Search This Blog

Thursday, January 2, 2014

Earth's temperature could rise by more than 4°C by 2100, claim some scientists.

Research by the University of New South Wales found that the global climate is more affected by carbon dioxide than previously thought.
The scientists believe temperatures could rise by more than 8°C by 2200 if C02 emissions are not reduced.

By Sarah Griffiths
|
      
      Global temperatures could soar by at least 4°C by 2100 if carbon dioxide emissions aren’t slashed, new research warns.   
Climate scientists claim that temperatures could rise by at least 4°C by 2100 and potentially more than 8°C by 2200, which could have disastrous results for the planet.
The research, published in the journal Nature, found that the global climate is more affected by carbon dioxide than previously thought.
Scientists added that temperatures could rise by more than 8°C by 2200 if CO2 emissions are not reduced. The research found that the global climate is more affected by carbon dioxide than previously thought
Scientists added that temperatures could rise by more than 8°C by 2200 if CO2 emissions are not reduced. The research found that the global climate is more affected by carbon dioxide than previously thought

HOW CLOUDS AFFECT THE CLIMATE


Fewer clouds form as the planet warms so that less sunlight is reflected back into space, driving temperature on Earth higher.
When water evaporates from oceans, vapour can rise nine miles into the atmosphere to create rain clouds that reflect light, or can rise just a few miles and drift back down without forming clouds.
While both processes occur in the real world, current climate models place too much emphasis on the amount of clouds that form on a daily basis.
By looking at how clouds form in on the planet , scientists are able to create more realistic climate models, which are used to predict future temperatures.
Scientists have long debated how clouds affect global warming.
It could also solve one of the mysteries of climate sensitivity - the role of cloud formation and whether it has positive or negative effect on global warming.
Researchers now believe that existing climate models significantly overestimate the number of clouds protecting our atmosphere from overheating.
 
The study suggests that fewer clouds form as the planet warms, so that less sunlight is reflected back into space, driving temperatures up on Earth.
Professor Steven Sherwood, from the University of New South Wales, said: 'Our research has shown climate models indicating a low temperature response to a doubling of carbon dioxide from pre-industrial times are not reproducing the correct processes that lead to cloud formation.'
'When the processes are correct in the climate models, the level of climate sensitivity is far higher.
Protective: Researchers now believe that existing climate models significantly overestimate the number of clouds protecting the atmosphere from overheating
Protective: Researchers now believe that existing climate models significantly overestimate the number of clouds protecting the atmosphere from overheating

'Previously, estimates of the sensitivity of global temperature to a doubling of carbon dioxide ranged from 1.5°C to 5°C.

'This new research takes away the lower end of climate sensitivity estimates, meaning that global average temperatures will increase by 3°C to 5°C with a doubling of carbon dioxide.'

Professor Sherwood told The Guardian that a rise of 4°C would likely be 'catastrophic' rather than just dangerous.

'For example, it would make life difficult, if not impossible, in much of the tropics, and would guarantee the eventual melting of the Greenland ice sheet and some of the Antarctic ice sheet' he said.

COST OF EXTREME WEATHER EVENTS SOARS BY 60 PER CENT IN 30 YEARS
The costs of extreme weather events have risen dramatically, climate scientists warned last week.

The national science academies of EU Member States believe Europe needs to plan for future probabilities of extreme weather, such as heat waves, floods and storms.
Highlighting a 60 per cent rise over the last 30 years in the cost of damage from extreme weather events across Europe, the European Academies' Science Advisory Council (EASAC) warned of the grave economic and social consequences if European policy makers do not use the latest estimates of future droughts, floods and storms in their planning while adapting to global warming and the resulting climate disruption.

The report urges EU nations to prepare for heat waves and think about how to reduce the number of deaths. Flood defence is also an area that requires improvement, as rising sea levels will leave coastal areas at serious risk from storm surges.

Researchers also believe climate research and adaptation plans should be given more priority.

The key to this narrower but higher estimate can be found by looking at the role of water vapour in cloud formation.

When water vapour is taken up by the atmosphere through evaporation, the updraughts can rise up to nine miles (15km) and form clouds that produce heavy rains.

The can however also rise just a few kilometres before returning to the surface without forming rain clouds, which reflect light away from the earth's surface.
When they rise only a few kilometres, they reduce total cloud cover because they pull more vapour away from the higher clouds forming.

Researchers found that climate models predicting a lesser rise in the Earth's temperature, do not include enough of the lower level water vapour process.

Most models show nearly all updraughts rising to 9 miles and forming clouds, reflecting more sunlight and as a result, the global temperature in these models becomes less sensitive in its response to atmospheric carbon dioxide.
The scientists warned that such a rise in temperatures on Earth would lead to droughts (pictured) and make life difficult for people living in the tropics. A hotter planet would also likely lead to the melting of the Greenland ice sheet and some of the Antarctic ice sheet
The scientists warned that such a rise in temperatures on Earth would lead to droughts (pictured) and make life difficult for people living in the tropics. A hotter planet would also likely lead to the melting of the Greenland ice sheet and some of the Antarctic ice sheet
When the models are made more realistic, the water vapour is taken to a wider range of heights in the atmosphere, causing fewer clouds to form as the climate warms.
This increases the amount of sunlight and heat entering the atmosphere and as a result increases the sensitivity of our climate to carbon dioxide or any other perturbation.

The result is that when the models are correct, the doubling of carbon dioxide expected in the next 50 years will see a temperature increase of at least 4°C by 2100.
Professor Sherwood said: 'Climate sceptics like to criticise climate models for getting things wrong and we are the first to admit they are not perfect, but what we are finding is that the mistakes are being made by those models that predict less warming, not those that predict more.
'Rises in global average temperatures of this magnitude will have profound impacts on the world and the economies of many countries if we don’t urgently start to curb our emissions.'

