Search This Blog

Saturday, February 7, 2015

Rainforest


From Wikipedia, the free encyclopedia


Rainforests are forests characterized by high rainfall, with annual rainfall between 250 and 450 centimetres (98 and 177 in).[1] There are two types of rainforest: tropical rainforest and temperate rainforest. The monsoon trough, alternatively known as the intertropical convergence zone, plays a significant role in creating the climatic conditions necessary for the Earth's tropical rainforests.

Around 40% to 75% of all biotic species are indigenous to the rainforests.[2] It has been estimated that there may be many millions of species of plants, insects and microorganisms still undiscovered in tropical rainforests. Tropical rainforests have been called the "jewels of the Earth" and the "world's largest pharmacy", because over one quarter of natural medicines have been discovered there.[3]
Rainforests are also responsible for 28% of the world's oxygen turnover, sometimes misnamed oxygen production,[4] processing it through photosynthesis from carbon dioxide and consuming it through respiration.

The undergrowth in some areas of a rainforest can be restricted by poor penetration of sunlight to ground level. If the leaf canopy is destroyed or thinned, the ground beneath is soon colonized by a dense, tangled growth of vines, shrubs and small trees, called a jungle. The term jungle is also sometimes applied to tropical rainforests generally.

Tropical

General distribution of tropical rainforest

Tropical rainforests are characterized by a warm and wet climate. Mean monthly temperatures exceed 18 °C (64 °F) during all months of the year.[5] Average annual rainfall is no less than 168 cm (66 in) and can exceed 1,000 cm (390 in) although it typically lies between 175 cm (69 in) and 200 cm (79 in).[6]

Many of the world's rainforests are associated with the location of the monsoon trough, also known as the intertropical convergence zone.[7] Tropical rainforests are located in the tropics, i.e., in the equatorial zone between the Tropic of Cancer and Tropic of Capricorn. Tropical rainforests exist in Southeast Asia (from Myanmar (Burma) to the Philippines, Malaysia, Indonesia, Papua New Guinea and northeastern Australia), Sri Lanka, sub-Saharan Africa from Cameroon to the Congo (Congo Rainforest), South America (e.g. the Amazon Rainforest), Central America (e.g. Bosawás, southern Yucatán Peninsula-El Peten-Belize-Calakmul), and on many of the Pacific Islands (such as Hawaiʻi). Tropical rainforests have been called the "Earth's lungs", although it is now known that rainforests contribute little net oxygen addition to the atmosphere through photosynthesis.[8][9]

Temperate


General distribution of temperate rainforests

Tropical forests cover a large part of the globe, but temperate rainforests only occur in few regions around the world. Temperate rainforests are rainforests in temperate regions. They occur in North America (in the Pacific Northwest in Alaska, British Columbia, Washington, Oregon and California), in Europe (parts of the British Isles such as the coastal areas of Ireland and Scotland, southern Norway, parts of the western Balkans along the Adriatic coast, as well as in Galicia and coastal areas of the eastern Black Sea, including Georgia and coastal Turkey), in East Asia (in southern China, Highlands of Taiwan, much of Japan and Korea, and on Sakhalin Island and the adjacent Russian Far East coast), in South America (southern Chile) and also in Australia and New Zealand.[10]

Layers

A tropical rainforest is typically divided into four main layers, each with different plants and animals adapted for life in that particular area: the emergent, canopy, understorey/understory and forest floor layers.

Emergent layer

The emergent layer contains a small number of very large trees called emergents, which grow above the general canopy, reaching heights of 45–55 m, although on occasion a few species will grow to 70–80 m tall.[11][12] They need to be able to withstand the hot temperatures and strong winds that occur above the canopy in some areas. Eagles, butterflies, bats and certain monkeys inhabit this layer.

