Search This Blog

Sunday, May 7, 2017

Colonization of Mars

From Wikipedia, the free encyclopedia

An artist's conception of a human Mars base, with a cutaway revealing an interior horticultural area

Mars is the focus of much scientific study about possible human colonization. Its surface conditions and the presence of water on Mars make it arguably the most hospitable of the planets in the Solar System, other than Earth. Mars requires less energy per unit mass (delta-v) to reach from Earth than any planet except Venus.

Permanent human habitation on a planetary body other than the Earth is one of science fiction's most prevalent themes. As technology has advanced, and concerns about the future of humanity on Earth have increased, the argument that space colonization is an achievable and worthwhile goal has gained momentum.[1][2] Other reasons for colonizing space include economic interests, long-term scientific research best carried out by humans as opposed to robotic probes, and sheer curiosity.

One of Elon Musk's stated goals through his company SpaceX is to make such colonization possible by providing transport, and to "help humanity establish a permanent, self-sustaining colony on [Mars] within the next 50 to 100 years".[3]

Relative similarity to Earth

Earth is similar to Venus in bulk composition, size and surface gravity, but Mars's similarities to Earth are more compelling when considering colonization. These include:
  • The Martian day (or sol) is very close in duration to Earth's. A solar day on Mars is 24 hours, 39 minutes and 35.244 seconds.[4]
  • Mars has a surface area that is 28.4% of Earth's, only slightly less than the amount of dry land on Earth (which is 29.2% of Earth's surface). Mars has half the radius of Earth and only one-tenth the mass. This means that it has a smaller volume (~15%) and lower average density than Earth.
  • Mars has an axial tilt of 25.19°, similar to Earth's 23.44°. As a result, Mars has seasons much like Earth, though they last nearly twice as long because the Martian year is about 1.88 Earth years. The Martian north pole currently points at Cygnus, not Ursa Minor like Earth's.
  • Recent observations by NASA's Mars Reconnaissance Orbiter, ESA's Mars Express and NASA's Phoenix Lander confirm the presence of water ice on Mars.

Differences from Earth

Atmospheric pressure comparison
Location Pressure
Olympus Mons summit 0.03 kPa (0.0044 psi)
Mars average 0.6 kPa (0.087 psi)
Hellas Planitia bottom 1.16 kPa (0.168 psi)
Armstrong limit 6.25 kPa (0.906 psi)
Mount Everest summit[5] 33.7 kPa (4.89 psi)
Earth sea level 101.3 kPa (14.69 psi)
  • Although there are some extremophile organisms that survive in hostile conditions on Earth, including simulations that approximate Mars, plants and animals generally cannot survive the ambient conditions present on the surface of Mars.[6]
  • The surface gravity of Mars is 38% that of Earth. Although microgravity is known to cause health problems such as muscle loss and bone demineralization,[7][8] it is not known if Martian gravity would have a similar effect. The Mars Gravity Biosatellite was a proposed project designed to learn more about what effect Mars's lower surface gravity would have on humans, but it was cancelled due to a lack of funding.[9]
  • Mars is much colder than Earth, with mean surface temperatures between 186 and 268 K (−87 and −5 °C; −125 and 23 °F) (depending on position).[10][11] The lowest temperature ever recorded on Earth was 180 K (−93.2 °C, −135.76 °F) in Antarctica.
  • Surface water on Mars may occur transiently, but only under certain conditions.[12][13]
  • Because Mars is about 52% farther from the Sun, the amount of solar energy entering its upper atmosphere per unit area (the solar constant) is only around 43.3% of what reaches the Earth's upper atmosphere.[14] However, due to the much thinner atmosphere, a higher fraction of the solar energy reaches the surface.[15][16][not in citation given] The maximum solar irradiance on Mars is about 590 W/m2 compared to about 1000 W/m2 at the Earth's surface. Also, year-round dust storms on Mars may block sunlight for weeks at a time.[17][18]
  • Mars's orbit is more eccentric than Earth's, increasing temperature and solar constant variations.
  • Due to the lack of a magnetosphere, solar particle events and cosmic rays can easily reach the Martian surface.[19][20][21]
  • The atmospheric pressure on Mars is far below the Armstrong limit at which people can survive without pressure suits. Since terraforming cannot be expected as a near-term solution, habitable structures on Mars would need to be constructed with pressure vessels similar to spacecraft, capable of containing a pressure between 30 and 100 kPa. See Atmosphere of Mars.
  • The Martian atmosphere is 95% carbon dioxide, 3% nitrogen, 1.6% argon, and traces of other gases including oxygen totaling less than 0.4%.
  • Martian air has a partial pressure of CO2 of 0.71 kPa, compared to 0.031 kPa on Earth. CO2 poisoning (hypercapnia) in humans begins at about 0.10 kPa. Even for plants, CO2 much above 0.15 kPa is toxic. This means Martian air is toxic to both plants and animals even at the reduced total pressure.[22]
  • The thin atmosphere does not filter out ultraviolet sunlight.

Conditions for human habitation

Conditions on the surface of Mars are closer to the conditions on Earth in terms of temperature and atmospheric pressure than on any other planet or moon, except for the cloud tops of Venus.[23] However, the surface is not hospitable to humans or most known life forms due to greatly reduced air pressure, and an atmosphere with only 0.1% oxygen.