Wednesday, January 1, 2014

Jaw-Dropping Views of Saturn Cap 2013 for NASA's Cassini Spacecraft (Photos)

by Stephanie Pappas, SPACE.com Staff Writer   |   December 30, 2013 10:08am ET

The bad science checklist of GMO opponents


The Red FlagWhat the GMO opponents say
The ‘scientifically proven’ subterfuge.The GMO refusers love this tactic. They love to state that GMO’s harm humans, in some unknown way, by stating that it is “scientifically proven.” Setting aside the semantic point that science doesn’t “prove” anything, it provides evidence in support or refutation of a hypothesis, and the body of evidence is used to support a scientific principle. Moreover, there just isn’t a “scientific consensus” of any type that shows that GMO products may harm human or environmental health. However, there is a boatload of data that supports the safety of GMO crops
Persecuted prophets and maligned mavericks: The Galileo Gambit.Users of this tactic will try to persuade you that they belong to a tradition of maverick scientists who have been responsible for great advances despite being persecuted by mainstream science. Natural News, the absolute worst scientific source you could find, thinks that Gilles-Eric Séralini, who published what has to be one of the worst articles about GMO effects on a rat, is the martyr for the anti-GMO cause. 
Empty edicts – absence of empirical evidenceThe GMO opponents frequently use this tactic to make claims in the form of bald statements, without supplying us with supporting evidence. You will see it in numerous declarative statements, “this is the way it is” or “this is true” or “I know/believe this” or “everybody knows this.” When you push them on the evidence, they rely on other Red Flag attempts. 
Anecdotes, testimonials and urban legendsAnecdotes are de facto evidence of the pseudoscience pushing crowd. The problem is that anecdotes don’t equal data, and more anecdotes doesn’t equal better data. Our friends at Natural News go over the deep end providing us anecdotes about the dangers of GMO’s.
Charges of conspiracy, collusion and connivanceConspiracy theories are the standard operating procedures of the anti-GMO crowd. And Monsanto conspiracy theories are the best
Stressing status and appealing to authorityAlthough GMO opponents use all logical fallacies, one of their favorites is the Argument from False or Misleading Authority, which is when someone provides an argument from an authority, but on a topic outside of the particular authority’s expertise or on a topic on which the authority is not disinterested. Furthermore, arguments from authority are judged not on the fact that individual is an authority, but on the quality and quantity of evidence supporting the authority’s conclusions. For example, David Suzuki, an eminent zoologist and geneticist is vehemently opposed to GMO’s, yet his quality, let alone quantity, of evidence in support of his belief is underwhelming. 
Devious deception in displaying data: Cherry pickingGMO opponents love Cherry Picking. They will focus on one or two legitimate studies (or worse yet, only a part of the a study), while ignoring the body of evidence. Science does not function by inventing a conclusion and finding only data (or research) that supports the conclusion; in fact, good science examines the peer-reviewed data and find where it leads. Moreover, any cherry picked study that supports the anti-GMO conclusion is never critically analyzed, truly an official mark of good science. For example, the Séralini study I mentioned previously was just horrendous science with amateur errors that would embarrass your local high school science fair. But it’s accepted as the Truth by GMO opponents
Repetition of discredited argumentsIn this tactic, people persist in repeating claims that have been shown over and over to have no foundation. It’s like the Nazi’s Big Lie, basically repeating a lie so often and with such authority that the listener just assumes that it’s true, or that no one would have impudence to actually state a lie. The GMO opponents state so many lies about Monsanto, crops, and how it harms human health that the average listener assumes it must be the truth. Once again, only evidence matters, and it becomes difficult to get the liar (or the person pushing the lie) to provide evidence. 
Duplicity and distractionThis is the False Dichotomy logical fallacy, which states that there are only two possible, and usually opposite, positions from which to choose. You will hear many times from GMO refusers that “either you’re against GMO’s or you support Monsanto’s plan to do XYZ.” In fact, there’s a perfectly valid position that Monsanto is a bad company, but GMO crops are still safe. It’s possible to say that Monsanto is a polluter, but GMO crops are safe. But the worst part of the False Dichotomy fallacy is that the GMO refusers wants you to believe that if one argument is shown false (or true), the other argument is true (or false). In fact, one form of this argument has been renamed argumentum ad Monsantium, that is, if you support genetically modified foods, you must love Monsanto. 
Wishful thinking – favoring fantasy over factWe all fall victim to this tactic because we use it on ourselves. We like to believe things that conform with our wishes or desires, even to the extent of ignoring evidence to the contrary. People just want to believe that natural foods (whatever that may be, since many crops were genetically modified 10,000 years ago when we first domesticated many of the most common crops) are somehow better than all other foods, and evidence be damned.
Appeals to ancient wisdom – trusting traditional trickeryIn the world of foods, somehow there’s a belief that our ancestors ate better and healthier. And some go back to 10-20,000 years ago to try to convince everyone that the “Paleolithic diet” is the right one. Or that somehow our ancestors ate better, organic foods. Or that farmers knew better how to farm in the 13th century. In fact, food is better today because we have better transportation systems which means there’s less spoilage and generally healthier. Humans today not only live longer today, we live more productive active lives. Although there are lots of reasons for this (vaccinations, sanitation, medicines), one of the reasons is more and better food. Our ancestors had pests, wars, plagues (which killed laborers), and many other issues that made food worse. 
