Search This Blog

Wednesday, January 1, 2014

What’s Ahead for Human Rated SpaceX Dragon in 2014 – Musk tells Universe Today

Falcon 9 SpaceX CRS-2 launch of Dragon spacecraft on March 1, 2013 to the ISS from pad 40 at Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building.   During 2014, SpaceX plans  two flight tests simulating Dragon emergency abort scenarios launching from pad 40. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch of Dragon spacecraft on March 1, 2013 to the ISS from pad 40 at Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. During 2014, SpaceX plans two flight tests simulating human crewed Dragon emergency abort scenarios launching from right here at pad 40.
Credit: Ken Kremer/www.kenkremer.com 

 
by Ken Kremer on December 30, 2013
 
CAPE CANAVERAL AIR FORCE STATION, FL – A trio of American companies – SpaceX, Boeing, and Sierra Nevada – are working diligently to restore America’s capability to launch humans into low Earth orbit from US soil, aided by seed money from NASA’s Commercial Crew Program in a public-private partnership.
 
We’ve been following the solid progress made by all three companies. Here we’ll focus on two crucial test flights planned by SpaceX in 2014 to human rate and launch the crewed version of their entry into the commercial crew ‘space taxi’ sweepstakes, namely the Dragon spacecraft.
Recently I had the opportunity to speak about the upcoming test flights with the head of SpaceX, Elon Musk.
 
So I asked Musk, the founder and CEO of SpaceX, about “what’s ahead in 2014″; specifically related to a pair of critical “abort tests” that he hopes to conduct with the human rated “version of our Dragon spacecraft.”
 
“Assuming all goes well, we expect to conduct [up to] two Dragon abort tests next year in 2014,” Musk told me.
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite  from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
 
The two abort flight tests in 2014 involve demonstrating the ability of the Dragon spacecraft abort system to lift an uncrewed spacecraft clear of a simulated launch emergency.
 
The crewed Dragon – also known as DragonRider – will be capable of lofting up to seven astronauts to the ISS and remaining docked for at least 180 days.
 
First a brief overview of the goals of NASA’s Commercial Crew Program. It was started in the wake of the retirement of NASA’s Space Shuttle program which flew its final human crews to the International Space Station (ISS) in mid-2011.
 
“NASA has tasked SpaceX, Boeing, and Sierra Nevada to develop spacecraft capable of safely transporting humans to the space station, returning that capability to the United States where it belongs,’ says NASA Administrator Charles Bolden.
Since 2011, US astronauts have been 100% dependent on the Russians and their Soyuz capsules to hitch a ride to low Earth orbit and the ISS.
 
The abort tests are essential for demonstrating that the Dragon vehicle will activate thrusters and separate in a split second from a potentially deadly exploding rocket fireball to save astronauts lives in the event of a real life emergency – either directly on the launch pad or in flight.
 
“We are aiming to do at least the pad abort test next year [in 2014] with version 2 of our Dragon spacecraft that would carry astronauts,” Musk told me.
This is the Dragon mock-up that will be used for an upcoming pad abort test on Cape Canaveral Air Force Station's Space Launch Complex 40.  Credit: SpaceX
This is the Dragon mock-up that will be used for an upcoming pad abort test on Cape Canaveral Air Force Station’s Space Launch Complex 40. Credit: SpaceX
 
SpaceX plans to launch the crewed Dragon atop the human rated version of their own developed Falcon 9 next generation rocket, which is also being simultaneously developed to achieve all of NASA’s human rating requirements.
 
The initial pad abort test will test the ability of the full-size Dragon to safely push away and escape in case of a failure of its Falcon 9 booster rocket in the moments around launch, right at the launch pad.
“The purpose of the pad abort test is to demonstrate Dragon has enough total impulse (thrust) to safely abort,” SpaceX spokeswoman Emily Shanklin informed me.
 
For that test, Dragon will use its pusher escape abort thrusters to lift the Dragon safely away from the failing rocket. The vehicle will be positioned on a structural facsimile of the Dragon trunk in which the actual Falcon 9/Dragon interfaces will be represented by mockups.
 
This test will be conducted on SpaceX’s launch pad 40 at Cape Canaveral Air Force Station in Florida. It will not include an actual Falcon 9 booster.
 
The second Dragon flight test involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure at about T plus 1 minute, to save astronauts lives. The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted landing into the Atlantic Ocean.
 
“Assuming all goes well we expect to launch the high altitude abort test towards the end of next year,” Musk explained.
 
The second test will use the upgraded next generation version of the Falcon 9 that was successfully launched just weeks ago on its maiden mission from Cape Canaveral on Dec. 3. Read my earlier reports – starting here.
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. The upgraded Falcon 9 will be used to launch the human rated SpaceX Dragon spacecraft to the ISS. Credit: Ken Kremer/kenkremer.com
To date, SpaceX has already successfully launched the original cargo version of the Dragon a total of three times. And each one docked as planned at the ISS.
The last cargo Dragon blasted off on March 1, 2013. Read my prior articles starting – here.
The next cargo Dragon bound for the ISS is due to lift off on Feb. 22, 2014 from Cape Canaveral, FL.
SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA
SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA
 
Orbital Sciences – the commercial ISS cargo competitor to SpaceX – plans to launch its Cygnus cargo vehicle on the Orb-1 mission bound for the ISS on Jan. 7 atop the firms Antares rocket from NASA Wallops Flight Facility in Virginia. Watch for my on site reports from NASA Wallops.
NASA’s Commercial Crew Program’s goal is launching American astronauts from U.S. soil within the next four years – by 2017 to the ISS.
 
The 2017 launch date is dependent on funding from the US federal government that will enable each of the firms to accomplish a specified series of milestones. NASA payments are only made after each companies milestones are successfully achieved.
 
SpaceX was awarded $440 million in the third round of funding in the Commercial Crew integrated Capability (CCiCAP) initiative which runs through the third quarter of 2014. As of November 2013, NASA said SpaceX had accomplished 9 of 15 milestones and was on track to complete all on time.
Musk hopes to launch an initial Dragon orbital test flight with a human crew of SpaceX test pilots perhaps as early as sometime in 2015 – if funding and all else goes well.
 