In 2012, it was reported that some lichen and cyanobacteria survived and showed remarkable adaptation capacity for photosynthesis after 34 days in simulated Martian conditions in the Mars Simulation Laboratory (MSL) maintained by the German Aerospace Center (DLR).[24][25][26] Some scientists think that cyanobacteria could play a role in the development of self-sustainable manned outposts on Mars.[27] They propose that cyanobacteria could be used directly for various applications, including the production of food, fuel and oxygen, but also indirectly: products from their culture could support the growth of other organisms, opening the way to a wide range of life-support biological processes based on Martian resources.[27]

Humans have explored parts of Earth that match some conditions on Mars. Based on NASA rover data, temperatures on Mars (at low latitudes) are similar to those in Antarctica.[28] The atmospheric pressure at the highest altitudes reached by manned balloon ascents (35 km (114,000 feet) in 1961,[29] 38 km in 2012) is similar to that on the surface of Mars.[30]

Human survival on Mars would require complex life-support measures and living in artificial environments.

Effects on human health

Mars presents a hostile environment for human habitation. Different technologies have been developed to assist long-term space exploration and may be adapted for habitation on Mars. The existing record for the longest consecutive space flight is 438 days by cosmonaut Valeri Polyakov,[31] and the most accrued time in space is 878 days by Gennady Padalka.[32] These are very short lengths of time in space in comparison to the 1100 day journey[33] planned by NASA as soon as the year 2028. Scientists have also hypothesized that many different biological functions can be negatively affected by the environment of Mars colonies. Due to higher levels of radiation, there are a multitude of physical side-effects that must be mitigated.[34]

Physical effects

The difference in gravity will negatively affect human health by weakening bones and muscles. There is also risk of osteoporosis and cardiovascular problems. Current rotations on the International Space Station put astronauts in zero gravity for six months, a comparable length of time to a one-way trip to Mars. This gives researchers the ability to better understand the physical state that astronauts going to Mars will arrive in. Once on Mars, surface gravity is only 38% of that on Earth.[35] Upon return to Earth, recovery from bone loss and atrophy is a long process and the effects of microgravity may never fully reverse. There are also severe radiation risks on Mars that can influence cognitive processes, deteriorate cardiovascular health, inhibit reproduction, and cause cancer. Additionally, in-utero development is very fragile and severely effected by radiation. Data from irradiated survivors of Hiroshima and Nagasaki provide insight into the "radiosensitivity in humans as a function of gestational age and dose for several CNS endpoints, including severe mental retardation, head circumference, intelligence test scores, and school performance".[36] Close monitoring of the radiation received by reproductive colonists will be necessary to ensure the health of offspring. Additionally, a large focus of colonization development is on reducing the amount of radiation absorbed by astronauts. But early colonizing may be faced with these challenges and the harm could be seen for generations, as stated in academic articles: "the pioneers making the first journeys to Mars and its vicinity to explore and set up a base that eventually will lead to a continuously occupied colony, will face more hazards than those that follow".[36]

Psychological effects

A study from the Journal of Cosmology by Dr. Nick Kanas states that “Unprecedented factors will affect such a mission. A Mars crew will be tens of millions of miles away from home, engaged in a mission that will last around  2 12years. Crew members [sic] will experience a severe sense of isolation and separation from the Earth, which will appear as a receding bluish-green dot in the heavens. From the surface of Mars, there will be 2-way communication delays with the Earth of up to 44 minutes, depending on where the two planets are located in their respective orbits, and the crew will be relatively autonomous from mission control.” Due to the communication delays, new protocols need to be developed in order to assess crew members' psychological health. Researchers have developed a Martian simulation called HI-SEAS (Hawaii Space Exploration Analog and Simulation) that places scientists in a simulated Martian laboratory to study the psychological effects of isolation, repetitive tasks, and living in close-quarters with other scientists for up to a year at a time. Computer programs are being developed to assist crews with personal and interpersonal issues in absence of direct communication with professionals on earth.[37] Current suggestions for Mars exploration and colonization are to select individuals who have passed psychological screenings. Psychosocial sessions for the return home are also suggested in order to reorient people to society.

Terraforming

An artist's conception of a terraformed Mars (2009)

There is much discussion regarding the possibility of terraforming Mars to allow a wide variety of life forms, including humans, to survive unaided on Mars's surface, including the technologies needed to do so.[38]

Radiation

Mars has no global magnetosphere as Earth does. Combined with a thin atmosphere, this permits a significant amount of ionizing radiation to reach the Martian surface. The Mars Odyssey spacecraft carries an instrument, the Mars Radiation Environment Experiment (MARIE), to measure the radiation. MARIE found that radiation levels in orbit above Mars are 2.5 times higher than at the International Space Station. The average daily dose was about 220 µGy (22 mrad) – equivalent to 0.08 Gy per year.[39] A three-year exposure to such levels would be close to the safety limits currently adopted by NASA.[citation needed] Levels at the Martian surface would be somewhat lower and might vary significantly at different locations depending on altitude and local magnetic fields. Building living quarters underground (possibly in Martian lava tubes which are already present) would significantly lower the colonists' exposure to radiation. Occasional solar proton events (SPEs) produce much higher doses.
Comparison of radiation doses - includes the amount detected on the trip from Earth to Mars by the RAD on the MSL (2011–2013).[40][41][42]

Much remains to be learned about space radiation. In 2003, NASA's Lyndon B. Johnson Space Center opened a facility, the NASA Space Radiation Laboratory, at Brookhaven National Laboratory, that employs particle accelerators to simulate space radiation. The facility studies its effects on living organisms, as well as experimenting with shielding techniques.[43] Initially, there was some evidence that this kind of low level, chronic radiation is not quite as dangerous as once thought; and that radiation hormesis occurs.[44] However, results from a 2006 study indicated that protons from cosmic radiation may cause twice as much serious damage to DNA as previously estimated, exposing astronauts to greater risk of cancer and other diseases.[45] As a result of the higher radiation in the Martian environment, the summary report of the Review of U.S. Human Space Flight Plans Committee released in 2009 reported that "Mars is not an easy place to visit with existing technology and without a substantial investment of resources."[45] NASA is exploring a variety of alternative techniques and technologies such as deflector shields of plasma to protect astronauts and spacecraft from radiation.[45]

