 1983 with the 26-meter (85 ft) Harvard/Smithsonian radio telescope at Oak Ridge Observatory in Harvard, Massachusetts. This project was named "Sentinel" and continued into 1985.

Even 131,000 channels were not enough to search the sky in detail at a fast rate, so Suitcase SETI was followed in 1985 by Project "META", for "Megachannel Extra-Terrestrial Assay". The META spectrum analyzer had a capacity of 8.4 million channels and a channel resolution of 0.05 hertz. An important feature of META was its use of frequency doppler shift to distinguish between signals of terrestrial and extraterrestrial origin. The project was led by Horowitz with the help of the Planetary Society, and was partly funded by movie maker Steven Spielberg. A second such effort, META II, was begun in Argentina in 1990, to search the southern sky. META II is still in operation, after an equipment upgrade in 1996.

The follow-on to META was named "BETA", for "Billion-channel Extraterrestrial Assay", and it commenced observation on October 30, 1995. The heart of BETA's processing capability consisted of 63 dedicated fast Fourier transform (FFT) engines, each capable of performing a 222-point complex FFTs in two seconds, and 21 general-purpose personal computers equipped with custom digital signal processing boards. This allowed BETA to receive 250 million simultaneous channels with a resolution of 0.5 hertz per channel. It scanned through the microwave spectrum from 1.400 to 1.720 gigahertz in eight hops, with two seconds of observation per hop. An important capability of the BETA search was rapid and automatic re-observation of candidate signals, achieved by observing the sky with two adjacent beams, one slightly to the east and the other slightly to the west. A successful candidate signal would first transit the east beam, and then the west beam and do so with a speed consistent with Earth's sidereal rotation rate. A third receiver observed the horizon to veto signals of obvious terrestrial origin. On March 23, 1999, the 26-meter radio telescope on which Sentinel, META and BETA were based was blown over by strong winds and seriously damaged.[23] This forced the BETA project to cease operation.

MOP and Project Phoenix[edit]


Sensitivity vs range for SETI radio searches. The diagonal lines show transmitters of different effective powers. The x-axis is the sensitivity of the search. The y-axis on the right is the range in light years, and on the left is the number of Sun-like stars within this range. The vertical line labeled SS is the typical sensitivity achieved by a full sky search, such as BETA above. The vertical line labeled TS is the typical sensitivity achieved by a targeted search such as Phoenix.[24]

In 1978, the NASA SETI program had been heavily criticized by Senator William Proxmire, and funding for SETI research was removed from the NASA budget by Congress in 1981;[6] however, funding was restored in 1982, after Carl Sagan talked with Proxmire and convinced him of the program's value.[6] In 1992, the U.S. government funded an operational SETI program, in the form of the NASA Microwave Observing Program (MOP). MOP was planned as a long-term effort to conduct a general survey of the sky and also carry out targeted searches of 800 specific nearby stars. MOP was to be performed by radio antennas associated with the NASA Deep Space Network, as well as the 140-foot (43 m) radio telescope of the National Radio Astronomy Observatory at Green Bank, West Virginia and the 1,000-foot (300 m) radio telescope at the Arecibo Observatory in Puerto Rico. The signals were to be analyzed by spectrum analyzers, each with a capacity of 15 million channels. These spectrum analyzers could be grouped together to obtain greater capacity. Those used in the targeted search had a bandwidth of 1 hertz per channel, while those used in the sky survey had a bandwidth of 30 hertz per channel.