Canopy layer

The canopy layer contains the majority of the largest trees, typically 30 metres (98 ft) to 45 metres (148 ft) tall. The densest areas of biodiversity are found in the forest canopy, a more or less continuous cover of foliage formed by adjacent treetops. The canopy, by some estimates, is home to 50 percent of all plant species. Epiphytic plants attach to trunks and branches, and obtain water and minerals from rain and debris that collects on the supporting plants. The fauna is similar to that found in the emergent layer, but more diverse. A quarter of all insect species are believed to exist in the rainforest canopy. Scientists have long suspected the richness of the canopy as a habitat, but have only recently developed practical methods of exploring it. As long ago as 1917, naturalist William Beebe declared that "another continent of life remains to be discovered, not upon the Earth, but one to two hundred feet above it, extending over thousands of square miles." True exploration of this habitat only began in the 1980s, when scientists developed methods to reach the canopy, such as firing ropes into the trees using crossbows. Exploration of the canopy is still in its infancy, but other methods include the use of balloons and airships to float above the highest branches and the building of cranes and walkways planted on the forest floor. The science of accessing tropical forest canopy using airships or similar aerial platforms is called dendronautics.[13]

Understory layer

The understory or understorey layer lies between the canopy and the forest floor. It is home to a number of birds, snakes and lizards, as well as predators such as jaguars, boa constrictors and leopards. The leaves are much larger at this level and insect life is abundant. Many seedlings that will grow to the canopy level are present in the understory. Only about 5% of the sunlight shining on the rainforest canopy reaches the understory. This layer can be called a shrub layer, although the shrub layer may also be considered a separate layer.

Forest floor

Rainforest in the Blue Mountains, Australia

The forest floor, the bottom-most layer, receives only 2% of the sunlight. Only plants adapted to low light can grow in this region. Away from riverbanks, swamps and clearings, where dense undergrowth is found, the forest floor is relatively clear of vegetation because of the low sunlight penetration. It also contains decaying plant and animal matter, which disappears quickly, because the warm, humid conditions promote rapid decay. Many forms of fungi growing here help decay the animal and plant waste.

Flora and fauna


West Usambara Two-Horned Chameleon (Bradypodion fischeri) in the Usambara Mountains, Tanzania.

More than half of the world's species of plants and animals are found in the rainforest.[14] Rainforests support a very broad array of fauna, including mammals, reptiles, birds and invertebrates. Mammals may include primates, felids and other families. Reptiles include snakes, turtles, chameleons and other families; while birds include such families as vangidae and Cuculidae. Dozens of families of invertebrates are found in rainforests. Fungi are also very common in rainforest areas as they can feed on the decomposing remains of plants and animals. Many rainforest species are rapidly disappearing due to deforestation, habitat loss and pollution of the atmosphere.[15]

Soils

Despite the growth of vegetation in a tropical rainforest, soil quality is often quite poor. Rapid bacterial decay prevents the accumulation of humus. The concentration of iron and aluminium oxides by the laterization process gives the oxisols a bright red colour and sometimes produces mineral deposits such as bauxite. Most trees have roots near the surface, because there are insufficient nutrients below the surface; most of the trees' minerals come from the top layer of decomposing leaves and animals. On younger substrates, especially of volcanic origin, tropical soils may be quite fertile. If rainforest trees are cleared, rain can accumulate on the exposed soil surfaces, creating run-off and beginning a process of soil erosion. Eventually streams and rivers form and flooding becomes possible.

Effect on global climate

A natural rainforest emits and absorbs vast quantities of carbon dioxide. On a global scale, long-term fluxes are approximately in balance, so that an undisturbed rainforest would have a small net impact on atmospheric carbon dioxide levels,[16] though they may have other climatic effects (on cloud formation, for example, by recycling water vapour). No rainforest today can be considered to be undisturbed.[17] Human induced deforestation plays a significant role in causing rainforests to release carbon dioxide,[18] as do other factors, whether human-induced or natural, which result in tree death, such as burning and drought.[19] Some climate models operating with interactive vegetation predict a large loss of Amazonian rainforest around 2050 due to drought, forest dieback and the subsequent release more carbon dioxide.[20] Five million years from now, the Amazon rainforest may long since have dried and transformed itself into savannah, killing itself in the progress (changes such as this may happen even if all human deforestation activity ceases overnight).[21] The descendants of our known animals may adapt to the dry savannah of the former Amazonian rainforest and thrive in the new, warmer temperatures.[21]

Human uses


Aerial view of the Amazon rainforest, taken from a plane.