Transportation

Interplanetary spaceflight

Mars (Viking 1, 1980)

Mars requires less energy per unit mass (delta V) to reach from Earth than any planet except Venus. Using a Hohmann transfer orbit, a trip to Mars requires approximately nine months in space.[46] Modified transfer trajectories that cut the travel time down to four to seven months in space are possible with incrementally higher amounts of energy and fuel compared to a Hohmann transfer orbit, and are in standard use for robotic Mars missions. Shortening the travel time below about six months requires higher delta-v and an exponentially[clarification needed][an exponential function of what?] increasing amount of fuel, and is difficult with chemical rockets. It could be feasible with advanced spacecraft propulsion technologies, some of which have already been tested to varying levels, such as Variable Specific Impulse Magnetoplasma Rocket,[47] and nuclear rockets. In the former case, a trip time of forty days could be attainable,[48] and in the latter, a trip time down to about two weeks.[49] In 2016, a University of California scientist said they could further reduce travel time for an unmanned probe to Mars down to "as little as 72 hours" with the use of a "photonic propulsion" system instead of the fuel-based rocket propulsion system.[50]

During the journey the astronauts would be subject to radiation, which would require a means to protect them. Cosmic radiation and solar wind cause DNA damage, which increases the risk of cancer significantly. The effect of long-term travel in interplanetary space is unknown, but scientists estimate an added risk of between 1% and 19% (one estimate is 3.4%) for men to die of cancer because of the radiation during the journey to Mars and back to Earth. For women the probability is higher due to their larger glandular tissues.[51]

Landing on Mars

Mars has a surface gravity 0.38 times that of Earth, and the density of its atmosphere is about 0.6% of that on Earth.[52] The relatively strong gravity and the presence of aerodynamic effects make it difficult to land heavy, crewed spacecraft with thrusters only, as was done with the Apollo Moon landings, yet the atmosphere is too thin for aerodynamic effects to be of much help in aerobraking and landing a large vehicle. Landing piloted missions on Mars would require braking and landing systems different from anything used to land crewed spacecraft on the Moon or robotic missions on Mars.[53]

If one assumes carbon nanotube construction material will be available with a strength of 130 GPa then a space elevator could be built to land people and material on Mars.[54] A space elevator on Phobos has also been proposed.[55]

Equipment needed for colonization

Colonization of Mars will require a wide variety of equipment—both equipment to directly provide services to humans and production equipment used to produce food, propellant, water, energy and breathable oxygen—in order to support human colonization efforts. Required equipment will include:[49]
  • Habitats
  • Storage facilities
  • Shop workspaces
  • Resource extraction equipment—initially for water and oxygen, later for a wider cross section of minerals, building materials, etc.
  • Energy production and storage equipment, some solar and perhaps nuclear as well
  • Food production spaces and equipment.
  • Propellant production equipment, generally thought to be hydrogen and methane through the Sabatier reaction[56] for fuel—with oxygen oxidizer—for chemical rocket engines
  • Fuels or other energy source for use with surface transportation. Carbon monoxide/oxygen (CO/O2) engines have been suggested for early surface transportation use as both carbon monoxide and oxygen can be straightforwardly produced by zirconium dioxide electrolysis from the Martian atmosphere without requiring use of any of the Martian water resources to obtain hydrogen.[57]
  • Communication equipment
  • 3D Printers. These printers could be used to transform Martian soil and materials, along with materials brought from Earth, into shelters and other land forms used by settlers. This process would not only require less supplies to be brought from Earth but also help with the efficient use and recyclability of materials.[58] Research is currently being done with simulated space materials to test the applicability of a 3D printer on Mars.[59]
According to Elon Musk, "even at a million people [working on Mars] you're assuming an incredible amount of productivity per person, because you would need to recreate the entire industrial base on Mars... You would need to mine and refine all of these different materials, in a much more difficult environment than Earth".[60]

Communication

Communications with Earth are relatively straightforward during the half-sol when Earth is above the Martian horizon. NASA and ESA included communications relay equipment in several of the Mars orbiters, so Mars already has communications satellites. While these will eventually wear out, additional orbiters with communication relay capability are likely to be launched before any colonization expeditions are mounted.

The one-way communication delay due to the speed of light ranges from about 3 minutes at closest approach (approximated by perihelion of Mars minus aphelion of Earth) to 22 minutes at the largest possible superior conjunction (approximated by aphelion of Mars plus aphelion of Earth). Real-time communication, such as telephone conversations or Internet Relay Chat, between Earth and Mars would be highly impractical due to the long time lags involved. NASA has found that direct communication can be blocked for about two weeks every synodic period, around the time of superior conjunction when the Sun is directly between Mars and Earth,[61] although the actual duration of the communications blackout varies from mission to mission depending on various factors—such as the amount of link margin designed into the communications system, and the minimum data rate that is acceptable from a mission standpoint. In reality most missions at Mars have had communications blackout periods of the order of a month.[62]

A satellite at the L4 or L5 Earth–Sun Lagrangian point could serve as a relay during this period to solve the problem; even a constellation of communications satellites would be a minor expense in the context of a full colonization program. However, the size and power of the equipment needed for these distances make the L4 and L5 locations unrealistic for relay stations, and the inherent stability of these regions, although beneficial in terms of station-keeping, also attracts dust and asteroids, which could pose a risk.[63] Despite that concern, the STEREO probes passed through the L4 and L5 regions without damage in late 2009.