Technobabble and tenuous terminology: the use of pseudo scientific languageIn this tactic, people use invented terms that sound “sciencey” or co-opt real science terms and apply them incorrectly. The aforementioned Natural News is the most guilty of this, but it’s one of the fundamental tenets of pseudoscience. There’s a belief among the GMO haters that somehow GMO food will somehow incorporate itself into the human genome. They use all kinds of science terminology to sell their point of view, but on further examination, it’s all laughable. Because experts on gene therapy state that “the reason is that I have experience with working with DNA, human, mouse, and otherwise, including injecting it into tissues and trying to get it to express the protein for which it encodes. This is not a trivial matter. Think of it this way. If it were, gene therapy would be an almost trivial matter. But it’s not. In general, it’s difficult to induce human cells to take up foreign DNA in tissue. Even with viral vectors, it’s hard to get more than a small percentage of cells not only to take up the DNA but to express detectable levels of protein.” Real science.
Conflating correlation with causation: rooster syndromeThe infamous Post hoc ergo propter hoc logical fallacy, which is essentially a belief that because a second event follows the first, the first event must be the cause of the second. So, just so you know, GMO’s cause autism. Oh wait, everything causes autism.
Straw man: crushing concocted canardsAnother favorite logical fallacy of pseudoscience pushers, the Strawman Argument. Remember, all logical fallacies exist because one side of the argument completely lacks any evidence. The strawman argument is a method by which one side invents a position or quality about the other side, then proceeds to destroy that invented position. Monsanto, again, is the King Strawman for the GMO crowd. Like I mentioned above, there are probably some valid reasons to dislike Monsanto, but the invented belief that Monsanto is ruthless about harming human beings is unsupported by any evidence whatsoever. 
Indelible initial impressions: the anchoring effectAnchoring is the human tendency to rely almost entirely on one piece of evidence or study, usually one that we encountered early, when making a decision. The aforementioned Séralini study has been used over and over and over again by anti-GMO forces as “proof” that GMO’s cause cancer, even if the evidence was so bad that the scientific community, including individuals who don’t discuss GMO’s that often, mocked it without remorse
Perceiving phoney patterns: apopheniaThis happens when you convince yourself, or someone tries to convince you, that some data reveal a significant pattern when really the data are random or meaningless.
Banishing boundaries and pushing panaceas – applying models where they don’t belongThose who use this tactic take a model that works under certain conditions and try to apply it more widely to circumstances beyond its scope, where it does not work. Recently, I discussed research that seemed to indicate that GMO rice passed some fitness (the biological meaning) to weedy rice (which are rice-like grasses which are not agriculturally useful). Except the article didn’t actually show that result (it was poorly done). And some news sources wildly claimed that these results meant that GMO crops actually benefit weeds. Setting aside the low quality of the research (and some egregious experimental errors), it is scientifically illogical to apply these results to other genetically modified foods.
Single study syndrome – clutching at convenient confirmationThis tactic shows up when a person who has a vested interest in a particular point of view pounces on some new finding which seems to either support or threaten that point of view. It’s usually used in a context where the weight of evidence is against the perpetrator’s view. In other words, it’s a type of bias where the person ignores all other points of evidence while attacking this one study. 
Appeal to nature – the authenticity axiomGMO supporters push the Appeal to Nature, which is the belief or suggestion that “natural” is always better than “unnatural”. It assumes that “nature” is good, and “unnatural” is not.  Yoni Freedhof, an MD and Professor of Family Medicine, recently wrote that, believing that nature is good, and chemicals are bad, “is arrogant because it suggests that the entirety of the natural world has been created purely as a service to humankind – that somehow the earth and everything on it grows simply for our pleasure or our consumption.” There is nothing in nature that is necessarily and inherently better than something invented by mankind, but don’t tell that to the GMO refusers.
The reversed responsibility response – switching the burden of proofA form of the Argument from Ignorance, this is an logical fallacy where the arguer deflects a demand for evidence of a claim, by demanding that the other side provide evidence to refute the claim. Then, if you cannot refute it, the arguer declares victory because if you can’t prove it’s untrue, it must be true. Or vice versa. 
The scary science scenario – science portrayed as evil.Sometimes invoking the precautionary principle, the anti-GMO crowd will often scream out that “science,” as if it is an anthropomorphic organism, has ulterior motives. I presume people watch too many movies, which often make scientists out to be evil Dr. Frankensteins, rather than life-saving heroes like Jonas Salk or Paul Offit. As I’ve stated before, science has no inherent motive, but to understand the natural universe. It is a method to gain information. And the evil recently attributed to “science” is just patently false.
False balance – cultivating counterfeit controversy to create confusionFalse balance, an annoying tactic used by the anti-science crowd, that makes it appear that there’s a debate, and both sides of the debate is essentially equivalent. Many journalists routinely look for a representative of each “side” to include in their stories, even though it might be inappropriate. Anti-GMO groups like to exploit this tendency so that their point of view gains undeserved publicity. There is no scientific debate about GMO’s.
Confirmation bias – ferreting favourable findings while overlooking opposing observationsConfirmation Bias is a cognitive bias that causes us to search out evidence that supports our point of view, while ignoring anything that doesn’t. It is a basic human behavior. The anti-GMO world, no different than any other pseudoscience pushing group, subjects itself to this type of bias regularly. There are substantially more peer-reviewed articles that state that there are no issues with GMO foods, yet if you read any blog post against GMO’s, they only mention the rare study (cue Séralini again) that supports their anti-GMO point of view. Again, good science takes all the evidence, weighs higher quality evidence against lower quality ones, then decide if there’s enough evidence to support or reject a hypothesis. Real science is not coming to a conclusion, then finding evidence that supports it.