Either a US commercial ‘space taxi’ or the Orion exploration capsule could have blasted off with American astronauts much sooner – if not for the continuing year-by-year slashes to NASA’s overall budget forced by the so called ‘political leaders’ of all parties in Washington, DC.
SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida.  Credit: Ken Kremer/kenkremer.com
SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss SpaceX upcoming flight plans by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida. Credit: Ken Kremer/kenkremer.com
 
Read more: http://www.universetoday.com/107505/whats-ahead-for-human-rated-spacex-dragon-in-2014-musk-tells-universe-today/#ixzz2pBRB8BRe

2014 preview: Hydrogen SUV ready to hit the road

Ref:  http://www.newscientist.com/article/mg22029485.300-2014-preview-hydrogen-suv-ready-to-hit-the-road.html#.UsReE2eA2L8

27 December 2013 by Rowan Hooper
Magazine issue 2948 in New Scientist. Subscribe and save
For similar stories, visit the Energy and Fuels and Cars and Motoring Topic Guides

 
HyundaiFuelCellLeft_38939_1_1
 
Did you know that the Empire State Building's spire was designed as a mooring point for hydrogen airships? That proved too dangerous, though, and then a deadly fire on the Hindenburg in 1937 brought the hydrogen fad to an abrupt end. Now the lightest of elements is making a comeback as the first mass-market hydrogen car gears up to hit the road.
 
Whereas airships harnessed hydrogen's buoyancy, the Hyundai Tucson Fuel Cell, an SUV, uses it to make electricity. Its fuel cell combines hydrogen from the tank with oxygen in the air, creating an electrochemical reaction that generates current to supply electric motors. Water is the only waste product, making the cars green. Unlike battery-powered vehicles, which need hours to charge, refuelling takes minutes – and a full tank should last for 480 kilometres. Hyundai says the Tucson can hit 160 kilometres per hour.
 
Starting in spring next year, the firm will lease the cars for $499 a month in southern California. Home to nine of the US's 10 existing hydrogen refuelling stations, and committed to building 100 more, the Golden State is ahead of the hydrogen curve. Honda and Toyota plan to follow Hyundai's lead with fuel-cell cars in 2015. By contrast, a 2006 BMW offering burned liquid hydrogen but it was inefficient and never mass-produced.
 
Is the Tucson safe? If the tank springs a leak, fuel vents up into the air rather than pooling below, as in ordinary, gasoline-powered cars. Extensive crash and fire tests make Hyundai confident its offering won't go the way of the Hindenburg. The cars may just be the start of an environmentally friendly, 21st-century hydrogen economy.

See, I started smoking at two, and I'm still just fine. Smoking causing cancer is just a myth

See, I started smoking at two, and I'm still just fine. Smoking causing cancer is just a myth.

Embedded image permalink

The future of the Higgs boson

Joseph Lykken and Maria Spiropulu
Ref.:  http://scitation.aip.org/content/aip/magazine/physicstoday/article/66/12/10.1063/PT.3.2212

image of Untitled
Note: this is only part of the article.

Experimentalists and theorists are still celebrating the Nobel-worthy discovery of the Higgs boson that was announced in July 2012 at CERN’s Large Hadron Collider. Now they are working on the profound implications of that discovery.

Symmetries and other regularities of the physical world make science a useful endeavor, yet the world around us is characterized by complex mixtures of regularities with individual differences, as exemplified by the words on this page. The dialectic of simple laws accounting for a complex world was only sharpened with the development of relativity and quantum mechanics and the understanding of the subatomic laws of physics. A mathematical encapsulation of the standard model of particle physics can be written on a cocktail napkin, an economy made possible because the basic phenomena are tightly controlled by powerful symmetry principles, most especially Lorentz and gauge invariance.

How does our complex world come forth from symmetrical underpinnings? The answer is in the title of Philip Anderson’s seminal article “More is different.” 1 Many-body systems exhibit emergent phenomena that are not in any meaningful sense encoded in the laws that govern their constituents.
One reason those emergent behaviors arise is that many-body systems result from symmetries being broken. Consider, for example, a glucose molecule: It will have a particular orientation even though the equations governing its atoms are rotationally symmetric. That kind of symmetry breaking is called spontaneous, to indicate that the physical system does not exhibit the symmetry present in the underlying dynamics.

It may seem that the above discussion has no relevance to particle physics in general or to the Higgs boson in particular. But in quantum field theory, the ground state, or vacuum, behaves like a many-body system. And just as a particular glucose orientation breaks an underlying rotation symmetry, a nonvanishing vacuum expectation value of the Higgs boson field, as we will describe, breaks symmetries that would otherwise forbid masses for elementary particles. Now that the Higgs boson (or something much like it) has been found at the Large Hadron Collider (LHC; see , September 2012, page 12), particle experimentalists are searching for more kinds of Higgs bosons and working to find out if the Higgs boson interacts with the dark matter that holds the universe together. Cosmologists are trying to understand the symmetry-breaking Higgs phase transition, which took place early in the history of the universe, and whether that event explains the excess of matter over antimatter. The measured mass of the Higgs boson implies that the symmetry-breaking vacuum is metastable. If no new physics intervenes, an unlucky quantum fluctuation will eventually spark a cosmic catastrophe.

For more, see reference.

Residents of poorer nations find greater meaning in life

Association for Psychological Science / December 18, 2013 / Social / 0
Ref:  http://www.psypost.org/2013/12/residents-of-poorer-nations-find-greater-meaning-in-life-21792
Veddah child by Alessandro Pucci
While residents of wealthy nations tend to have greater life satisfaction, new research shows that those living in poorer nations report having greater meaning in life.
These findings, published in Psychological Science, a journal of the Association for Psychological Science, suggest that meaning in life may be higher in poorer nations as a result of greater religiosity. As countries become richer, religion becomes less central to people’s lives and they lose a sense of meaning in life.

“Thus far, the wealth of nations has been almost always associated with longevity, health, happiness, or life satisfaction,” explains psychological scientist Shigehiro Oishi of the University of Virginia.
“Given that meaning in life is an important aspect of overall well-being, we wanted to look more carefully at differential patterns, correlates, and predictors for meaning in life.”
Oishi and colleague Ed Diener of the University of Illinois at Urbana-Champaign investigated life satisfaction, meaning, and well-being by examining data from the 2007 Gallup World Poll, a large-scale survey of over 140,000 participants from 132 countries. In addition to answering a basic life satisfaction question, participants were asked: “Do you feel your life has an important purpose or meaning?” and “Is religion an important part of your daily life?”