MOP drew the attention of the U.S. Congress, where the program was ridiculed[25] and canceled a year after its start.[6] SETI advocates continued without government funding, and in 1995 the nonprofit SETI Institute of Mountain View, California resurrected the MOP program under the name of Project "Phoenix", backed by private sources of funding. Project Phoenix, under the direction of Jill Tarter, is a continuation of the targeted search program from MOP and studies roughly 1,000 nearby Sun-like stars. From 1995 through March 2004, Phoenix conducted observations at the 64-meter (210 ft) Parkes radio telescope in Australia, the 140-foot (43 m) radio telescope of the National Radio Astronomy Observatory in Green Bank, West Virginia, and the 1,000-foot (300 m) radio telescope at the Arecibo Observatory in Puerto Rico. The project observed the equivalent of 800 stars over the available channels in the frequency range from 1200 to 3000 MHz. The search was sensitive enough to pick up transmitters with 1 GW EIRP to a distance of about 200 light years. According to Prof. Tarter, in 2012 it costs around "$2 million a year to keep SETI research going at the SETI Institute" and approximately 10 times that to support "all kinds of SETI activity around the world."[26]

The SETI League and Project Argus[edit]

Founded in 1994 in response to the US Congress cancellation of the NASA SETI program, The SETI League, Inc. is a membership-supported nonprofit organization with 1,500 members in 62 countries. This grass-roots alliance of amateur and professional radio astronomers is headed by executive director emeritus H. Paul Shuch, the engineer credited with developing the world's first commercial home satellite TV receiver. Many SETI League members are licensed radio amateurs and microwave experimenters. Others are digital signal processing experts and computer enthusiasts.

The SETI League pioneered the conversion of backyard satellite TV dishes 3–5 m (10–16 ft) in diameter into research-grade radio telescopes of modest sensitivity.[7] The organization concentrates on coordinating a global network of small, amateur-built radio telescopes under Project Argus, an all-sky survey seeking to achieve real-time coverage of the entire sky.[27] Project Argus was conceived as a continuation of the all-sky survey component of the late NASA SETI program (the targeted search having been continued by the SETI Institute's Project Phoenix). There are currently 143 Project Argus radio telescopes operating in 27 countries. Project Argus instruments typically exhibit sensitivity on the order of 10−23 Watts/square metre, or roughly equivalent to that achieved by the Ohio State University Big Ear radio telescope in 1977, when it detected the landmark "Wow!" candidate signal.

The name "Argus" derives from the mythical Greek guard-beast who had 100 eyes, and could see in all directions at once. In the SETI context, the name has been used for radio telescopes in fiction (Arthur C. Clarke, "Imperial Earth"; Carl Sagan, "Contact"), was the name initially used for the NASA study ultimately known as "Cyclops," and is the name given to an omnidirectional radio telescope design being developed at the Ohio State University.

SETI@home[edit]


SETI@home logo
Main article: SETI@home

SETI@home was conceived by David Gedye along with Craig Kasnoff and is a popular volunteer distributed computing project that was launched by the University of California, Berkeley, in May 1999. It was originally funded by The Planetary Society and Paramount Pictures, and later by the state of California. The project is run by director David P. Anderson and chief scientist Dan Werthimer. Any individual can become involved with SETI research by downloading the Berkeley Open Infrastructure for Network Computing (BOINC) software program, attaching to the SETI@home project, and allowing the program to run as a background process that uses idle computer power. The SETI@home program itself runs signal analysis on a "work unit" of data recorded from the central 2.5 MHz wide band of the SERENDIP IV instrument. After computation on the work unit is complete, the results are then automatically reported back to SETI@home servers at UC Berkeley. By June 28, 2009, the SETI@home project had over 180,000 active participants volunteering a total of over 290,000 computers. These computers give SETI@home an average computational power of 617 teraFLOPS.[28] In 2004 radio source SHGb02+14a was an interesting signal but was quickly shown to have a natural source.[29][30]

As of 2010, after 10 years of data collection, SETI@home has listened to that one frequency at every point of over 67 percent of the sky observable from Arecibo with at least 3 scans (out of the goal of 9 scans), which covers about 20 percent of the full celestial sphere.[31]