If you think that GMO crops are safe and are necessary tool to feed the world, if you think that genetically modified organisms are necessary for medicine, or if you think that a new genetically modified flu vaccine, safer than the old one using eggs, will save more lives, then all of the above will make sense. You will see how the anti-GMO activists use bad science.

If you didn’t have much an opinion about GMO’s, but maybe thought that there was something wrong with it, then understand that nearly everything negative you’ve heard about GMO’s is based on logical fallacies, and bad science.

If you’re against GMO’s because you think science supports you, then you’re no different than the anti-science people who populate the global warming denier community. In fact, if you think that you have “science” supporting your nonsense beliefs about GMO’s, just understand that you use the same tactics, the same unscientific rubbish that the global warming deniers use. In other words, you use the same tactics as right wingers, which should make you proud.

Quantum Entanglement to Aid Gravitational Wave Hunt


Detecting the faint ripples in spacetime known as gravitational waves is the primary objective of the Laser Interferometer Gravitational Observatory (LIGO), a huge collaboration that has been searching space for gravitational waves since 2002. Now LIGO scientists have developed a new technique that almost doubles the sensitivity of these detectors by exploiting “squeezed light” and the phenomenon of quantum entanglement.

ANALYSIS: Gravitational Affairs: LIGO’s Little Black Box

LIGO is essentially a giant interferometer. There is a very large mirror hung in such a way as to form an arm, with two more mirrors hung perpendicular to it to form an L-shape when viewed from above. Scientists then pass laser light through a beam splitter, thereby dividing the beam between those two arms, and let the light bounce back and forth a few times before returning to the beam splitter.
LIGO has three such detectors, since it needs to operate at least two detectors at the same time as a control, so they don’t get false positives. A passing gravity wave will cause ripples in spacetime, which in turn will change the distance measured by a light beam; the amount of light falling on the strategically placed photodetector will vary slightly in response.
The resulting signal will tell scientists how the light hitting the photodector changes over time. LIGO scientists liken the instrument to “a microphone that converts gravitational waves into electrical signals.”

ANALYSIS: Closing in on Gravitational Waves

Here’s the biggest problem facing LIGO: any change in the beams caused by gravitational waves is so tiny, it’s drowned out by a quantum effect called vacuum fluctuations. Per Ars Technica:
Basically, the place where we measure the light coming out of the interferometer is also a place where light enters the interferometer. So, we aren’t adding two light fields together at the beamsplitter. No, we are adding four light fields together. Scientists are not so stupid as to accidentally allow stray light into this device, but nature has its own way of producing strays. The vacuum itself is seething with photons that pop into existence and then disappear again. On average, nothing is there. Unfortunately for LIGO, on average is not good enough.
So improving the sensitivity of LIGO’s detectors is an ongoing quest. And according to physicist and blogger Dave Bacon (a.k.a. The Quantum Pontiff), there was a seminal paper published in 1981 by Carl Caves demonstrating that using so-called squeezed states of light could reduce the inherent uncertainty in interferometers by creating entangled photons between the two mirrors. In Bacon’s words: “We can fight quantum with quantum!”

ANALYSIS: Are We Living in a Hologram?

How To Entangle Photons

When subatomic particles collide, they can become invisibly connected, though they may be physically separated. Even at a distance, they are inextricably interlinked and act like a single object — hence the term “entanglement,” or, as Einstein preferred to call it, “spooky action at a distance.”
This is useful because if you measure the state of one, you will know the state of the other without having to make a second measurement, because the first measurement determines what the properties of the other particle must be as well. Cornell University physicist N. David Mermin has described entanglement as “the closest thing we have to magic.”
WATCH VIDEO: Discovery News investigates how and why the Large Hadron Collider is smashing protons together at record energies.
So disturbances in one part of the universe can instantly affect distant other parts of the universe, mysteriously bypassing the ubiquitous speed-of-light barrier. Spooky!
There are lots of different ways particles can become entangled, but in every case, both particles must arise from a single “mother” process. It’s a bit like how identical twins emerge from a single fertilized egg, sharing the genetic material between them.

ANALYSIS: We May Not Live in a Hologram After All

For instance, passing a single photon through a special kind of crystal can split that photon into two new “daughter” particles. We’ll call them “green” and “red.” Those particles will be entangled. Energy must be conserved, so both daughter particles have a lower frequency and energy than the original mother particle, but the total energy between them is equal to the mother’s energy.
We have no way of knowing which is the green one and which is the red. We just know that each daughter photon has a 50/50 chance of being one or the other color. But should we chance to see one of the particles and note that it is red, we can instantly conclude that the other must be green.
Entanglement is a tricky thing, and easily undone by even the slightest interference. That’s why it’s useful in quantum cryptography: the system can detect any “eavesdropper” immediately and know the transmission has been compromised. It now seems likely that gravitational waves could be detected just as easily, by leaving a telltale signature on any entangled particles they encounter.

Squeezing the Light

Physicists have been using light (photons) to probe the mysteries of nature for centuries. But at the quantum scale, uncertainty — a.k.a quantum noise — gets in the way of gleaning useful information.
Squeezing is a way to increase certainty in one quantity (e.g., position or speed) by trading a decrease in certainty in another complementary property. Using special crystals, this squeezing process creates quantum entangled photons between the interferometer’s mirrors, turning one photon into two.
Now you have highly sensitive entangled photons directly in the path of any gravitational waves that happen by. And LIGO scientists have successfully demonstrated that this does, indeed, result in more sensitive detectors, as evidenced in the plot above showing the noise at each frequency in one of the detectors. Per Bacon (again):
The red line shows the reduced noise when squeezed light is used. To get this to work, the squeezed quadrature must be in phase with the amplitude (readout) quadrature of the observatory output light, and this results in path entanglement between the photons in the two beams in the arms of the interferometer. The fluctuations in the photon counts can only be explained by stronger-than-classical correlation among the photons.
“The strange thing is, when you look at it, there’s nothing there, yet this ‘nothing’ which is the vacuum fluctuation can be squeezed and we know it’s real, because it changes the sensitivity of the detector,” physicist David Blair told ABC Science. Blair is director of the Australian International Gravity Wave Research Centre at the University of Western Australia, part of the LIGO collaboration.
LIGO hasn’t reached its full sensitivity yet; that will happen once the planned upgrades for Advanced LIGO are complete. Hopefully, by then, this new “squeezed light” approach can be incorporated into those upgraded detectors. Gravitational waves are a prediction of general relativity. It would be strangely fitting if quantum mechanics ultimately helped detect them.
Image credits: LIGO

Molecule's carbon chain length affects oxygen's departure in key reaction for building bio-fuels

Dec 29, 2013
Read more at: http://phys.org/news/2013-12-molecule-carbon-chain-length-affects.html#jCp 
Molecule's carbon chain length affects oxygen's departure in key reaction for building bio-fuels






















Replacing fossil fuels in industrial applications could reduce economic, environmental, and security concerns. However, transforming bio-feedstocks into fuels means quickly and efficiently removing oxygen atoms.