Recent work by the University of Strathclyde's Advanced Space Concepts Laboratory, in collaboration with the European Space Agency, has suggested an alternative relay architecture based on highly non-Keplerian orbits. These are a special kind of orbit produced when continuous low-thrust propulsion, such as that produced from an ion engine or solar sail, modifies the natural trajectory of a spacecraft. Such an orbit would enable continuous communications during solar conjunction by allowing a relay spacecraft to "hover" above Mars, out of the orbital plane of the two planets.[64] Such a relay avoids the problems of satellites stationed at either L4 or L5 by being significantly closer to the surface of Mars while still maintaining continuous communication between the two planets.

Robotic precursors

The path to a human colony could be prepared by robotic systems such as the Mars Exploration Rovers Spirit, Opportunity and Curiosity. These systems could help locate resources, such as ground water or ice, that would help a colony grow and thrive. The lifetimes of these systems would be measured in years and even decades, and as recent developments in commercial spaceflight have shown, it may be that these systems will involve private as well as government ownership. These robotic systems also have a reduced cost compared with early crewed operations, and have less political risk.

Wired systems might lay the groundwork for early crewed landings and bases, by producing various consumables including fuel, oxidizers, water, and construction materials. Establishing power, communications, shelter, heating, and manufacturing basics can begin with robotic systems, if only as a prelude to crewed operations.

Mars Surveyor 2001 Lander MIP (Mars ISPP Precursor) was to demonstrate manufacture of oxygen from the atmosphere of Mars,[65] and test solar cell technologies and methods of mitigating the effect of Martian dust on the power systems.[66][needs update]

Before any people are transported to Mars on the notional 2030s Interplanetary Transport System envisioned by SpaceX, a number of robotic cargo missions would be undertaken first in order to transport the requisite equipment, habitats and supplies.[67] Equipment that would be necessary would include "machines to produce fertilizer, methane and oxygen from Mars' atmospheric nitrogen and carbon dioxide and the planet's subsurface water ice" as well as construction materials to build transparent domes for initial agricultural areas.[68]

Mission concepts

In 1948, Wernher von Braun described in his book The Mars Project that a fleet of 10 spaceships could be built using 1000 three-stage rockets. These could bring a population of 70 people to Mars.
All of the early human mission concepts to Mars as conceived by national governmental space programs—such as those being tentatively planned by NASA, FKA and ESA—would not be direct precursors to colonization. They are intended solely as exploration missions, as the Apollo missions to the Moon were not planned to be sites of a permanent base.

Colonization requires the establishment of permanent bases that have potential for self-expansion. A famous proposal for building such bases is the Mars Direct and the Semi-Direct plans, advocated by Robert Zubrin.[49]

Other proposals that envision the creation of a settlement have come from Jim McLane and Bas Lansdorp (the man behind Mars One, which envisions no planned return flight for the humans embarking on the journey),[69] as well as from Elon Musk whose SpaceX company, as of 2015, is funding development work on a space transportation system called the Interplanetary Transport System.[70][71]

Economics

Iron–nickel meteorite found on Mars's surface (Heat Shield Rock)

As with early colonies in the New World, economics would be a crucial aspect to a colony's success. The reduced gravity well of Mars and its position in the Solar System may facilitate Mars–Earth trade and may provide an economic rationale for continued settlement of the planet. Given its size and resources, this might eventually be a place to grow food and produce equipment to mine the asteroid belt.

A major economic problem is the enormous up-front investment required to establish the colony and perhaps also terraform the planet.

Some early Mars colonies might specialize in developing local resources for Martian consumption, such as water and/or ice. Local resources can also be used in infrastructure construction.[72] One source of Martian ore currently known to be available is metallic iron in the form of nickel–iron meteorites. Iron in this form is more easily extracted than from the iron oxides that cover the planet.

Another main inter-Martian trade good during early colonization could be manure.[73] Assuming that life doesn't exist on Mars, the soil is going to be very poor for growing plants, so manure and other fertilizers will be valued highly in any Martian civilization until the planet changes enough chemically to support growing vegetation on its own.

Solar power is a candidate for power for a Martian colony. Solar insolation (the amount of solar radiation that reaches Mars) is about 42% of that on Earth, since Mars is about 52% farther from the Sun and insolation falls off as the square of distance. But the thin atmosphere would allow almost all of that energy to reach the surface as compared to Earth, where the atmosphere absorbs roughly a quarter of the solar radiation. Sunlight on the surface of Mars would be much like a moderately cloudy day on Earth.[74]

Economic drivers

Space colonization on Mars can roughly be said to be possible when the necessary methods of space colonization become cheap enough (such as space access by cheaper launch systems) to meet the cumulative funds that have been gathered for the purpose.

Although there are no immediate prospects for the large amounts of money required for any space colonization to be available given traditional launch costs,[75][full citation needed] there is some prospect of a radical reduction to launch costs in the 2010s, which would consequently lessen the cost of any efforts in that direction. With a published price of US$62 million per launch of up to 22,800 kg (50,300 lb) payload to low Earth orbit or 4,020 kg (8,860 lb) to mars,[76] SpaceX Falcon 9 rockets are already the "cheapest in the industry".[77] SpaceX's reusable plans include Falcon Heavy and future methane-based launch vehicles including the Interplanetary Transport System. If SpaceX is successful in developing the reusable technology, it would be expected to "have a major impact on the cost of access to space", and change the increasingly competitive market in space launch services.[78]