The data revealed some unexpected trends:

“Among Americans, those who are high in life satisfaction are also high in meaning in life,” says Oishi. “But when we looked at the societal level of analysis, we found a completely different pattern of the association between meaning in life and life satisfaction.”

When looking across many countries, Oishi and Diener found that people in wealthier nations were more educated, had fewer children, and expressed more individualistic attitudes compared to those in poorer countries – all factors that were associated with higher life satisfaction but a significantly lower sense of meaning in life.

The data suggest that religiosity may play an important role: Residents of wealthier nations, where religiosity is lower, reported less meaning in life and had higher suicide rates than poorer countries.

According to the researchers, religion may provide meaning in life to the extent that it helps people to overcome personal difficulty and cope with the struggles of working to survive in poor economic conditions:  “Religion gives a system that connects daily experiences with the coherent whole and a general structure to one’s life…and plays a critical role in constructing meaning out of extreme hardship,” the researchers write.

Oishi and Diener hope to replicate these findings using more comprehensive measures of meaning and religiosity, and are interested in following countries over time to track whether economic prosperity gives rise to less religiosity and less meaning in life.

Neural prosthesis restores behavior after brain injury

Case Western Reserve University / December 29, 2013 / Mental Health / 1
Full article:  http://www.psypost.org/2013/12/neural-prosthesis-restores-behavior-after-brain-injury-21893

Human brain

Scientists from Case Western Reserve University and University of Kansas Medical Center have restored behavior—in this case, the ability to reach through a narrow opening and grasp food—using a neural prosthesis in a rat model of brain injury.

Ultimately, the team hopes to develop a device that rapidly and substantially improves function after brain injury in humans. There is no such commercial treatment for the 1.5 million Americans, including soldiers in Afghanistan and Iraq, who suffer traumatic brain injuries (TBI), or the nearly 800,000 stroke victims who suffer weakness or paralysis in the United States, annually.

The prosthesis, called a brain-machine-brain interface, is a closed-loop microelectronic system. It records signals from one part of the brain, processes them in real time, and then bridges the injury by stimulating a second part of the brain that had lost connectivity.

Their work is published online this week in the science journal Proceedings of the National Academy of Sciences.

“If you use the device to couple activity from one part of the brain to another, is it possible to induce recovery from TBI? That’s the core of this investigation,” said Pedram Mohseni, professor of electrical engineering and computer science at Case Western Reserve, who built the brain prosthesis.
“We found that, yes, it is possible to use a closed-loop neural prosthesis to facilitate repair of a brain injury,” he said.

The researchers tested the prosthesis in a rat model of brain injury in the laboratory of Randolph J. Nudo, professor of molecular and integrative physiology at the University of Kansas. Nudo mapped the rat’s brain and developed the model in which anterior and posterior parts of the brain that control the rat’s forelimbs are disconnected.

Atop each animal’s head, the brain-machine-brain interface is a microchip on a circuit board smaller than a quarter connected to microelectrodes implanted in the two brain regions.
The device amplifies signals, which are called neural action potentials and produced by the neurons in the anterior of the brain. An algorithm separates these signals, recorded as brain spike activity, from noise and other artifacts. With each spike detected, the microchip sends a pulse of electric current to stimulate neurons in the posterior part of the brain, artificially connecting the two brain regions.

Two weeks after the prosthesis had been implanted and run continuously, the rat models using the full closed-loop system had recovered nearly all function lost due to injury, successfully retrieving a food pellet close to 70 percent of the time, or as well as normal, uninjured rats. Rat models that received random stimuli from the device retrieved less than half the pellets and those that received no stimuli retrieved about a quarter of them.

“A question still to be answered is must the implant be left in place for life?” Mohseni said. “Or can it be removed after two months or six months, if and when new connections have been formed in the brain?”

Brain studies have shown that, during periods of growth, neurons that regularly communicate with each other develop and solidify connections.

Mohseni and Nudo said they need more systematic studies to determine what happens in the brain that leads to restoration of function. They also want to determine if there is an optimal time window after injury in which they must implant the device in order to restore function.

Replacement artificial heart keeps first patient alive

13:49 31 December 2013 by Niall Firth in NewScientist

(Image: Carmat)
 
If you stayed awake during biology in school, you might recognise the shapes at the left and top right of this image: they are models of the heart. The object at lower right, looking like a cross between a tape dispenser and a second-world-war gas mask, will be less familiar.
 
Developed by French firm Carmat, this is an artificial heart designed for people whose hearts are so weak that they can no longer pump enough blood to sustain life. It was implanted in its first human patient on 18 December 2013 at the Georges Pompidou European Hospital in Paris.
The device replaces the real heart and is meant to keep patients going while they wait for a donor: Carmat claims it can be used for up to five years. Lithium-ion batteries outside the body keep it pumping, while sensors monitor and automatically control blood flow to adapt to the patient's activity.
 
Biomaterials in the artificial heart help to prevent the body from rejecting it. It is about three times larger than the natural organ, so it fits only about 65 per cent of patients. It would fit 86 per cent of men, though, because they have larger chest cavities.
 
So far, the operation seems to have been a success: the patient is said to be awake and talking to his family, and in a statement issued to Reuters, the hospital said the device is working well.
"The artificial heart is functioning normally, automatically catering to the body's needs without any manual adjustment necessary," the surgeons said.

For you who do not accept evolution

For you who do not accept evolution (and some that do): you have a point. Claims shouldn't be accepted on authority, even scientific authority -- even your own authority. Evidence and logic is all that counts. Of course, you must recognize evidence and be trained in logic, or all is lost. For some people, alas, that is the case, and they will spend their lives as fools. For the rest, there are authors such as Richard Dawkins, Jerry Coyne, John Maynard Smith, Darwin himself of course, and others who will at least explain what evolution is and how it works, and present a great deal of the evidence supporting it. You could peruse a few of these and then ask yourself how you really think about it. That's all I'm recommending and asking for, not some kind of faith. Indeed, just about any scientific subject, from climate warming theory to the Big Bang, that always must be your beginning.



Monday, December 30, 2013

Simon And Garfunkel – I Am A Rock Lyrics

Simon And Garfunkel – I Am A Rock Lyrics

 
A winter's day
In a deep and dark December;
I am alone,
Gazing from my window to the streets below
On a freshly fallen silent shroud of snow.
I am a rock,
I am an island.

I've built walls,
A fortress deep and mighty,
That none may penetrate.
I have no need of friendship; friendship causes pain.
It's laughter and it's loving I disdain.
I am a rock,
I am an island.