Tropical rainforests provide timber as well as animal products such as meat and hides. Rainforests also have value as tourism destinations and for the ecosystem services provided. Many foods originally came from tropical forests, and are still mostly grown on plantations in regions that were formerly primary forest.[22] Also, plant derived medicines are commonly used for fever, fungal infections, burns, gastrointestinal problems, pain, respiratory problems, and wound treatment.[23]

Native peoples

On January 18, 2007, FUNAI reported also that it had confirmed the presence of 67 different uncontacted tribes in Brazil, up from 40 in 2005. With this addition, Brazil has now overtaken the island of New Guinea as the country having the largest number of uncontacted tribes.[24] The province of Irian Jaya or West Papua in the island of New Guinea is home to an estimated 44 uncontacted tribal groups.[25] The tribes are in danger because of the deforestation, especially in Brazil.

Central African rainforest is home of the Mbuti pygmies, one of the hunter-gatherer peoples living in equatorial rainforests characterised by their short height (below one and a half metres, or 59 inches, on average). They were the subject of a study by Colin Turnbull, The Forest People, in 1962.[26] Pygmies who live in Southeast Asia are, amongst others, referred to as “Negrito”.

Deforestation

Tropical and temperate rainforests have been subjected to heavy logging and agricultural clearance throughout the 20th century and the area covered by rainforests around the world is shrinking.[27] 
Biologists have estimated that large numbers of species are being driven to extinction (possibly more than 50,000 a year; at that rate, says E. O. Wilson of Harvard University, a quarter or more of all species on Earth could be exterminated within 50 years)[28] due to the removal of habitat with destruction of the rainforests.
Another factor causing the loss of rainforest is expanding urban areas. Littoral rainforest growing along coastal areas of eastern Australia is now rare due to ribbon development to accommodate the demand for seachange lifestyles.[29]

The forests are being destroyed at a rapid pace.[30][31][32] Almost 90% of West Africa's rainforest has been destroyed.[33] Since the arrival of humans, Madagascar has lost two thirds of its original rainforest.[34] At present rates, tropical rainforests in Indonesia would be logged out in 10 years and Papua New Guinea in 13 to 16 years.[35] According to Rainforest Rescue, a main reason for the increasing deforestation rate especially in Indonesia is the expansion of oil palm plantations to meet the growing demand for cheap vegetable fats and biofuels. In Indonesia, palm oil is already cultivated on nine million hectares and, together with Malaysia, the island nation produces about 85 percent of the world’s palm oil.[36][unreliable source?]

Several countries,[37] notably Brazil, have declared their deforestation a national emergency.[38] Amazon deforestation jumped by 69% in 2008 compared to 2007's twelve months, according to official government data.[39] Deforestation could wipe out or severely damage nearly 60% of the Amazon Rainforest by 2030, says a new report from WWF.[40]

However, a January 30, 2009 New York Times article stated, "By one estimate, for every acre of rain forest cut down each year, more than 50 acres of new forest are growing in the tropics..." The new forest includes secondary forest on former farmland and so-called degraded forest.[41]

Glenn T. Seaborg


From Wikipedia, the free encyclopedia

Glenn T. Seaborg
Glenn Seaborg - 1964.jpg
Born Glenn Theodore Seaborg
(1912-04-19)April 19, 1912
Ishpeming, Michigan
Died February 25, 1999(1999-02-25) (aged 86)
Lafayette, California
Nationality United States
Fields Nuclear chemistry
Institutions
Alma mater
  • UCLA
  • University of California, Berkeley
Doctoral advisor
Doctoral students
Known for his contributions and he was part of a team to the synthesis, discovery and investigation of ten transuranium elements
Notable awards
Signature

Glenn Theodore Seaborg (/ˈsbɔrɡ/; April 19, 1912 – February 25, 1999) was an American chemist whose involvement in the synthesis, discovery and investigation of ten transuranium elements earned him a share of the 1951 Nobel Prize in Chemistry.[1] His work in this area also led to his development of the actinide concept and the arrangement of the actinide series in the periodic table of the elements.

Seaborg spent most of his career as an educator and research scientist at the University of California, Berkeley, serving as a professor, and, between 1958 and 1961, as the university's second chancellor.[2] He advised ten US Presidents – from Harry S. Truman to Bill Clinton – on nuclear policy and was Chairman of the United States Atomic Energy Commission from 1961 to 1971, where he pushed for commercial nuclear energy and the peaceful applications of nuclear science. Throughout his career, Seaborg worked for arms control. He was a signatory to the Franck Report and contributed to the Limited Test Ban Treaty, the Nuclear Non-Proliferation Treaty and the Comprehensive Test Ban Treaty. He was a well-known advocate of science education and federal funding for pure research. Toward the end of the Eisenhower administration, he was the principal author of the Seaborg Report on academic science, and, as a member of President Ronald Reagan's National Commission on Excellence in Education, he was a key contributor to its 1983 report "A Nation at Risk".