Allen Telescope Array

The SETI Institute collaborated with the Radio Astronomy Laboratory at UC Berkeley to develop a specialized radio telescope array for SETI studies, something like a mini-cyclops array. Formerly known as the One Hectare Telescope (1HT), the concept was renamed the "Allen Telescope Array" (ATA) after the project's benefactor Paul Allen. Its sensitivity would be equivalent to a single large dish more than 100 meters in diameter if completed. The array is being constructed at the Hat Creek Observatory in rural northern California.[32]
The full array is planned to consist of 350 or more offset-Gregorian radio dishes, each 6.1 meters (20 feet) in diameter. These dishes are the largest producible with commercially available satellite television dish technology. The ATA was planned for a 2007 completion date, at a very modest cost of US$25 million. The SETI Institute provided money for building the ATA while UC Berkeley designed the telescope and provided operational funding. Berkeley astronomers used the ATA to pursue other science topics until 2011, when the collaboration between the University of California and the SETI Institute was terminated. The ATA is intended to support a large number of simultaneous observations through a technique known as "multibeaming", in which DSP technology is used to look in multiple directions on the sky. The DSP system planned for the ATA is extremely ambitious. The first portion of the array became operational in October 2007 with 42 antennas. Completion of the full 350 element array will depend on funding and the technical results from the 42-element sub-array.

CNET published an article and pictures about the Allen Telescope Array (ATA) on December 12, 2008.[33][34]

In April 2011, the ATA was forced to enter "hibernation" due to funding shortfalls. Regular operation of the ATA was resumed on December 5, 2011.[35][36]

In 2012, new life was breathed into the ATA thanks to a $3.6M philanthropic donation by Franklin Antonio, Co-Founder and Chief Scientist of QUALCOMM Incorporated.[37] This gift supports upgrades of all the receivers on the ATA dishes to have dramatically (2x - 10x from 1–8 GHz) greater sensitivity than before and supporting sensitive observations over a wider frequency range from 1–18 GHz, though initially the radio frequency electronics go to only 12 GHz. As of July, 2013 the first of these receivers was installed and proven. Full installation on all 42 antennas is expected in June, 2014. ATA is especially well suited to the search for extraterrestrial intelligence SETI and to discovery of astronomical radio sources, such as heretofore unexplained non-repeating, possibly extragalactic, pulses known as fast radio bursts or FRBs.

SETI Net

SETI Net is a private search system created by a single individual. It is closely affiliated with the SETI League and is one of the project Argus stations (DM12jw).

The SETI Net station consists of off-the-shelf, consumer-grade electronics to minimize cost and to allow this design to be replicated as simply as possible. It has a 3-meter parabolic antenna that can be directed in azimuth and elevation, an LNA that covers the 1420 MHz spectrum, a receiver to reproduce the wideband audio, and a standard PC as the control device and for deploying the detection algorithms.

The antenna can be pointed and locked to one sky location, enabling the system to integrate on it for long periods. Currently the Wow! signal area is being monitored when it is above the horizon, but all search data are collected and made available on the internet archive.

SETI Net started operation in the early 1980s as a way to learn about the science of the search, and has developed several software packages for the amateur SETI community. It has provided an astronomical clock, a file manager to keep track of SETI data files, a spectrum analyzer optimized for amateur SETI, remote control of the station from the internet, and other packages.

Realized interstellar radio message projects

In November 1974, a largely symbolic attempt was made at the Arecibo Observatory to send a message to other worlds. Known as the Arecibo Message, it was sent towards the globular cluster M13, which is 25,000 light years from Earth. Further IRMs Cosmic Call, Teen Age Message, Cosmic Call 2, and A Message From Earth were transmitted in 1999, 2001, 2003 and 2008 from the Evpatoria Planetary Radar.

Paper projects

A large number of paper projects also exist. For example, the Interstellar Message Composition Project, directed by Douglas Vakoch of the SETI Institute, is charged with designing messages that could presumably be sent to extraterrestrials that convey basic scientific or mathematical principles, as well as human altruism. Vackoch's idea is to send a message of reciprocal altruism because hopefully any extraterrestrials would reciprocate with a reply back.

Vakoch has founded "Encoding Altruism", a workshop that started in 2003 in Paris that brings together anthropologists, philosophers, physicists, astronomers, theologians, musicians, and artists to address the challenge of communicating with extraterrestrials in a language and syntax that would be intelligible to an alien civilization. Vakoch's most recent research is highlighted through the Greater Good Science Center, University of California, Berkeley.