Don't talk of love,
But I've heard the words before;
It's sleeping in my memory.
I won't disturb the slumber of feelings that have died.
If I never loved I never would have cried.
I am a rock,
I am an island.

I have my books
And my poetry to protect me;
I am shielded in my armor,
Hiding in my room, safe within my womb.
I touch no one and no one touches me.
I am a rock,
I am an island.

And a rock feels no pain;
And an island never cries.

Nothing Can't Exist!


Many of you, I am certain, have heard what would seem to be (and was for a while) the most "profound" question for philosophy and science, particularly physics, of all:  Why is there something rather than nothing?  It is also a question religious people often ask, contradictorily, as their ironic proof of the particular deity's existence.

And yet the answer is easy.  Something exists because nothing logically cannot.

I am not speaking about recent developments in quantum mechanics (QM) and virtual particles, but I should sum some things up.  QM is physically founded on the so-called Uncertainty Principle.  This principle declares that non-commutative variables of particles -- the typical example being location and momentum -- can never be simultaneously measured with no uncertainty.  If you need perfect certainty in one variable, you must sacrifice all knowledge of the other.

Another pair of non-commutative properties are time and energy.  If we measure time in shorter and shorter intervals, an uncertainty builds up in energy (or mass) as a result of the Uncertainty Principle.  This means that if we sample a reason of space over exceedingly short intervals (like a trillionth of a trillionth of a second and smaller), we will find filled with so-called "virtual particles" popping into and out of existence at all times.  Nor are they trivial, not at all.  The total mass/energy of these particles can be enormous; we are fortunate they exist, or all known physical forces (possibly excepting gravity) require them to carry them to exist, and if they didn't exist -- well, we wouldn't either.

Thus, from a QM (and experimental) point of view, nothing isn't nothing, and can't be, as long as the laws of physics are still in our otherwise empty space.  But what if we press further (assuming we can), and remove all physical laws, and perhaps even logic, from the space?  Would it then be empty.  My answer is still NO.  For example, without the First Law of Thermodynamics (the ordinary law of conservation of mass/energy), what would there be preventing not just virtual but permanent particles, or all kinds, coming into existence?  And without the Second Law of Thermodynamics, which govern order and the inexorable evolution toward disorder (entropy), what would prevent all this mass/energy from assuming the most possibly ordered form possible?  Nothing.

Add to that all the other physical laws and logical and -- is it possible?  We might find ourselves right at the very beginning of the Big Bang.  Of course, many other arrangements are possible too, so multiverses of all kinds are possible.  We may be living in an infinite reality containing an infinite number of universes, infinitely creating more all the time.  But I leave here to let the theoreticians and philosophers to seek truth, and conclude my essay with my conclusion:  nothing cannot exists, any time, anywhere.  Oh, and no deities needed at all.

Significant Science of 2013: An Explosion of Exoplanets

Posted by on


This year was a banner year for planet-hunters. Though 2013 doesn’t hold the record for number of exoplanets detected, many of them are Earth-like, meaning they have masses, compositions, and orbits that put them in the sweet spot of habitability. Astronomers have found so many that some estimate that up to 22% of sunlike stars could harbor Earth-like planets.

Leading the charge has been the Kepler space telescope, an orbiting, purpose-built, planet-seeking machine that has been spotting potential exoplanets by the hundreds.
kepler-22b
An artist's impression of exoplanet Kepler-22b

John Timmer, writing for Ars Technica:

With 34 months of data in total, the number of planet candidates has grown to over 3,500, a rise of roughly 30 percent. Although larger planets are easier to spot since they block more light, 600 of these candidates are now Earth-sized or smaller.

Kepler operates by observing the faint dimming that occurs when a planet passes between its star and the telescope. Astronomers have focused on sunlike stars, 42,000 of which have been in Kepler’s view.

Unfortunately, Kepler suffered the debilitating loss of two of its four reaction wheels, devices which keep the craft steady. Without them, its vision isn’t nearly clear enough to keep up its planet-hunting mission, and astronomers can’t shift its gaze to different parts of the universe.

But all is not lost. Kepler may soldier on with a new mission—searching for starquakes—and the time it spent looking for exoplanets has yielded so much data that it’ll be another another few years before scientists have sifted through the backlog. Who knows? Maybe 2014 will be an even better year for exoplanet enthusiasts.

 

 

Study: Fracking saves water

Chuck Ross
Reporter, Daily Caller News Foundation

Hydraulic fracturing conserves water compared to other energy-generation methods, according to a recent study that undermines claims by fracking opponents.
Bridget Scanlon and a team of researchers at the Bureau of Economic Geology at the University of Texas compared the state’s water consumption levels for 2010, a non-drought year, and 2011, a drought year, at the state’s 423 power plants.

Even after accounting for the water used in obtaining natural gas from the ground, natural gas-powered plants use much less water to obtain the same amount of energy as coal-powered plants.
 
“Although water use for gas production is controversial, these data show that water saved by using natural gas combined cycle plants relative to coal steam turbine plants is 25-50 times greater than the amount of water used in hydraulic fracturing to extract the case,” reads the report, published in Environmental Research Letters.

“Natural gas, now ~50% of power generation in Texas, enhances drought resilience by increasing the flexibility of power plants generators,” the report continues. The researchers predict that reductions in water use from the increased use of natural gas will continue through 2030.
This is good news for the state of Texas, which is prone to drought. Even counting the amount of water used in the hydraulic fracturing process — which uses water and other chemicals to break shale below the earth’s surface to free up natural gas — the researchers estimated that if Texas’ natural gas plants had instead burned coal, the state would have used 32 billion gallons of extra water, enough to satiate 870,000 residents.

Scanlon and her team looked at what is known as the “water-energy nexus.” Drought conditions can severely limit energy generation. In turn, the increased energy usage brought on by drought requires more precious water. But the recent study suggests that switching from other forms of energy generation, such as coal, would improve the drought situation.

“The bottom line is that hydraulic fracturing, by boosting natural gas production and moving the state from water-intensive coal technologies, makes our electric power system more drought resilient,” said Scanlon in a press release.
 
Environmentalists believe fracking is unsafe and have tried to regulate, and even ban, the drilling practice.

But Josiah Neeley, a policy analyst at the Texas Public Policy Foundation, calls the new study smart, saying that it shows that fracking is “actually a net water saver” when compared to other energy generation methods.