Alternative funding approaches might include the creation of inducement prizes. For example, the 2004 President's Commission on Implementation of United States Space Exploration Policy suggested that an inducement prize contest should be established, perhaps by government, for the achievement of space colonization. One example provided was offering a prize to the first organization to place humans on the Moon and sustain them for a fixed period before they return to Earth.[79]

Possible locations for settlements

Cropped version of a HiRISE image of a lava tube skylight entrance on the Martian volcano Pavonis Mons.
Equatorial regions
Mars Odyssey found what appear to be natural caves near the volcano Arsia Mons. It has been speculated that settlers could benefit from the shelter that these or similar structures could provide from radiation and micrometeoroids. Geothermal energy is also suspected in the equatorial regions.[80]
Lava tubes
Several possible Martian lava tube skylights have been located on the flanks of Arsia Mons. Earth based examples indicate that some should have lengthy passages offering complete protection from radiation and be relatively easy to seal using on-site materials, especially in small subsections.[81]

Planetary protection

Robotic spacecraft to Mars are required to be sterilized, to have at most 300,000 spores on the exterior of the craft—and more thoroughly sterilized if they contact "special regions" containing water,[82][83] otherwise there is a risk of contaminating not only the life-detection experiments but possibly the planet itself.
It is impossible to sterilize human missions to this level, as humans are host to typically a hundred trillion microorganisms of thousands of species of the human microbiome, and these cannot be removed while preserving the life of the human. Containment seems the only option, but it is a major challenge in the event of a hard landing (i.e. crash).[84] There have been several planetary workshops on this issue, but with no final guidelines for a way forward yet.[85] Human explorers would also be vulnerable to back contamination to Earth if they become carriers of microorganisms.[86]

Ethical, political and legal challenges

One possible ethical challenge that space travelers might face is that of pregnancy during the trip. According to NASA’s policies, it is forbidden for members of the crew to engage in sex in space. NASA wants its crewmembers to treat each other like coworkers would in a professional environment. A pregnant member on a spacecraft is dangerous to all those aboard. The pregnant woman and child would most likely need additional nutrition from the rations aboard, as well as special treatment and care. At some point during the trip, the pregnancy would most likely impede on the pregnant crew member's duties and abilities. It is still not fully known how the environment in a spacecraft would affect the development of a child aboard. It is known however that an unborn child in space would be more susceptible to solar radiation, which would likely have a negative effect on its cells and genetics.[87] During a long trip to Mars it is likely that members of craft may engage in sex due to their stressful and isolated environment.[88]

It is unforeseen how the first human landing on Mars will change the current policies regarding the exploration of space and occupancy of celestial bodies. In the 1967, United Nations Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies, it was determined that no country may take claim to space or its inhabitants. Since the planet Mars offers a challenging environment and dangerous obstacles for humans to overcome, the laws and culture on the planet will most likely be very different from those on Earth.[89] With Elon Musk announcing his plans for travel to Mars, it is uncertain how to the dynamic of a private company possibly being the first to put a human on Mars will play out on a national and global scale.[90][91] With NASA having recently taken a cut in funding, it is no longer certain that they will be a leading force in the journey to Mars.[92] It is likely that the values and culture on Mars will be determined by the group that establishes human contact with the planet first.

Advocacy

Mars colonization is advocated by several non-governmental groups for a range of reasons and with varied proposals. One of the oldest groups is the Mars Society who promote a NASA program to accomplish human exploration of Mars and have set up Mars analog research stations in Canada and the United States. Mars to Stay advocates recycling emergency return vehicles into permanent settlements as soon as initial explorers determine permanent habitation is possible. Mars One, which went public in June 2012, aims to establish a fully operational permanent human colony on Mars by 2027 with funding coming from a reality TV show and other commercial exploitation, although this approach has been widely criticized as unrealistic and infeasible.[93][94][95]

Elon Musk founded SpaceX with the long-term goal of developing the technologies that will enable a self-sustaining human colony on Mars.[90][96] In 2015 he stated "I think we've got a decent shot of sending a person to Mars in 11 or 12 years".[97] Richard Branson, in his lifetime, is "determined to be a part of starting a population on Mars. I think it is absolutely realistic. It will happen... I think over the next 20 years, we will take literally hundreds of thousands of people to space and that will give us the financial resources to do even bigger things".[98]

In June 2013, Buzz Aldrin, American engineer and former astronaut, and the second person to walk on the Moon, wrote an opinion, published in The New York Times, supporting a manned mission to Mars and viewing the Moon "not as a destination but more a point of departure, one that places humankind on a trajectory to homestead Mars and become a two-planet species."[99] In August 2015, Aldrin, in association with the Florida Institute of Technology, presented a "master plan", for NASA consideration, for astronauts, with a "tour of duty of ten years", to colonize Mars before the year 2040.[100]

8.2 kiloyear event

From Wikipedia, the free encyclopedia
Central Greenland reconstructed temperature

In climatology, the 8.2 kiloyear event was a sudden decrease in global temperatures that occurred approximately 8,200 years before the present, or c. 6,200 BCE, and which lasted for the next two to four centuries. Milder than the Younger Dryas cold spell that preceded it, but more severe than the Little Ice Age that would follow, the 8.2 kiloyear cooling was a significant exception to general trends of the Holocene climatic optimum. During the event, atmospheric methane concentration decreased by 80 ppb or an emission reduction of 15%, by cooling and drying at a hemispheric scale.[1]

Identification

A rapid cooling around 6200 BCE was first identified by Swiss botanist Heinrich Zoller in 1960, who named the event Misox oscillation (for the Val Mesolcina).[2] It is also known as Finse event in Norway.[3] Bond et al. argued that the origin of the 8.2 kiloyear event is linked to a 1,500-year climate cycle; it correlates with Bond event 5.[4]

The strongest evidence for the event comes from the North Atlantic region; the disruption in climate shows clearly in Greenland ice cores and in sedimentary and other records of the temperate and tropical North Atlantic.[5][6][7] It is less evident in ice cores from Antarctica and in South American indices.[8][9] The effects of the cold snap were global, however, most notably in changes in sea level during the relevant era.