Optical experiments

While most SETI sky searches have studied the radio spectrum, some SETI researchers have considered the possibility that alien civilizations might be using powerful lasers for interstellar communications at optical wavelengths. The idea was first suggested by R. N. Schwartz and Charles Hard Townes, one of the inventors of the laser, in a 1961 paper published in the journal Nature titled "Interstellar and Interplanetary Communication by Optical Masers". However, the 1971 Cyclops study discounted the possibility of optical SETI, reasoning that construction of a laser system that could outshine the bright central star of a remote star system would be too difficult. In 1983, Townes published a detailed study of the idea in the US journal Proceedings of the National Academy of Sciences, which was met with widespread agreement by the SETI community.[citation needed]

There are two problems with optical SETI. The first problem is that lasers are highly "monochromatic", that is, they emit light only on one frequency, making it troublesome to figure out what frequency to look for. However, according to the uncertainty principle, emitting light in narrow pulses results in a broad spectrum of emission; the spread in frequency becomes higher as the pulse width becomes narrower, making it easier to detect an emission.

The other problem is that while radio transmissions can be broadcast in all directions, lasers are highly directional. This means that a laser beam could be easily blocked by clouds of interstellar dust, and Earth would have to cross its direct line of fire by chance to receive it.

Optical SETI supporters have conducted paper studies[38] of the effectiveness of using contemporary high-energy lasers and a ten-meter diameter mirror as an interstellar beacon. The analysis shows that an infrared pulse from a laser, focused into a narrow beam by such a mirror, would appear thousands of times brighter than the Sun to a distant civilization in the beam's line of fire. The Cyclops study proved incorrect in suggesting a laser beam would be inherently hard to see.

Such a system could be made to automatically steer itself through a target list, sending a pulse to each target at a constant rate. This would allow targeting of all Sun-like stars within a distance of 100 light-years. The studies have also described an automatic laser pulse detector system with a low-cost, two-meter mirror made of carbon composite materials, focusing on an array of light detectors. This automatic detector system could perform sky surveys to detect laser flashes from civilizations attempting contact.

In the 1980s, two Soviet researchers conducted a short optical SETI search, but turned up nothing. During much of the 1990s, the optical SETI cause was kept alive through searches by Stuart Kingsley, a dedicated British researcher living in the US state of Ohio.

Several optical SETI experiments are now in progress. A Harvard-Smithsonian group that includes Paul Horowitz designed a laser detector and mounted it on Harvard's 155 centimeters (61 inches) optical telescope. This telescope is currently being used for a more conventional star survey, and the optical SETI survey is "piggybacking" on that effort. Between October 1998 and November 1999, the survey inspected about 2,500 stars. Nothing that resembled an intentional laser signal was detected, but efforts continue. The Harvard-Smithsonian group is now working with Princeton University to mount a similar detector system on Princeton's 91-centimeter (36-inch) telescope. The Harvard and Princeton telescopes will be "ganged" to track the same targets at the same time, with the intent being to detect the same signal in both locations as a means of reducing errors from detector noise.

The Harvard-Smithsonian group is now building a dedicated all-sky optical survey system along the lines of that described above, featuring a 1.8-meter (72-inch) telescope. The new optical SETI survey telescope is being set up at the Oak Ridge Observatory in Harvard, Massachusetts.

The University of California, Berkeley, home of SERENDIP and SETI@home, is also conducting optical SETI searches. One is being directed by Geoffrey Marcy, an extrasolar planet hunter, and involves examination of records of spectra taken during extrasolar planet hunts for a continuous, rather than pulsed, laser signal. The other Berkeley optical SETI effort is more like that being pursued by the Harvard-Smithsonian group and is being directed by Dan Werthimer of Berkeley, who built the laser detector for the Harvard-Smithsonian group. The Berkeley survey uses a 76-centimeter (30-inch) automated telescope at Leuschner Observatory and an older laser detector built by Werthimer.