“As with anything else, you have to compare fracking to the available alternatives, instead of looking at it in the abstract,” Neeley told The Daily Caller News Foundation.

“The latest charge has been that fracking uses too much water,” he said. “That’s a big concern in Texas, because of the recent drought. What this study does is look not just at how much water gets used in fracking, but compares this to how much water you would need to generate the same amount of electricity from other sources.”

Neeley said that this study pokes another hole in environmentalists’ objections to fracking. “When each of them is proved baseless they simply move on to the next allegation,” he concluded.

The recent report focused solely on Texas, but the researchers felt that the findings could apply to other states. “These changes in water and electricity in Texas may also apply to the US, which has seen a 30% increase in natural gas consumption for electric power production since 2005.”

Follow Chuck on Twitter
Content created by The Daily Caller News Foundation is available without charge to any eligible news publisher that can provide a large audience. For licensing opportunities of our original content, please contact licensing@dailycallernewsfoundation.org.

Read more: http://dailycaller.com/2013/12/26/study-fracking-saves-water/#ixzz2oyU7DNdN

Atheist Says Challenging Religion is ‘Cruel,’ Nonbelief is for the Wealthy

What Do You Think?
 
Chris Arnade has a PhD in physics, used to work on Wall Street, and now works with the homeless. He is an atheist, but just about none of the people in trouble that he works with are, calling them “some of the strongest believers I have met, steeped in a combination of Bible, superstition, and folklore.” In a piece he wrote for The Guardian, he seems to be saying that this is more or less how it should be. And why? Because it is in this religion and superstition that they find hope.

In doing so, he unfortunately invents a heartless atheist strawman:
They have their faith because what they believe in doesn’t judge them. Who am I to tell them that what they believe is irrational? Who am I to tell them the one thing that gives them hope and allows them to find some beauty in an awful world is inconsistent? I cannot tell them that there is nothing beyond this physical life. It would be cruel and pointless.
Is there anyone doing this? Is there any atheist activist or celebrity who is targeting the downtrodden and brazenly attempting to force the blessings of godlessness on them? Of course not.

Instead, many organized atheist groups and individuals trying to lend aid without any theological (or atheological) strings attached.

Arnade concludes that atheism is something that is really only tenable for those who “have done well,” or at least are not struggling to such an extent as the subjects of his work are. Certainly, it is easier to step back and take a critical look at supernatural claims if one is not constantly worried about one’s safety or ability to feed one’s family. Of course those who are desperate are more vulnerable to seeking a grain of hope wherever they can find it, even in the ephemeral or fictional.

Arnade recalls his 16-year-old self who, as he tells it, snidely turned his nose up at believers in fragile and desperate situations.
I want to go back to that 16-year-old self and tell him to shut up with the “see how clever I am attitude”. I want to tell him to appreciate how easy he had it, with a path out. A path to riches. 
I also see Richard Dawkins differently. I see him as a grown up version of that 16-year-old kid, proud of being smart, unable to understand why anyone would believe or think differently from himself. I see a person so removed from humanity and so removed from the ambiguity of life that he finds himself judging those who think differently.
I suppose Arnade has caught Dawkins lurking around, being extremely nasty to people in the streets, telling them how stupid they are.

Look, I understand that many atheists can be uncomfortable with confrontation of religious claims, and I even understand that one can take issue with the tactics or rhetoric of certain groups or figures.
None of them, not Dawkins, not Hemant, not the big atheist groups (including my own), and definitely not me, get it right all the time. (I’m kidding, Hemant, you always get everything right. Please don’t fire me.) The magic force field our culture has placed around religious belief and superstition makes every discussion and debate fraught with tension and tender sensitivities.

But Arnade makes a mistake by castigating atheism-writ-large as some heartless, elitist club of buzzkills and dream-crushers. For many, if not most of us, our decision to be public and active about our atheism and our opposition to religion stems from a desire to see the world at large lifted out of a morass of bad and oppressive magical thinking. Flawed as we are, we are trying to make things better.

If religion is giving desperate people hope, rather than shake a finger at those who argue against religion, perhaps we should be working as hard as we can to give these people something other than religion to lean on. Something real that actually solves problems, rather than mystical falsehoods.

To leave things as they are, to allow religion to continue its infestation in the lives of those who deserve something better, just because it seems like the nicer thing to do in the short term, I think that’s what’s patronizing and elitist.

Image via Shutterstock.

Sunday, December 29, 2013

Welcome to the 'Era of Behavior'

by Dov Seidman      
December 29, 2013, 8:00 AM
Shutterstock_107684843
As the world has gone from connected to interconnected to interdependent, I believe we’ve entered a new era.  What I call the era of behavior.  I acknowledge that behavior has always mattered.  What
I’m saying is that behavior now matters more than ever and in ways it never has before.  And what I mean by behavior – it’s not just doing the right principle, the responsible thing.  
 
Of course that’s fundamentally what I mean by behavior.  But every Tweet is a behavior.  Every email is a behavior.  We call these things communications and Tweeting and friending and unfriending.  But every email we write, collaboration is a behavior.  Innovation is a behavior.  How we lead is a behavior.  How we engender trust in our relationships.  How we say we’re sorry when we should.  It’s all behavior.  And the more connected the world gets, the more that every form of these behaviors and the more that leaders can create cultures where these behaviors can flourish and be scaled and be embedded into the DNA – the more these are the organizations that will succeed and, more importantly, achieve significance in their endeavors and therefore lasting enduring success.  So I believe that we have entered deeply the era of behavior.
 
Now I want to make a distinction when it comes to behavior.  Carrots and sticks.  The proverbial carrots and sticks, you know, bonuses and compensation and threats of punishment or discipline – they can shift behavior.  You know, we went through an election where tiny slivers of swing state voters received ads, were bombarded with ads trying to get them to shift from one camp to the other.  If you put a product on sale we’re shifting behavior.  Buy now, not later.
 
So we’ve scaled up marketplaces and mechanics of shifting behavior – left, right, forward, back, now not later.  But if you sit with corporate managers and you say, “What behaviors do you want from your colleagues, from your people?”  They say, “I want creativity.  I want collaboration, loyalty, passion.”  And they go on and on and on – responsible, principle of conduct.  These are not behaviors you can shift for.  You can’t say, “You two, go in the room and don’t emerge until you have a brilliant idea.”  “And you two from different cultures, go in a room and don’t come out but I’ll pay you double if you figure out how to truly collaborate and move us forward.  The behaviors we want today are behaviors that we elevate.  These are elevated behaviors.
 