(Phys.org) —In a maze of blindingly complex reactions that snap oxygen atoms off cellulose or other bio-sources to create energy-dense fuel, the starting molecule's size has a curious effect. If the oxygen-rich molecule is too short to comfortably stretch to a catalyst's active site, oxygen atoms are split from its hydrocarbon chain instead of staying together as happens when the molecule can reach across, according to scientists at Pacific Northwest National Laboratory (PNNL) and Baylor University. The team uncovered this steric effect by comparing two cellulose stand-ins that each have two oxygens or hydroxyl groups. Iterating between experimental and computational studies, they learned that the longer molecule keeps its last oxygen until the last step. The shorter one drops its oxygen atoms earlier as it struggles to fit on the catalyst's surface.

"It's safe to say that we didn't expect the chemistry to be this complex," said Dr. Roger Rousseau, a computational chemist at PNNL who worked on the study. "We've done a lot of research into alcohols, but extrapolating from one hydroxyl group to two was an order of magnitude more complex."
Economic, environmental, and security concerns are tied to the global need for energy. World energy consumption is predicted to grow by 56 percent between 2010 and 2040, with almost 80 percent of that energy coming from fossil fuels. Replacing those fuels in industrial applications could reduce these concerns. However, transforming bio-feedstock into fuels means quickly and efficiently removing . To do this, scientists need to understand how and why the atoms behave as they do. This study uncovers the hidden reactions using molecular stand-ins, known as diols, on a prototypical catalyst.

"It looks as if it should be simple; you pull the oxygen off the biomass and get hydrocarbons. The reality is that it is a pretty complex reaction with a lot of intermediate steps," said Dr. Zdenek Dohnálek, an experimental chemist at PNNL who led the research. "Our research—generating the elementary steps in oxygen removal—is contributing to an uncharted area."

To resolve the complexity of the reactions, the team compared the reaction of two diols on the prototypical oxide catalyst titanium dioxide. The diols were a longer 1,3-propylene glycol (HO(CH2)3OH) with a three-carbon backbone and the shorter ethylene glycol (HO(CH2)2OH) with just two carbon atoms.

"It took more than three years to compare and contrast the reactions," said Rousseau. "We'd come up with new ideas to explain what we were seeing. We'd measure. We'd do the calculations. And then, we'd do it all again until we knew what was happening," said Rousseau.
Molecule's carbon chain length affects oxygen's departure in key reaction for building bio-fuels       
Ethylene glycol lands on titanium dioxide catalyst, with the oxygen atoms (green) resting on the row of titanium atoms. The attached hydrogen atoms (white) hop onto the nearby oxygen atoms (light blue). One of the molecule’s oxygen atoms …more
The measurements came from scanning tunneling microscopy (STM); the calculations, from complex density functional theory. Using STM and temperature-programmed desorption, the team determined which bonds were broken and which intermediates formed. "STM was critical to providing information," said Dohnálek. "In a sense, it was the only way we could disentangle what was happening—imaging one molecule at a time."

The experimental team deposited each diol in a thin layer on titanium dioxide at low temperatures.
The diol landed on the titanium rows of the catalyst with the molecule's oxygen atoms resting on the row of titanium atoms. The attached hydrogen in the hydroxyl group hopped on and off.

"This was as expected," said Dohnálek. "Then, it got surprisingly complex."

The team determined that the longer 1,3-propylene glycol reached out. The hydroxyl dropped into a nearby oxygen vacancy, a "hole" in the surface. The associated hydrogen broke off. "This was a standard acid base reaction that we have seen for alcohols," said Dohnálek.
The shorter ethylene glycol couldn't quite reach the oxygen vacancy. The hydroxyl group broke off from the completely as the molecule struggled to reach the oxygen vacancy.

"This mechanism is different than what we typically see for alcohols," said Rousseau.
When the temperature was raised above ~400 K, they saw a new stable intermediate centered on the bridging oxygen row. This intermediate was a new dioxo species. Further heating led to the homolytic cleavage of the other oxygen, and the hydrocarbon then left the surface when the temperature was raised above ~500 K.

"Again this process was very different from the one we saw for alcohols as it proceeded by a hemolytic rather than heterolytic bond breaking and was a nonadiabatic," said Rousseau.
"The reactions are wonderfully complex and fun to study," said Dohnálek.

The team will be diving into further complexity when they apply what they've found here to tungsten trioxide catalysts and other catalytic materials.

Explore further: Scientists show what it takes to get potential fuel feedstock to a reactive spot on model catalyst

More information: Acharya, DP, Y Yoon, Z Li, Z Zhang, X Lin, R Mun, L Chen, BD Kay, R Rousseau, and Z Dohnálek. 2013. "Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO2(110)." ACS Nano 7(2013):10414-10423. DOI: 10.1021/nn404934q
Journal reference: ACS Nano

What’s Ahead for Human Rated SpaceX Dragon in 2014 – Musk tells Universe Today

Falcon 9 SpaceX CRS-2 launch of Dragon spacecraft on March 1, 2013 to the ISS from pad 40 at Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building.   During 2014, SpaceX plans  two flight tests simulating Dragon emergency abort scenarios launching from pad 40. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch of Dragon spacecraft on March 1, 2013 to the ISS from pad 40 at Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. During 2014, SpaceX plans two flight tests simulating human crewed Dragon emergency abort scenarios launching from right here at pad 40.
Credit: Ken Kremer/www.kenkremer.com 

 
by Ken Kremer on December 30, 2013
 
CAPE CANAVERAL AIR FORCE STATION, FL – A trio of American companies – SpaceX, Boeing, and Sierra Nevada – are working diligently to restore America’s capability to launch humans into low Earth orbit from US soil, aided by seed money from NASA’s Commercial Crew Program in a public-private partnership.
 