The 74m Colossus Telescope[39] is designed to detect optical and thermal signatures of extraterrestrial civilizations from planetary systems within 60 light years from the Sun.

Gamma-ray bursts

Gamma-ray bursts (GRBs) are candidates for extraterrestrial communication. These high-energy bursts are observed about once per day and originate throughout the observable universe. SETI currently omits gamma ray frequencies in their monitoring and analysis because they are absorbed by the Earth's atmosphere and difficult to detect with ground-based receivers. In addition, the wide burst bandwidths pose a serious analysis challenge for modern digital signal processing systems. Still, the continued mysteries surrounding gamma-ray bursts have encouraged hypotheses invoking extraterrestrials. John A. Ball from the MIT Haystack Observatory suggests that an advanced civilization that has reached a technological singularity would be capable of transmitting a two-millisecond pulse encoding 1×1018 bits of information. This is "comparable to the estimated total information content of Earth's biosystem—genes and memes and including all libraries and computer media."[40]

Search for extraterrestrial artifacts

The possibility of using interstellar messenger probes in the search for extraterrestrial intelligence was first suggested by Ronald N. Bracewell in 1960 (see Bracewell probe), and the technical feasibility of this approach was demonstrated by the British Interplanetary Society's starship study Project Daedalus in 1978. Starting in 1979, Robert Freitas advanced arguments[41][42][43] for the proposition that physical space-probes are a superior mode of interstellar communication to radio signals. See Voyager Golden Record.

In recognition that any sufficiently advanced interstellar probe in the vicinity of Earth could easily monitor the terrestrial Internet, Invitation to ETI was established by Prof. Allen Tough in 1996, as a Web-based SETI experiment inviting such spacefaring probes to establish contact with humanity. The project's 100 Signatories includes prominent physical, biological, and social scientists, as well as artists, educators, entertainers, philosophers and futurists. Prof. H. Paul Shuch, executive director emeritus of The SETI League, serves as the project's Principal Investigator.

In a 2004 paper,[44] C. Rose and G. Wright showed that inscribing a message in matter and transporting it to an interstellar destination can be enormously more energy efficient than communication using electromagnetic waves if delays larger than light transit time can be tolerated. That said, for simple messages such as "hello," radio SETI could be far more efficient.[45] If energy requirement is used as a proxy for technical difficulty, then a solarcentric Search for Extraterrestrial Artifacts (SETA)[46] may be a useful supplement to traditional radio or optical searches.[47][48]

Much like the "preferred frequency" concept in SETI radio beacon theory, the Earth-Moon or Sun-Earth libration orbits[49] might therefore constitute the most universally convenient parking places for automated extraterrestrial spacecraft exploring arbitrary stellar systems. A viable long-term SETI program may be founded upon a search for these objects.

In 1979, Freitas and Valdes conducted a photographic search of the vicinity of the Earth-Moon triangular libration points L4 and L5, and of the solar-synchronized positions in the associated halo orbits, seeking possible orbiting extraterrestrial interstellar probes, but found nothing to a detection limit of about 14th magnitude.[49] The authors conducted a second, more comprehensive photographic search for probes in 1982[50] that examined the five Earth-Moon Lagrangian positions and included the solar-synchronized positions in the stable L4/L5 libration orbits, the potentially stable nonplanar orbits near L1/L2, Earth-Moon L3, and also L2 in the Sun-Earth system. Again no extraterrestrial probes were found to limiting magnitudes of 17–19th magnitude near L3/L4/L5, 10–18th magnitude for L1/L2, and 14–16th magnitude for Sun-Earth L2.