Cooling event

The 8.2 kiloyear cooling event may have been caused by a large meltwater pulse from the final collapse of the Laurentide ice sheet of northeastern North America, most likely when the glacial lakes Ojibway and Agassiz suddenly drained into the North Atlantic Ocean.[10][11][12] The same type of action produced the Missoula floods that created the Channeled scablands of the Columbia River basin. The melt-water pulse may have affected the North Atlantic thermohaline circulation, reducing northward heat transport in the Atlantic and causing significant circum-North Atlantic cooling. Estimates of the cooling vary and depend somewhat on the interpretation of the proxy data, but drops of around 1 to 5 °C (1.8 to 9.0 °F) have been reported. In Greenland, the event started at 8175 BP, and the cooling was 3.3 °C (decadal average) in less than 20 years. The coldest period lasted for about 60 years, while the total duration was about 150 years.[1] The melt-water causation theory is, however, thrown into speculation due to inconstancies with its onset and an unknown region of impact. Researchers suggest the discharge was probably superimposed upon a longer episode of cooler climate lasting up to 600 years, and merely one contributing factor to the event as a whole.[13]

Further afield, some tropical records report a 3 °C (5.4 °F) cooling from cores drilled into an ancient coral reef in Indonesia. [14] The event also caused a global CO2 decline of ≈25 ppm over ≈300 years.[15] However, dating and interpretation other tropical sites are more ambiguous than the North Atlantic sites. In addition, climate modeling work shows that not only the amount of meltwater, but also the pathway of meltwater is important in perturbing the North Atlantic thermohaline circulation.[16]

Drier conditions were notable in North Africa while East Africa suffered five centuries of general drought. In West Asia and especially Mesopotamia, the 8.2 kiloyear event was a 300-year aridification and cooling episode, which may have provided the natural force for Mesopotamian irrigation agriculture and surplus production that were essential for the earliest class-formation and urban life.[citation needed] However, multi-centennial changes around the same period are difficult to link specifically to the approximately 100-year abrupt event as recorded most clearly in the Greenland ice cores.

The initial meltwater pulse caused between 0.5 and 4 m (1 ft 8 in and 13 ft 1 in) of sea-level rise. Based on estimates of lake volume and decaying ice cap size, values of 0.4–1.2 m (1 ft 4 in–3 ft 11 in) circulate. Based on sea-level data from the Mississippi Delta, the very final stage of the Lake Agassiz–Ojibway (LAO) drainage occurred at 8.31 to 8.18 ka and ranges from 0.8 to 2.2 m.[17] The sea-level data from the Rhine–Meuse Delta indicate a 2–4 m (6 ft 7 in–13 ft 1 in) of near-instantaneous rise at 8.54–8.2 ka, in addition to 'normal' post-glacial sea-level rise.[18] Meltwater pulse sea-level rise was experienced fully at great distance from the release area. Gravity and rebound effects associated with the shifting of water masses meant that the sea-level fingerprint was smaller in areas closer to the Hudson Bay. The Mississippi delta records ≈20%, northwest Europe records ≈70% and Asia records ≈105% of the globally averaged amount.[19] The cooling of the 8.2 kiloyear event was a temporary feature; however, the sea-level rise of the meltwater pulse was permanent.

In 2003, the Office of Net Assessment (ONA) at the United States Department of Defense was commissioned to produce a study on the likely and potential effects of a modern climate change.[20] The study, conducted under ONA head Andrew Marshall, modeled its prospective climate change on the 8.2 kiloyear event, precisely because it was the middle alternative between the Younger Dryas and the milder Little Ice Age.[21]

Thermohaline circulation

From Wikipedia, the free encyclopedia

A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents.

Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.[1][2] The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of sea water. Wind-driven surface currents (such as the Gulf Stream) travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes (forming North Atlantic Deep Water). This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters (with a transit time of around 1000 years)[3] upwell in the North Pacific.[4] Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. On their journey, the water masses transport both energy (in the form of heat) and matter (solids, dissolved substances and gases) around the globe. As such, the state of the circulation has a large impact on the climate of the Earth.

The thermohaline circulation is sometimes called the ocean conveyor belt, the great ocean conveyor, or the global conveyor belt. On occasion, it is used to refer to the meridional overturning circulation (often abbreviated as MOC). The term MOC is more accurate and well defined, as it is difficult to separate the part of the circulation which is driven by temperature and salinity alone as opposed to other factors such as the wind and tidal forces.[5] Moreover, temperature and salinity gradients can also lead to circulation effects that are not included in the MOC itself.

Overview

The global conveyor belt on a continuous-ocean map

The movement of surface currents pushed by the wind is fairly intuitive. For example, the wind easily produces ripples on the surface of a pond. Thus the deep ocean—devoid of wind—was assumed to be perfectly static by early oceanographers. However, modern instrumentation shows that current velocities in deep water masses can be significant (although much less than surface speeds). In general ocean water velocities range from fractions of centimeters per second (in the depth of the oceans) to sometimes more than 1 m/s in surface currents like the Gulf Stream and Kuroshio.