We’ve been following the solid progress made by all three companies. Here we’ll focus on two crucial test flights planned by SpaceX in 2014 to human rate and launch the crewed version of their entry into the commercial crew ‘space taxi’ sweepstakes, namely the Dragon spacecraft.
Recently I had the opportunity to speak about the upcoming test flights with the head of SpaceX, Elon Musk.
 
So I asked Musk, the founder and CEO of SpaceX, about “what’s ahead in 2014″; specifically related to a pair of critical “abort tests” that he hopes to conduct with the human rated “version of our Dragon spacecraft.”
 
“Assuming all goes well, we expect to conduct [up to] two Dragon abort tests next year in 2014,” Musk told me.
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite  from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
 
The two abort flight tests in 2014 involve demonstrating the ability of the Dragon spacecraft abort system to lift an uncrewed spacecraft clear of a simulated launch emergency.
 
The crewed Dragon – also known as DragonRider – will be capable of lofting up to seven astronauts to the ISS and remaining docked for at least 180 days.
 
First a brief overview of the goals of NASA’s Commercial Crew Program. It was started in the wake of the retirement of NASA’s Space Shuttle program which flew its final human crews to the International Space Station (ISS) in mid-2011.
 
“NASA has tasked SpaceX, Boeing, and Sierra Nevada to develop spacecraft capable of safely transporting humans to the space station, returning that capability to the United States where it belongs,’ says NASA Administrator Charles Bolden.
Since 2011, US astronauts have been 100% dependent on the Russians and their Soyuz capsules to hitch a ride to low Earth orbit and the ISS.
 
The abort tests are essential for demonstrating that the Dragon vehicle will activate thrusters and separate in a split second from a potentially deadly exploding rocket fireball to save astronauts lives in the event of a real life emergency – either directly on the launch pad or in flight.
 
“We are aiming to do at least the pad abort test next year [in 2014] with version 2 of our Dragon spacecraft that would carry astronauts,” Musk told me.
This is the Dragon mock-up that will be used for an upcoming pad abort test on Cape Canaveral Air Force Station's Space Launch Complex 40.  Credit: SpaceX
This is the Dragon mock-up that will be used for an upcoming pad abort test on Cape Canaveral Air Force Station’s Space Launch Complex 40. Credit: SpaceX
 
SpaceX plans to launch the crewed Dragon atop the human rated version of their own developed Falcon 9 next generation rocket, which is also being simultaneously developed to achieve all of NASA’s human rating requirements.
 
The initial pad abort test will test the ability of the full-size Dragon to safely push away and escape in case of a failure of its Falcon 9 booster rocket in the moments around launch, right at the launch pad.
“The purpose of the pad abort test is to demonstrate Dragon has enough total impulse (thrust) to safely abort,” SpaceX spokeswoman Emily Shanklin informed me.
 
For that test, Dragon will use its pusher escape abort thrusters to lift the Dragon safely away from the failing rocket. The vehicle will be positioned on a structural facsimile of the Dragon trunk in which the actual Falcon 9/Dragon interfaces will be represented by mockups.
 
This test will be conducted on SpaceX’s launch pad 40 at Cape Canaveral Air Force Station in Florida. It will not include an actual Falcon 9 booster.
 
The second Dragon flight test involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure at about T plus 1 minute, to save astronauts lives. The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted landing into the Atlantic Ocean.
 
“Assuming all goes well we expect to launch the high altitude abort test towards the end of next year,” Musk explained.
 
The second test will use the upgraded next generation version of the Falcon 9 that was successfully launched just weeks ago on its maiden mission from Cape Canaveral on Dec. 3. Read my earlier reports – starting here.
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. The upgraded Falcon 9 will be used to launch the human rated SpaceX Dragon spacecraft to the ISS. Credit: Ken Kremer/kenkremer.com
To date, SpaceX has already successfully launched the original cargo version of the Dragon a total of three times. And each one docked as planned at the ISS.
The last cargo Dragon blasted off on March 1, 2013. Read my prior articles starting – here.
The next cargo Dragon bound for the ISS is due to lift off on Feb. 22, 2014 from Cape Canaveral, FL.
SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA
SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA
 
Orbital Sciences – the commercial ISS cargo competitor to SpaceX – plans to launch its Cygnus cargo vehicle on the Orb-1 mission bound for the ISS on Jan. 7 atop the firms Antares rocket from NASA Wallops Flight Facility in Virginia. Watch for my on site reports from NASA Wallops.
NASA’s Commercial Crew Program’s goal is launching American astronauts from U.S. soil within the next four years – by 2017 to the ISS.
 
The 2017 launch date is dependent on funding from the US federal government that will enable each of the firms to accomplish a specified series of milestones. NASA payments are only made after each companies milestones are successfully achieved.
 
SpaceX was awarded $440 million in the third round of funding in the Commercial Crew integrated Capability (CCiCAP) initiative which runs through the third quarter of 2014. As of November 2013, NASA said SpaceX had accomplished 9 of 15 milestones and was on track to complete all on time.
Musk hopes to launch an initial Dragon orbital test flight with a human crew of SpaceX test pilots perhaps as early as sometime in 2015 – if funding and all else goes well.
 
Either a US commercial ‘space taxi’ or the Orion exploration capsule could have blasted off with American astronauts much sooner – if not for the continuing year-by-year slashes to NASA’s overall budget forced by the so called ‘political leaders’ of all parties in Washington, DC.
SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida.  Credit: Ken Kremer/kenkremer.com
SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss SpaceX upcoming flight plans by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida. Credit: Ken Kremer/kenkremer.com
 
Read more: http://www.universetoday.com/107505/whats-ahead-for-human-rated-spacex-dragon-in-2014-musk-tells-universe-today/#ixzz2pBRB8BRe

2014 preview: Hydrogen SUV ready to hit the road

Ref:  http://www.newscientist.com/article/mg22029485.300-2014-preview-hydrogen-suv-ready-to-hit-the-road.html#.UsReE2eA2L8

27 December 2013 by Rowan Hooper
Magazine issue 2948 in New Scientist. Subscribe and save
For similar stories, visit the Energy and Fuels and Cars and Motoring Topic Guides

 
HyundaiFuelCellLeft_38939_1_1
 
Did you know that the Empire State Building's spire was designed as a mooring point for hydrogen airships? That proved too dangerous, though, and then a deadly fire on the Hindenburg in 1937 brought the hydrogen fad to an abrupt end. Now the lightest of elements is making a comeback as the first mass-market hydrogen car gears up to hit the road.
 