In June 1983, Valdes and Freitas[51] used the 26 m radiotelescope at Hat Creek Radio Observatory to search for the tritium hyperfine line at 1516 MHz from 108 assorted astronomical objects, with emphasis on 53 nearby stars including all visible stars within a 20 light-year radius. The tritium frequency was deemed highly attractive for SETI work because (1) the isotope is cosmically rare, (2) the tritium hyperfine line is centered in the SETI waterhole region of the terrestrial microwave window, and (3) in addition to beacon signals, tritium hyperfine emission may occur as a byproduct of extensive nuclear fusion energy production by extraterrestrial civilizations. The wideband- and narrowband-channel observations achieved sensitivities of 5–14 x 10−21 W/m²/channel and 0.7-2 x 10−24 W/m²/channel, respectively, but no detections were made.

Technosignatures

Technosignatures, including all signs of technology with the exception of the interstellar radio messages that define traditional SETI, are a recent avenue in the search for extraterrestrial intelligence. Technosignatures may originate from various sources, such as Dyson spheres, city lights on extrasolar planets, or the atmospheric contamination created by an industrial civilization,[52] and may be detectable in the future with large hypertelescopes.[53]
Technosignatures can be divided into three broad categories: astroengineering projects, signals of planetary origin, and spacecraft within and outside the Solar System. An astroengineering installation such as a Dyson sphere, designed to convert all of the incident radiation of its host star into energy, could be detected through the observation of an infrared excess from a solar analog star.[54] Another form of astroengineering, the Shkadov thruster, moves its host star by reflecting some of the star's light back on itself, and can be detected by observing if its transits across the star abruptly end with the thruster in front.[55] Asteroid mining within the Solar System is also a detectable technosignature of the first kind.[56]

Individual extrasolar planets can be analyzed for signs of technology. Avi Loeb of the Harvard-Smithsonian Center for Astrophysics has proposed that persistent light signals on the night side of an exoplanet can be an indication of the presence of cities and an advanced civilization.[57][58] In addition, the excess infrared radiation[53][59] and chemicals[60][61] produced by various industrial processes or terraforming efforts[62] may point to intelligence.

A more recent approach proposed by scientists Jeff Kuhn of University of Hawaii and Svetlana Berdyugina of Kiepenheuer-Institut für Sonnenphysik, David Halliday (engineer) of Dynamic Structures and amateur astronomer Caisey Harlingten of Searchlight Observatory focuses on detecting artificial infrared radiation emission through hypertelescopes such as Colossus, a 76 m, US$1 billion project proposed in 2013. [63][64]

Clearly, light and heat detected from planets are to be distinguished from natural sources to conclusively prove the existence of civilization on a planet.[65] However, as argued by the Colossus team,[66] a civilization heat signature should be within a "comfortable" temperature range, like terrestrial urban heat islands, i.e. only a few degrees warmer than the planet itself. In contrast, such natural sources as wild fires, volcanoes, etc. are significantly hotter, so they will be well distinguished by their maximum flux at a different wavelength.

Extraterrestrial craft are another target in the search for technosignatures. Magnetic sail interstellar spacecraft are detectable over thousands of light-years of distance through the synchrotron radiation they produce through interaction with the interstellar medium; other interstellar spacecraft designs can be detected at more modest distances.[67] In addition, robotic probes within the Solar System are also being sought out with optical and radio searches.[68][69]

Fermi paradox

Italian physicist Enrico Fermi suggested in the 1950s that if technologically advanced civilizations are common in the universe, then they should be detectable in one way or another. (According to those who were there,[70] Fermi either asked "Where are they?" or "Where is everybody?")
The Fermi paradox is commonly understood as asking why extraterrestrials have not visited Earth,[71] but the same reasoning applies to the question of why signals from extraterrestrials have not been heard. The SETI version of the question is sometimes referred to as "the Great Silence".

The Fermi paradox can be stated more completely as follows:
The size and age of the universe incline us to believe that many technologically advanced civilizations must exist. However, this belief seems logically inconsistent with our lack of observational evidence to support it. Either (1) the initial assumption is incorrect and technologically advanced intelligent life is much rarer than we believe, or (2) our current observations are incomplete and we simply have not detected them yet, or (3) our search methodologies are flawed and we are not searching for the correct indicators.
There are multiple explanations proposed for the Fermi paradox,[72] ranging from analyses suggesting that intelligent life is rare (the "Rare Earth hypothesis"), to analyzes suggesting that although extraterrestrial civilizations may be common, they would not communicate, or would not travel across interstellar distances.