And what’s elevated people since the beginning of time is a mission worthy of their loyalty.  A purpose worthy of their dedication.  Core values that they share with others that really animate them.  Beliefs that they believe are near and dear and a kind of leadership rooted in moral authority that inspires them.  So not only are we in the era of behavior where competitive advantage has shifted to behavior, we are in the era of elevated behavior and what elevates behavior are fundamental values that we share with others and missions and purposes worthy of our commitment and dedication that we also share with others.  
 
And twenty-first century leadership is about connecting with people from within.  And that’s what I mean by this notion that there’s only three ways to get another human being, a friend, a colleague, a worker, to do anything.  You can coerce them, do this or else.  You can motivate them with the carrot, with the bonus, with the stock option.  And fireable offenses, for example, coercion and paying people well – they continue to have their place.  But the freest, cheapest, most enduring, most affordable and cleanest form of human energy is inspiration.  
 
And when you inspire somebody, you get in touch with the first two letters of the word inspire – IN.  And what’s in us are beliefs and values and missions and purposes worthy of our commitment. And leadership today is really fast going from command and control with carrots and sticks as the mechanics of command and control to inspirational leadership.  Leadership that’s animated by moral authority that connects with people in an inspired way from within.  And I think twenty-first century leadership is about becoming an inspirational leader.
 
In Their Own Words is recorded in Big Think's studio.
Image courtesy of Shutterstock

Why America is NOT the greatest country in the world, anymore.


More Good News for Solar Power

Solar cell performance improves with ion-conducting polymer

Sep 04, 2013
Solar cell performance improves with ion-conducting polymer       
A dye-sensitized solar cell panel is tested in the laboratory at the School of Chemical Science and Engineering. Dye-sensitized solar photovoltaics can be greatly improved as a result of research done at KTH Royal Institute of Technology. Credit: David Callahan

Researchers at Stockholm's KTH Royal Institute of Technology have found a way to make dye-sensitized solar cells more energy-efficient and longer-lasting.

Drawing their inspiration from photosynthesis, dye-sensitized offer the promise of low-cost and – when coupled with catalysts – even the possibility of generating hydrogen and oxygen, just like plants. A study published in August could lead to more efficient and longer-lasting dye-sensitized solar cells, says one of the researchers from KTH Royal Institute of Technology in Stockholm.

A research team that included James Gardner, Assistant Professor of Photoelectrochemistry at KTH, reported the success of a new quasi-liquid, polymer-based electrolyte that increases a dye-sensitized solar cell's voltage and current, and lowers resistance between its electrodes.

The study highlights the advantages of speeding up the movement of oxidized electrolytes in a dye-sensitized solar cell, or DSSC. Also on the team from KTH were Lars Kloo, Professor of Inorganic Chemistry and researcher Muthuraaman Bhagavathi Achari.

Their research was published in the Royal Society of Chemistry's journal, Physical Chemistry Chemical Physics on August 19.

"We now have clear evidence that by adding the ion- to the solar cell's cobalt redox electrolyte, the transport of oxidized electrolytes is greatly enhanced," Gardner says. "The fast transport increases by 20 percent."

A dye-sensitized solar cell absorbs photons and injects electrons into the of a transparent semiconductor. This anode is actually a plate with a highly porous, thin layer of that is sensitized with dyes that absorb visible light. The electrons in the semiconductor diffuse through the anode, out into the external circuit.

In the electrolyte, a cobalt complex redox shuttle acts as a catalyst, providing the internal electrical continuity between the anode and cathode. When the dye releases electrons and becomes oxidized by the titanium dioxide, the electrolyte supplies electrons to replenish the deficiency. This "resets" the dye molecules, reducing them back to their original states. As a result, the electrolyte becomes oxidized and electron-deficient and migrates toward the cathode to recovers its missing electrons. Electrons migrating through the circuit recombine with the oxidized form of the cobalt complex when they reach the cathode.

In the most efficient solar cells this transport of ions relies on acetonitrile, a low viscosity, volatile organic solvent. But in order to build a stable, commercially-viable solar cell, a low volatility solvent is used instead, usually methoxypropionitrile. The problem is that while methoxypropionitrile is more stable, it is also more viscous than acetonitrile, and it impedes the flow of ions.

But with the introduction of a new quasi-liquid, polymer-based electrolyte (containing the Co3+/Co2+ redox mediator in 3-methoxy propionitrile solvent), the research team has overcome the viscosity problem, Gardner says. At the same time, adding the ion-conducting polymer to the maintains its low volatility. This makes it possible for the oxidized form of the cobalt complex to reach the cathode, and get reduced, faster.

Speeding up this transport is important because when slowed down, more of the cobalt complexes react with electrons in the semiconductor instead of with the electrons at the cathode, resulting in rapid recombination losses. Speeding up the cobalt lowers resistance and increases voltage and current in the solar cell, Gardner says.
Explore further: Cobalt replacements make solar cells more sustainable

Prebiotic Molecules May Form in Exoplanet Atmospheres

Prebiotic Molecules May Form in Exoplanet Atmospheres

 





New research suggests that the building blocks of life — prebiotic molecules — may form in the atmospheres of planets, where the dust provides a safe platform to form on and various reactions with the surrounding plasma provide enough energy necessary to create life.

It's time to approve the full Keystone XL pipeline project.





Mark Green, Posted Dec 27, 2013 by Energy Tomorrow

Brainlike Computers, Learning From Experience

Science Twitter Logo.
Erin Lubin/The New York Times
 
Kwabena Boahen holding a biologically inspired processor attached to a robotic arm in a laboratory at Stanford University.
 
PALO ALTO, Calif. — Computers have entered the age when they are able to learn from their own mistakes, a development that is about to turn the digital world on its head.       
 
The first commercial version of the new kind of computer chip is scheduled to be released in 2014.
Not only can it automate tasks that now require painstaking programming — for example, moving a robot’s arm smoothly and efficiently — but it can also sidestep and even tolerate errors, potentially making the term “computer crash” obsolete.       
 
The new computing approach, already in use by some large technology companies, is based on the biological nervous system, specifically on how neurons react to stimuli and connect with other neurons to interpret information. It allows computers to absorb new information while carrying out a task, and adjust what they do based on the changing signals.
 