In the deep ocean, the predominant driving force is differences in density, caused by salinity and temperature variations (increasing salinity and lowering the temperature of a fluid both increase its density). There is often confusion over the components of the circulation that are wind and density driven.[6][7] Note that ocean currents due to tides are also significant in many places; most prominent in relatively shallow coastal areas, tidal currents can also be significant in the deep ocean. There they are currently thought to facilitate mixing processes, especially diapycnal mixing.[8]

The density of ocean water is not globally homogeneous, but varies significantly and discretely. Sharply defined boundaries exist between water masses which form at the surface, and subsequently maintain their own identity within the ocean. But these sharp boundaries are not to be imagined spatially but rather in a T-S-diagram where water masses are distinguished. They position themselves above or below each other according to their density, which depends on both temperature and salinity.

Warm seawater expands and is thus less dense than cooler seawater. Saltier water is denser than fresher water because the dissolved salts fill interstices between water molecules, resulting in more mass per unit volume. Lighter water masses float over denser ones (just as a piece of wood or ice will float on water, see buoyancy). This is known as "stable stratification" as opposed to unstable stratification (see Bruunt-Väisälä frequency) where denser waters are located over less dense waters (see convection or deep convection needed for water mass formation). When dense water masses are first formed, they are not stably stratified, so they seek to locate themselves in the correct vertical position according to their density. This motion is called convection, it orders the stratification by gravitation. Driven by the density gradients this sets up the main driving force behind deep ocean currents like the deep western boundary current (DWBC).

The thermohaline circulation is mainly driven by the formation of deep water masses in the North Atlantic and the Southern Ocean caused by differences in temperature and salinity of the water.

The great quantities of dense water sinking at high latitudes must be offset by equal quantities of water rising elsewhere. Note that cold water in polar zones sink relatively rapidly over a small area, while warm water in temperate and tropical zones rise more gradually across a much larger area. It then slowly returns poleward near the surface to repeat the cycle. The continual diffuse upwelling of deep water maintains the existence of the permanent thermocline found everywhere at low and mid-latitudes. This model was described by Henry Stommel and Arnold B. Arons in 1960 and is known as the Stommel-Arons box model for the MOC.[9] This slow upward movement is approximated to be about 1 centimeter (0.5 inch) per day over most of the ocean. If this rise were to stop, downward movement of heat would cause the thermocline to descend and would reduce its steepness.

Formation of deep water masses

The dense water masses that sink into the deep basins are formed in quite specific areas of the North Atlantic and the Southern Ocean. In the North Atlantic, seawater at the surface of the ocean is intensely cooled by the wind and low ambient air temperatures. Wind moving over the water also produces a great deal of evaporation, leading to a decrease in temperature, called evaporative cooling related to latent heat. Evaporation removes only water molecules, resulting in an increase in the salinity of the seawater left behind, and thus an increase in the density of the water mass along with the decrease in temperature. In the Norwegian Sea evaporative cooling is predominant, and the sinking water mass, the North Atlantic Deep Water (NADW), fills the basin and spills southwards through crevasses in the submarine sills that connect Greenland, Iceland and Great Britain which are known as the Greenland-Scotland-Ridge. It then flows very slowly into the deep abyssal plains of the Atlantic, always in a southerly direction. Flow from the Arctic Ocean Basin into the Pacific, however, is blocked by the narrow shallows of the Bering Strait.
Diagram showing relation between temperature and salinity for sea water density maximum and sea water freezing temperature.

In the Southern Ocean, strong katabatic winds blowing from the Antarctic continent onto the ice shelves will blow the newly formed sea ice away, opening polynyas along the coast. The ocean, no longer protected by sea ice, suffers a brutal and strong cooling (see polynya). Meanwhile, sea ice starts reforming, so the surface waters also get saltier, hence very dense. In fact, the formation of sea ice contributes to an increase in surface seawater salinity; saltier brine is left behind as the sea ice forms around it (pure water preferentially being frozen). Increasing salinity lowers the freezing point of seawater, so cold liquid brine is formed in inclusions within a honeycomb of ice. The brine progressively melts the ice just beneath it, eventually dripping out of the ice matrix and sinking. This process is known as brine rejection.

The resulting Antarctic Bottom Water (AABW) sinks and flows north and east, but is so dense it actually underflows the NADW. AABW formed in the Weddell Sea will mainly fill the Atlantic and Indian Basins, whereas the AABW formed in the Ross Sea will flow towards the Pacific Ocean.

The dense water masses formed by these processes flow downhill at the bottom of the ocean, like a stream within the surrounding less dense fluid, and fill up the basins of the polar seas. Just as river valleys direct streams and rivers on the continents, the bottom topography constrains the deep and bottom water masses.

Note that, unlike fresh water, seawater does not have a density maximum at 4 °C but gets denser as it cools all the way to its freezing point of approximately −1.8 °C. This freezing point is however a function of salinity and pressure and thus -1.8°C is not a general freezing temperature for sea water (see diagram to the right).

Movement of deep water masses

Formation and movement of the deep water masses at the North Atlantic Ocean, creates sinking water masses that fill the basin and flows very slowly into the deep abyssal plains of the Atlantic. This high-latitude cooling and the low-latitude heating drives the movement of the deep water in a polar southward flow. The deep water flows through the Antarctic Ocean Basin around South Africa where it is split into two routes: one into the Indian Ocean and one past Australia into the Pacific.

At the Indian Ocean, some of the cold and salty water from the Atlantic—drawn by the flow of warmer and fresher upper ocean water from the tropical Pacific—causes a vertical exchange of dense, sinking water with lighter water above. It is known as overturning. In the Pacific Ocean, the rest of the cold and salty water from the Atlantic undergoes haline forcing, and becomes warmer and fresher more quickly.