Whereas airships harnessed hydrogen's buoyancy, the Hyundai Tucson Fuel Cell, an SUV, uses it to make electricity. Its fuel cell combines hydrogen from the tank with oxygen in the air, creating an electrochemical reaction that generates current to supply electric motors. Water is the only waste product, making the cars green. Unlike battery-powered vehicles, which need hours to charge, refuelling takes minutes – and a full tank should last for 480 kilometres. Hyundai says the Tucson can hit 160 kilometres per hour.
 
Starting in spring next year, the firm will lease the cars for $499 a month in southern California. Home to nine of the US's 10 existing hydrogen refuelling stations, and committed to building 100 more, the Golden State is ahead of the hydrogen curve. Honda and Toyota plan to follow Hyundai's lead with fuel-cell cars in 2015. By contrast, a 2006 BMW offering burned liquid hydrogen but it was inefficient and never mass-produced.
 
Is the Tucson safe? If the tank springs a leak, fuel vents up into the air rather than pooling below, as in ordinary, gasoline-powered cars. Extensive crash and fire tests make Hyundai confident its offering won't go the way of the Hindenburg. The cars may just be the start of an environmentally friendly, 21st-century hydrogen economy.

See, I started smoking at two, and I'm still just fine. Smoking causing cancer is just a myth

See, I started smoking at two, and I'm still just fine. Smoking causing cancer is just a myth.

Embedded image permalink

The future of the Higgs boson

Joseph Lykken and Maria Spiropulu
Ref.:  http://scitation.aip.org/content/aip/magazine/physicstoday/article/66/12/10.1063/PT.3.2212

image of Untitled
Note: this is only part of the article.

Experimentalists and theorists are still celebrating the Nobel-worthy discovery of the Higgs boson that was announced in July 2012 at CERN’s Large Hadron Collider. Now they are working on the profound implications of that discovery.

Symmetries and other regularities of the physical world make science a useful endeavor, yet the world around us is characterized by complex mixtures of regularities with individual differences, as exemplified by the words on this page. The dialectic of simple laws accounting for a complex world was only sharpened with the development of relativity and quantum mechanics and the understanding of the subatomic laws of physics. A mathematical encapsulation of the standard model of particle physics can be written on a cocktail napkin, an economy made possible because the basic phenomena are tightly controlled by powerful symmetry principles, most especially Lorentz and gauge invariance.

How does our complex world come forth from symmetrical underpinnings? The answer is in the title of Philip Anderson’s seminal article “More is different.” 1 Many-body systems exhibit emergent phenomena that are not in any meaningful sense encoded in the laws that govern their constituents.
One reason those emergent behaviors arise is that many-body systems result from symmetries being broken. Consider, for example, a glucose molecule: It will have a particular orientation even though the equations governing its atoms are rotationally symmetric. That kind of symmetry breaking is called spontaneous, to indicate that the physical system does not exhibit the symmetry present in the underlying dynamics.

It may seem that the above discussion has no relevance to particle physics in general or to the Higgs boson in particular. But in quantum field theory, the ground state, or vacuum, behaves like a many-body system. And just as a particular glucose orientation breaks an underlying rotation symmetry, a nonvanishing vacuum expectation value of the Higgs boson field, as we will describe, breaks symmetries that would otherwise forbid masses for elementary particles. Now that the Higgs boson (or something much like it) has been found at the Large Hadron Collider (LHC; see , September 2012, page 12), particle experimentalists are searching for more kinds of Higgs bosons and working to find out if the Higgs boson interacts with the dark matter that holds the universe together. Cosmologists are trying to understand the symmetry-breaking Higgs phase transition, which took place early in the history of the universe, and whether that event explains the excess of matter over antimatter. The measured mass of the Higgs boson implies that the symmetry-breaking vacuum is metastable. If no new physics intervenes, an unlucky quantum fluctuation will eventually spark a cosmic catastrophe.

For more, see reference.

Residents of poorer nations find greater meaning in life

Association for Psychological Science / December 18, 2013 / Social / 0
Ref:  http://www.psypost.org/2013/12/residents-of-poorer-nations-find-greater-meaning-in-life-21792
Veddah child by Alessandro Pucci
While residents of wealthy nations tend to have greater life satisfaction, new research shows that those living in poorer nations report having greater meaning in life.
These findings, published in Psychological Science, a journal of the Association for Psychological Science, suggest that meaning in life may be higher in poorer nations as a result of greater religiosity. As countries become richer, religion becomes less central to people’s lives and they lose a sense of meaning in life.

“Thus far, the wealth of nations has been almost always associated with longevity, health, happiness, or life satisfaction,” explains psychological scientist Shigehiro Oishi of the University of Virginia.
“Given that meaning in life is an important aspect of overall well-being, we wanted to look more carefully at differential patterns, correlates, and predictors for meaning in life.”
Oishi and colleague Ed Diener of the University of Illinois at Urbana-Champaign investigated life satisfaction, meaning, and well-being by examining data from the 2007 Gallup World Poll, a large-scale survey of over 140,000 participants from 132 countries. In addition to answering a basic life satisfaction question, participants were asked: “Do you feel your life has an important purpose or meaning?” and “Is religion an important part of your daily life?”

The data revealed some unexpected trends:

“Among Americans, those who are high in life satisfaction are also high in meaning in life,” says Oishi. “But when we looked at the societal level of analysis, we found a completely different pattern of the association between meaning in life and life satisfaction.”