In coming years, the approach will make possible a new generation of artificial intelligence systems that will perform some functions that humans do with ease: see, speak, listen, navigate, manipulate and control. That can hold enormous consequences for tasks like facial and speech recognition, navigation and planning, which are still in elementary stages and rely heavily on human programming.
 
Designers say the computing style can clear the way for robots that can safely walk and drive in the physical world, though a thinking or conscious computer, a staple of science fiction, is still far off on the digital horizon.
 
“We’re moving from engineering computing systems to something that has many of the characteristics of biological computing,” said Larry Smarr, an astrophysicist who directs the California Institute for Telecommunications and Information Technology, one of many research centers devoted to developing these new kinds of computer circuits.
 
Conventional computers are limited by what they have been programmed to do. Computer vision systems, for example, only “recognize” objects that can be identified by the statistics-oriented algorithms programmed into them. An algorithm is like a recipe, a set of step-by-step instructions to perform a calculation.
 
But last year, Google researchers were able to get a machine-learning algorithm, known as a neural network, to perform an identification task without supervision. The network scanned a database of 10 million images, and in doing so trained itself to recognize cats.
 
In June, the company said it had used those neural network techniques to develop a new search service to help customers find specific photos more accurately.
 
The new approach, used in both hardware and software, is being driven by the explosion of scientific knowledge about the brain. Kwabena Boahen, a computer scientist who leads Stanford’s Brains in Silicon research program, said that is also its limitation, as scientists are far from fully understanding how brains function.
 
“We have no clue,” he said. “I’m an engineer, and I build things. There are these highfalutin theories, but give me one that will let me build something.”
 
Until now, the design of computers was dictated by ideas originated by the mathematician John von Neumann about 65 years ago. Microprocessors perform operations at lightning speed, following instructions programmed using long strings of 1s and 0s. They generally store that information separately in what is known, colloquially, as memory, either in the processor itself, in adjacent storage chips or in higher capacity magnetic disk drives.
 
The data — for instance, temperatures for a climate model or letters for word processing — are shuttled in and out of the processor’s short-term memory while the computer carries out the programmed action. The result is then moved to its main memory.
 
The new processors consist of electronic components that can be connected by wires that mimic biological synapses. Because they are based on large groups of neuron-like elements, they are known as neuromorphic processors, a term credited to the California Institute of Technology physicist Carver Mead, who pioneered the concept in the late 1980s.
 
They are not “programmed.” Rather the connections between the circuits are “weighted” according to correlations in data that the processor has already “learned.” Those weights are then altered as data flows in to the chip, causing them to change their values and to “spike.” That generates a signal that travels to other components and, in reaction, changes the neural network, in essence programming the next actions much the same way that information alters human thoughts and actions.
 
“Instead of bringing data to computation as we do today, we can now bring computation to data,” said Dharmendra Modha, an I.B.M. computer scientist who leads the company’s cognitive computing research effort. “Sensors become the computer, and it opens up a new way to use computer chips that can be everywhere.”
 
The new computers, which are still based on silicon chips, will not replace today’s computers, but will augment them, at least for now. Many computer designers see them as coprocessors, meaning they can work in tandem with other circuits that can be embedded in smartphones and in the giant centralized computers that make up the cloud. Modern computers already consist of a variety of coprocessors that perform specialized tasks, like producing graphics on your cellphone and converting visual, audio and other data for your laptop.
 
One great advantage of the new approach is its ability to tolerate glitches. Traditional computers are precise, but they cannot work around the failure of even a single transistor. With the biological designs, the algorithms are ever changing, allowing the system to continuously adapt and work around failures to complete tasks.
 
Traditional computers are also remarkably energy inefficient, especially when compared to actual brains, which the new neurons are built to mimic.
 
I.B.M. announced last year that it had built a supercomputer simulation of the brain that encompassed roughly 10 billion neurons — more than 10 percent of a human brain. It ran about 1,500 times more slowly than an actual brain. Further, it required several megawatts of power, compared with just 20 watts of power used by the biological brain.
 
Running the program, known as Compass, which attempts to simulate a brain, at the speed of a human brain would require a flow of electricity in a conventional computer that is equivalent to what is needed to power both San Francisco and New York, Dr. Modha said.
 
I.B.M. and Qualcomm, as well as the Stanford research team, have already designed neuromorphic processors, and Qualcomm has said that it is coming out in 2014 with a commercial version, which is expected to be used largely for further development. Moreover, many universities are now focused on this new style of computing. This fall the National Science Foundation financed the Center for Brains, Minds and Machines, a new research center based at the Massachusetts Institute of
Technology, with Harvard and Cornell.
 
The largest class on campus this fall at Stanford was a graduate level machine-learning course covering both statistical and biological approaches, taught by the computer scientist Andrew Ng. More than 760 students enrolled. “That reflects the zeitgeist,” said Terry Sejnowski, a computational neuroscientist at the Salk Institute, who pioneered early biologically inspired algorithms. “Everyone knows there is something big happening, and they’re trying find out what it is.”

The Act 13 decision unravels protections


Our industry has worked, and continues to work, closely toward shared goals with the communities in which we operate to be good neighbors and stewards of our environment. And the outcomes are clear. The federal Environmental Protection Agency confirmed in October that U.S. carbon emissions are at their lowest since 1994, thanks to expanded natural gas use. The independent State Review of Oil & Natural Gas Environmental Regulations again gave Pennsylvania’s oil and gas regulatory framework high marks — noting that regulations were strengthened significantly through Act 13’s enhancements.

Consumers are winning, too. A recent Boston Consulting Group analysis projects average U.S. household savings tied to shale development to reach $1,200. And in addition to more than $1.8 billion in state taxes since 2008, our industry has paid $406 million in impact fees over the last two years to communities across the commonwealth. Unfortunately, with this ruling, these shared benefits may unnecessarily be limited rather than maximized.

If we are to remain competitive and if our focus is truly an improved environment, more job creation and economic prosperity, we must continue to work together toward common-sense proposals that encourage investment in the commonwealth.
DAVE SPIGELMYER
President
Marcellus Shale Coalition
North Fayette


Read more: http://www.post-gazette.com/opinion/letters/2013/12/29/The-Act-13-decision-unravels-protections/stories/201312290024#ixzz2osdnciFd

GMOs May Feed the World Using Fewer Pesticides (and Bring Back the Bees)

By on
De Jong produced the plants in the same old, laborious way that his father did before him. He collected pollen from a plant that produces potatoes that fry as potato chips should and then sprinkled the pollen on the flower of a potato plant that resists viruses. If the resulting potatoes bear their parents’ finest features—and none of the bad ones—De Jong will bury them in the ground next year and test their mettle against a common potato virus. If they survive—and are good for frying and eating—he and his team will repeat this for 13 years to ensure that problematic genes did not creep in during the initial cross.