Science writer Timothy Ferris has posited that since galactic societies are most likely only transitory, an obvious solution is an interstellar communications network, or a type of library consisting mostly of automated systems. They would store the cumulative knowledge of vanished civilizations and communicate that knowledge through the galaxy. Ferris calls this the "Interstellar Internet", with the various automated systems acting as network "servers". If such an Interstellar Internet exists, the hypothesis states, communications between servers are mostly through narrow-band, highly directional radio or laser links. Intercepting such signals is, as discussed earlier, very difficult. However, the network could maintain some broadcast nodes in hopes of making contact with new civilizations.

Although somewhat dated in terms of "information culture" arguments, not to mention the obvious technological problems of a system that could work effectively for billions of years and requires multiple lifeforms agreeing on certain basics of communications technologies, this hypothesis is actually testable (see below).

A significant problem is the vastness of space. Despite piggybacking on the world's most sensitive radio telescope, Charles Stuart Bowyer said, the instrument could not detect random radio noise emanating from a civilization like ours, which has been leaking radio and TV signals for less than 100 years. For SERENDIP and most other SETI projects to detect a signal from an extraterrestrial civilization, the civilization would have to be beaming a powerful signal directly at us. It also means that Earth civilization will only be detectable within a distance of 100 light years.[73]

Post detection disclosure protocol

The International Academy of Astronautics (IAA) has a long-standing SETI Permanent Study Group (SPSG, formerly called the IAA SETI Committee), which addresses matters of SETI science, technology, and international policy. The SPSG meets in conjunction with the International Astronautical Congress (IAC) held annually at different locations around the world, and sponsors two SETI Symposia at each IAC. In 2005, the IAA established the SETI: Post-Detection Science and Technology Taskgroup (Chairman, Professor Paul Davies) "to act as a Standing Committee to be available to be called on at any time to advise and consult on questions stemming from the discovery of a putative signal of extraterrestrial intelligent (ETI) origin." It will use, in part, the Rio Scale[74] to evaluate the importance of releasing the information to the public.[75]

When awarded the 2009 TED Prize SETI Institute's Jill Tarter outlined the organisation's "post detection protocol".[76] During NASA's funding of the project, an administrator would be first informed with the intention of informing the United States executive government. The current protocol for SETI Institute is to first internally investigate the signal, seeking independent verification and confirmation. During the process, the organisation's private financiers would be secretly informed. Once a signal has been verified, a telegram would be sent via the Central Bureau for Astronomical Telegrams. Following this process, Tarter says that the organisation will hold a press conference with the aim of broadcasting to the public. SETI Institute's Seth Shostak has claimed that knowledge of the discovery would likely leak as early as the verification process.[77]

However, the protocols mentioned apply only to radio SETI rather than for METI (Active SETI).[78] The intention for METI is covered under the SETI charter "Declaration of Principles Concerning Sending Communications with Extraterrestrial Intelligence".

The SETI Institute does not officially recognise the Wow! signal as of extraterrestrial origin (as it was unable to be verified). The SETI Institute has also publicly denied that the candidate signal Radio source SHGb02+14a is of extraterrestrial origin[79][80] though full details of the signal, such as its exact location have never been disclosed to the public. Although other volunteering projects such as Zooniverse credit users for discoveries, there is currently no crediting or early notification by SETI@Home following the discovery of a signal.

Some people, including Steven M. Greer,[81] have expressed cynicism that the general public might not be informed in the event of a genuine discovery of extraterrestrial intelligence due to significant vested interests. Some, such as Bruce Jakosky[82] have also argued that the official disclosure of extraterrestrial life may have far reaching and as yet undetermined implications for society, particularly for the world's religions.