When looking across many countries, Oishi and Diener found that people in wealthier nations were more educated, had fewer children, and expressed more individualistic attitudes compared to those in poorer countries – all factors that were associated with higher life satisfaction but a significantly lower sense of meaning in life.

The data suggest that religiosity may play an important role: Residents of wealthier nations, where religiosity is lower, reported less meaning in life and had higher suicide rates than poorer countries.

According to the researchers, religion may provide meaning in life to the extent that it helps people to overcome personal difficulty and cope with the struggles of working to survive in poor economic conditions:  “Religion gives a system that connects daily experiences with the coherent whole and a general structure to one’s life…and plays a critical role in constructing meaning out of extreme hardship,” the researchers write.

Oishi and Diener hope to replicate these findings using more comprehensive measures of meaning and religiosity, and are interested in following countries over time to track whether economic prosperity gives rise to less religiosity and less meaning in life.

Neural prosthesis restores behavior after brain injury

Case Western Reserve University / December 29, 2013 / Mental Health / 1
Full article:  http://www.psypost.org/2013/12/neural-prosthesis-restores-behavior-after-brain-injury-21893

Human brain

Scientists from Case Western Reserve University and University of Kansas Medical Center have restored behavior—in this case, the ability to reach through a narrow opening and grasp food—using a neural prosthesis in a rat model of brain injury.

Ultimately, the team hopes to develop a device that rapidly and substantially improves function after brain injury in humans. There is no such commercial treatment for the 1.5 million Americans, including soldiers in Afghanistan and Iraq, who suffer traumatic brain injuries (TBI), or the nearly 800,000 stroke victims who suffer weakness or paralysis in the United States, annually.

The prosthesis, called a brain-machine-brain interface, is a closed-loop microelectronic system. It records signals from one part of the brain, processes them in real time, and then bridges the injury by stimulating a second part of the brain that had lost connectivity.

Their work is published online this week in the science journal Proceedings of the National Academy of Sciences.

“If you use the device to couple activity from one part of the brain to another, is it possible to induce recovery from TBI? That’s the core of this investigation,” said Pedram Mohseni, professor of electrical engineering and computer science at Case Western Reserve, who built the brain prosthesis.
“We found that, yes, it is possible to use a closed-loop neural prosthesis to facilitate repair of a brain injury,” he said.

The researchers tested the prosthesis in a rat model of brain injury in the laboratory of Randolph J. Nudo, professor of molecular and integrative physiology at the University of Kansas. Nudo mapped the rat’s brain and developed the model in which anterior and posterior parts of the brain that control the rat’s forelimbs are disconnected.

Atop each animal’s head, the brain-machine-brain interface is a microchip on a circuit board smaller than a quarter connected to microelectrodes implanted in the two brain regions.
The device amplifies signals, which are called neural action potentials and produced by the neurons in the anterior of the brain. An algorithm separates these signals, recorded as brain spike activity, from noise and other artifacts. With each spike detected, the microchip sends a pulse of electric current to stimulate neurons in the posterior part of the brain, artificially connecting the two brain regions.

Two weeks after the prosthesis had been implanted and run continuously, the rat models using the full closed-loop system had recovered nearly all function lost due to injury, successfully retrieving a food pellet close to 70 percent of the time, or as well as normal, uninjured rats. Rat models that received random stimuli from the device retrieved less than half the pellets and those that received no stimuli retrieved about a quarter of them.

“A question still to be answered is must the implant be left in place for life?” Mohseni said. “Or can it be removed after two months or six months, if and when new connections have been formed in the brain?”

Brain studies have shown that, during periods of growth, neurons that regularly communicate with each other develop and solidify connections.

Mohseni and Nudo said they need more systematic studies to determine what happens in the brain that leads to restoration of function. They also want to determine if there is an optimal time window after injury in which they must implant the device in order to restore function.

Replacement artificial heart keeps first patient alive

13:49 31 December 2013 by Niall Firth in NewScientist

(Image: Carmat)
 
If you stayed awake during biology in school, you might recognise the shapes at the left and top right of this image: they are models of the heart. The object at lower right, looking like a cross between a tape dispenser and a second-world-war gas mask, will be less familiar.
 
Developed by French firm Carmat, this is an artificial heart designed for people whose hearts are so weak that they can no longer pump enough blood to sustain life. It was implanted in its first human patient on 18 December 2013 at the Georges Pompidou European Hospital in Paris.
The device replaces the real heart and is meant to keep patients going while they wait for a donor: Carmat claims it can be used for up to five years. Lithium-ion batteries outside the body keep it pumping, while sensors monitor and automatically control blood flow to adapt to the patient's activity.
 
Biomaterials in the artificial heart help to prevent the body from rejecting it. It is about three times larger than the natural organ, so it fits only about 65 per cent of patients. It would fit 86 per cent of men, though, because they have larger chest cavities.
 
So far, the operation seems to have been a success: the patient is said to be awake and talking to his family, and in a statement issued to Reuters, the hospital said the device is working well.
"The artificial heart is functioning normally, automatically catering to the body's needs without any manual adjustment necessary," the surgeons said.

For you who do not accept evolution

For you who do not accept evolution (and some that do): you have a point. Claims shouldn't be accepted on authority, even scientific authority -- even your own authority. Evidence and logic is all that counts. Of course, you must recognize evidence and be trained in logic, or all is lost. For some people, alas, that is the case, and they will spend their lives as fools. For the rest, there are authors such as Richard Dawkins, Jerry Coyne, John Maynard Smith, Darwin himself of course, and others who will at least explain what evolution is and how it works, and present a great deal of the evidence supporting it. You could peruse a few of these and then ask yourself how you really think about it. That's all I'm recommending and asking for, not some kind of faith. Indeed, just about any scientific subject, from climate warming theory to the Big Bang, that always must be your beginning.



Citation signal

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cit...