Walter_field
Walter De Jong, a second-generation potato breeder, walks the fields in upstate New York.

Each year, the chance of failure is high. Potatoes that resist viruses, for example, often have genes that make them taste bitter. Others turn an unappetizing shade of brown when fried. If anything like that happens, De Jong will have to start from scratch. Tedious as it is, he loves the work. Kicking up dirt in the furrows that cascade along the hillsides of upstate New York, he says, “I’m never stressed in the potato fields.”

De Jong has some serious cred in the agriculture world. Not only was his father a potato breeder, he’s also descended from a long line of farmers. The potato farmers he works with appreciate this deeply, along with his commitment to the age-old craft of producing new potato varieties through selective breeding. They even advocated on his behalf during his hiring and when he was up for tenure at Cornell, a school with a long history of agriculture research. “All of our farmers like Walter,” says Melanie Wickham, the executive secretary of the Empire State Growers organization in Stanley, New York. Often, he’s in the fields in a big hat, she says. Other times “you’ll see him in the grocery store, looking over the potatoes.”

De Jong has been working with farmers long enough to know that our food supply is never more than a step ahead of devastating insect infestations and disease. Selective breeders like De Jong work hard to develop resistant crops, but farmers still have to turn to chemical pesticides, some of which are toxic to human health and the environment. De Jong enjoys dabbing pollen from plant-to-plant the old-fashioned way, but he knows that selective breeding can only do so much.

seedlings
Seedlings from De Jong's selective breeding experiments poke their shoots above the soil in a greenhouse.
 
So while De Jong still devotes most of his time to honing his craft, he has recently begun to experiment in an entirely different way, with genetic engineering. To him, genetic engineering represents a far more exact way to produce new varieties, rather than simply scrambling the potato genome’s 39,000 genes the way traditional breeding does. By inserting a specific fungus-defeating gene into a tasty potato, for example, De Jong knows he could offer farmers a product that requires fewer pesticides.

“We want to make food production truly sustainable,” De Jong says, “and right now I cannot pretend that it is.”

The need to protect crops from ruin grows more vital every day. By 2050, farmers must produce 40% more food to feed an estimated 9 billion people on the planet. Either current yields will have to increase or farmland will expand farther into forests and jungles. In some cases, genetically modified organisms (GMOs) would offer an alternative way to boost yields without sacrificing more land or using more pesticides, De Jong says. But he fears this approach won’t blossom if the public rejects GMOs out of hand.

When It All Began

In the late 1990s, the agriculture corporation Monsanto began to sell corn engineered to include a protein from the bacteria Bacillus thuringiensis, better known as Bt. The bacteria wasn’t new to agriculture—organic farmers spray it on their crops to kill certain insects. Today more than 60% of the corn grown within the United States is Bt corn. Farmers have adopted it in droves because it saves them money that they would otherwise spend on insecticide and the fuel and labor needed to apply it.
They also earn more money for an acre of Bt corn compared with a conventional variety because fewer kernels are damaged. Between 1996 and 2011, Bt corn reduced insecticide use in corn production by 45% worldwide (110 million pounds, or roughly the equivalent of 20,000 Olympic swimming pools).

Between 1996 and 2001, Monsanto also produced Bt potato plants. Farmers like Duane Grant of Grant 4D Farms in Rupert, Idaho, welcomed the new variety. Grant grew up on his family’s farm, and his distaste for insecticides started at a young age. As a teenager, he recalls feeling so nauseous and fatigued after spraying the fields that he could hardly move until the next day. Today, pesticides are safer than those used 40 years ago, and stiffer U.S. federal regulations require that employees take more precautionary measures when applying them, but Grant occasionally tells his workers to head home early when they feel dizzy after spraying the fields. He was relieved when GM potatoes were introduced because he didn’t have to spray them with insecticide. He was warned that pests might overcome the modification in 15 to 20 years, but that didn’t deter him—he says the same thing happens with chemicals, too.

Unlike Bt corn, you can’t find any fields planted today with Bt potatoes. Soon after the breed hit the market, protestors began to single out McDonald’s restaurants, which collectively are the biggest buyer of potatoes worldwide. In response, McDonald’s, Wendy’s, and Frito-Lay stopped purchasing GM potatoes. In 2001, Monsanto dropped the product and Grant returned to conventional potatoes and the handful of insecticides he sprays on them throughout the summer.

“There is not a single documented case of anyone being hurt by genetically modified food, and yet this is a bigger problem for people than pesticides, which we know have caused harm,” he says. “I just shake my head in bewilderment at the folks who take these stringent positions that biotech should be banned.”
In the decade after Monsanto pulled their GM potatoes from the market, dozens of long-term animal feeding studies concluded that various GM crops were as safe as traditional varieties. And statements from science policy bodies, such as those issued by the American Association for the Advancement of Science, the U.S. National Academy of Sciences, the World Health Organization, and the European Commission, uphold that conclusion. Secondly, techniques to tweak genomes have become remarkably precise. Specific genes can be switched off without lodging foreign material into a plant’s genome. Scientists don’t necessarily have to mix disparate organisms with one another, either. In cisgenic engineering, organisms are engineered by transferring genes between individuals that could breed naturally.

Even some organic farmers bristle when asked about the anti-GMO movement. Under the U.S. Organic Foods Production Act, they are not allowed to grow GMOs, despite their ability to reduce pesticide applications. Organic farmers still spray their crops, just with different chemicals, such as sulfur and copper. Amy Hepworth, an organic farmer at Hepworth Farms in Milton, New York, says that they, too, can take a toll on the environment.

Hepworth would like to continuously evaluate new avenues towards sustainable agriculture as technology advances. However, her views often clash with her customers’ in the affluent Brooklyn, New York, neighborhood of Park Slope. Many of them see no benefit in GMOs’ ability to reduce pesticides because they say farmers should rely strictly on traditional farming methods.

“What people don’t understand is that without pesticides there is not enough food for the masses,” Hepworth says. “The fact is that GM is a tool that can help us use less pesticide.”

Cetacean intelligence

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cet...