Criticism

As various SETI projects have progressed, some have criticized early claims by researchers as being too "euphoric". For example, Peter Schenkel, while remaining a supporter of SETI projects, has written that
"[i]n light of new findings and insights, it seems appropriate to put excessive euphoria to rest and to take a more down-to-earth view ... We should quietly admit that the early estimates—that there may be a million, a hundred thousand, or ten thousand advanced extraterrestrial civilizations in our galaxy—may no longer be tenable."[3]
Clive Trotman presents some sobering but realistic calculations emphasizing the timeframe dimension.[83]

SETI has also occasionally been the target of criticism by those who suggest that it is a form of pseudoscience. In particular, critics allege that no observed phenomena suggest the existence of extraterrestrial intelligence, and furthermore that the assertion of the existence of extraterrestrial intelligence has no good Popperian criteria for falsifiability.[8]

In response, SETI advocates note, among other things, that the Drake Equation was never a hypothesis, and so never intended to be testable, nor to be "solved"; it was merely a clever representation of the agenda for the world's first scientific SETI meeting in 1961, and it serves as a tool in formulating testable hypotheses. Further, they note that the existence of intelligent life on Earth is a plausible reason to expect it elsewhere, and that individual SETI projects have clearly defined "stop" conditions.

The search for extraterrestrial intelligence is not an assertion that extraterrestrial intelligence exists or that intelligent extraterrestrials are visiting Earth, and conflating the two can be seen as a straw man argument. There is an effort to distinguish the SETI projects from UFOlogy, the study of UFOs, which many consider to be pseudoscience. In Skeptical Inquirer, Mark Moldwin argued that the important differences between the two projects were the acceptance of SETI by the mainstream scientific community and that "[t]he methodology of SETI leads to useful scientific results even in the absence of discovery of alien life."[84]

Some in the UFO community, such as nuclear physicist Stanton Friedman, are highly critical of the search and say it is unscientific. Friedman has written that "if aliens are indeed visiting, then the Radio Telescope Search for ET signals would seem a useless exercise and might indicate the SS [SETI specialists] have been on the wrong track all along". He has challenged SETI scientists to debate the issues, with no takers so far.[85] Examples of objections to SETI include questioning energy requirements as well as why advanced civilizations would use radio.

Active SETI

Active SETI, also known as messaging to extraterrestrial intelligence (METI), consists of sending signals into space in the hope that they will be picked up by an alien intelligence. Physicist Stephen Hawking, in his book A Brief History of Time, suggests that "alerting" extraterrestrial intelligences of our existence is foolhardy, citing mankind's history of treating his fellow man harshly in meetings of civilizations with a significant technology gap. He suggests, in view of this history, that we "lay low".
The concern over METI was raised by the science journal Nature in an editorial in October 2006, which commented on a recent meeting of the International Academy of Astronautics SETI study group. The editor said, "It is not obvious that all extraterrestrial civilizations will be benign, or that contact with even a benign one would not have serious repercussions" (Nature Vol 443 12 October 06 p 606). Astronomer and science fiction author David Brin has expressed similar concerns.[86]
Richard Carrigan, a particle physicist at the Fermi National Accelerator Laboratory near Chicago, Illinois, suggested that passive SETI could also be dangerous and that a signal released onto the Internet could act as a computer virus.[87] Computer security expert Bruce Schneier dismissed this possibility as a "bizarre movie-plot threat".[88]

To lend a quantitative basis to discussions of the risks of transmitting deliberate messages from Earth, the SETI Permanent Study Group of the International Academy of Astronautics adopted in 2007 a new analytical tool, the San Marino Scale.[89] Developed by Prof. Ivan Almar and Prof. H. Paul Shuch, the scale evaluates the significance of transmissions from Earth as a function of signal intensity and information content. Its adoption suggests that not all such transmissions are equal, and each must be evaluated separately before establishing blanket international policy regarding active SETI.[citation needed]

However, some scientists consider these fears about the dangers of METI as panic and irrational superstition; see, for example, Alexander L. Zaitsev's papers.[90][91]