The out-flowing undersea of cold and salty water makes the sea level of the Atlantic slightly lower than the Pacific and salinity or halinity of water at the Atlantic higher than the Pacific. This generates a large but slow flow of warmer and fresher upper ocean water from the tropical Pacific to the Indian Ocean through the Indonesian Archipelago to replace the cold and salty Antarctic Bottom Water. This is also known as 'haline forcing' (net high latitude freshwater gain and low latitude evaporation). This warmer, fresher water from the Pacific flows up through the South Atlantic to Greenland, where it cools off and undergoes evaporative cooling and sinks to the ocean floor, providing a continuous thermohaline circulation.[10]

Hence, a recent and popular name for the thermohaline circulation, emphasizing the vertical nature and pole-to-pole character of this kind of ocean circulation, is the meridional overturning circulation.

Quantitative estimation

Direct estimates of the strength of the thermohaline circulation have been made at 26.5°N in the North Atlantic since 2004 by the UK-US RAPID programme.[11] By combining direct estimates of ocean transport using current meters and subsea cable measurements with estimates of the geostrophic current from temperature and salinity measurements, the RAPID programme provides continuous, full-depth, basinwide estimates of the thermohaline circulation or, more accurately, the meridional overturning circulation.

The deep water masses that participate in the MOC have chemical, temperature and isotopic ratio signatures and can be traced, their flow rate calculated, and their age determined. These include 231Pa / 230Th ratios.

Gulf Stream


The Gulf Stream, together with its northern extension towards Europe, the North Atlantic Drift, is a powerful, warm, and swift Atlantic ocean current that originates at the tip of Florida, and follows the eastern coastlines of the United States and Newfoundland before crossing the Atlantic Ocean. The process of western intensification causes the Gulf Stream to be a northward accelerating current off the east coast of North America.[12] At about 40°0′N 30°0′W, it splits in two, with the northern stream crossing to northern Europe and the southern stream recirculating off West Africa. The Gulf Stream influences the climate of the east coast of North America from Florida to Newfoundland, and the west coast of Europe. Although there has been recent debate, there is consensus that the climate of Western Europe and Northern Europe is warmer than it would otherwise be due to the North Atlantic drift,[13][14] one of the branches from the tail of the Gulf Stream. It is part of the North Atlantic Gyre. Its presence has led to the development of strong cyclones of all types, both within the atmosphere and within the ocean. The Gulf Stream is also a significant potential source of renewable power generation.[15][16]

Upwelling

All these dense water masses sinking into the ocean basins displace the older deep water masses were made less dense by ocean mixing. To maintain a balance, water must be rising elsewhere. However, because this thermohaline upwelling is so widespread and diffuse, its speeds are very slow even compared to the movement of the bottom water masses. It is therefore difficult to measure where upwelling occurs using current speeds, given all the other wind-driven processes going on in the surface ocean. Deep waters have their own chemical signature, formed from the breakdown of particulate matter falling into them over the course of their long journey at depth. A number of scientists have tried to use these tracers to infer where the upwelling occurs.
Wallace Broecker, using box models, has asserted that the bulk of deep upwelling occurs in the North Pacific, using as evidence the high values of silicon found in these waters. Other investigators have not found such clear evidence. Computer models of ocean circulation increasingly place most of the deep upwelling in the Southern Ocean,[17] associated with the strong winds in the open latitudes between South America and Antarctica. While this picture is consistent with the global observational synthesis of William Schmitz at Woods Hole and with low observed values of diffusion, not all observational syntheses agree. Recent papers by Lynne Talley at the Scripps Institution of Oceanography and Bernadette Sloyan and Stephen Rintoul in Australia suggest that a significant amount of dense deep water must be transformed to light water somewhere north of the Southern Ocean.

Effects on global climate

The thermohaline circulation plays an important role in supplying heat to the polar regions, and thus in regulating the amount of sea ice in these regions, although poleward heat transport outside the tropics is considerably larger in the atmosphere than in the ocean.[18] Changes in the thermohaline circulation are thought to have significant impacts on the Earth's radiation budget. Insofar as the thermohaline circulation governs the rate at which deep waters are exposed to the surface, it may also play an important role in the concentration of carbon dioxide in the atmosphere. While it is often stated that the thermohaline circulation is the primary reason that Western Europe is so temperate, it has been suggested that this is largely incorrect, and that Europe is warm mostly because it lies downwind of an ocean basin, and because of the effect of atmospheric waves bringing warm air north from the subtropics.[19] However, the underlying assumptions of this particular analysis have likewise been challenged.[20]

Large influxes of low-density meltwater from Lake Agassiz and deglaciation in North America are thought to have led to a shifting of deep water formation and subsidence in the extreme North Atlantic and caused the climate period in Europe known as the Younger Dryas.[21]

Shutdown of thermohaline circulation

In 2005, British researchers noticed that the net flow of the northern Gulf Stream had decreased by about 30% since 1957. Coincidentally, scientists at Woods Hole had been measuring the freshening of the North Atlantic as Earth becomes warmer. Their findings suggested that precipitation increases in the high northern latitudes, and polar ice melts as a consequence. By flooding the northern seas with lots of extra fresh water, global warming could, in theory, divert the Gulf Stream waters that usually flow northward, past the British Isles and Norway, and cause them to instead circulate toward the equator. If this were to happen, Europe's climate would be seriously impacted.[22][23][24]
Downturn of AMOC (Atlantic meridional overturning circulation), has been tied to extreme regional sea level rise.[25]

In 2013, an unexpected significant weakening of the THC led to one of the most quietest Atlantic hurricane seasons observed since 1994. The main cause of the inactivity was caused by a continuation of the spring pattern across the Atlantic basin.

Proto-metabolism

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wi...