Seaborg was the principal or co-discoverer of ten elements: plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium and element 106, which, while he was still living, was named seaborgium in his honor. He also discovered more than 100 atomic isotopes and is credited with important contributions to the chemistry of plutonium, originally as part of the Manhattan Project where he developed the extraction process used to isolate the plutonium fuel for the second atomic bomb. Early in his career, he was a pioneer in nuclear medicine and discovered isotopes of elements with important applications in the diagnosis and treatment of diseases, most notably iodine-131, which is used in the treatment of thyroid disease. In addition to his theoretical work in the development of the actinide concept, which placed the actinide series beneath the lanthanide series on the periodic table, he postulated the existence of super-heavy elements in the transactinide and superactinide series.

After sharing the 1951 Nobel Prize in Chemistry with Edwin McMillan, he received approximately 50 honorary doctorates and numerous other awards and honors. The list of things named after Seaborg ranges from his atomic element to an asteroid. He was a prolific author, penning numerous books and 500 journal articles, often in collaboration with others. He was once listed in the Guinness Book of World Records as the person with the longest entry in Who's Who in America.

Early life

Glenn Theodore Seaborg was born in Ishpeming, Michigan, on April 19, 1912, the son of Herman Theodore (Ted) and Selma Olivia Erickson Seaborg. He had one sister, Jeanette, who was two years younger. His family spoke Swedish at home. When Glenn Seaborg was a boy, the family moved to Los Angeles County, California, settling in a subdivision called Home Gardens, later annexed to the City of South Gate, California. About this time he changed the spelling of his first name from 'Glen' to "Glenn".[3]

Seaborg kept a daily journal from 1927 until he suffered a stroke in 1998.[4] As a youth, Seaborg was both a devoted sports fan and an avid movie buff. His mother encouraged him to become a bookkeeper as she felt his literary interests were impractical. He did not take an interest in science until his junior year when he was inspired by Dwight Logan Reid, a chemistry and physics teacher at David Starr Jordan High School in Watts.[5]

Seaborg graduated from Jordan in 1929 at the top of his class and received a bachelor of arts (AB) degree in chemistry at the University of California, Los Angeles, in 1933.[3] he worked his way through school as a stevedore and a laboratory assistant at Firestone.[6] Seaborg took his PhD in chemistry at the University of California, Berkeley, in 1937 with a doctoral thesis on the "Interaction of Fast Neutrons with Lead",[7] in which he coined the term "nuclear spallation".[8]

Seaborg was a member of the professional chemistry fraternity Alpha Chi Sigma. As a graduate student in the 1930s Seaborg performed wet chemistry research for his advisor Gilbert Newton Lewis,[8] and published three papers with him on the theory of acids and bases.[9][10][11] Seaborg studied the text Applied Radiochemistry by Otto Hahn, of the Kaiser Wilhelm Institute for Chemistry in Berlin, and it had a major impact on his developing interests as a research scientist. For several years, Seaborg conducted important research in artificial radioactivity using the Lawrence cyclotron at UC Berkeley. He was excited to learn from others that nuclear fission was possible—but also chagrined, as his own research might have led him to the same discovery.[12]

Seaborg also became an expert in dealing with noted Berkeley physicist Robert Oppenheimer. Oppenheimer had a daunting reputation, and often answered a junior man's question before it had even been stated. Often the question answered was more profound than the one asked, but of little practical help. Seaborg learned to state his questions to Oppenheimer quickly and succinctly.[13]

Pioneering work in nuclear chemistry


Seaborg in his lab

Seaborg remained at the University of California, Berkeley, for post-doctoral research. He followed Frederick Soddy's work investigating isotopes and contributed to the discovery of more than 100 isotopes of elements. Using one of Lawrence's advanced cyclotrons, John Livingood, Fred Fairbrother, and Seaborg created a new isotope of iron, iron-59 (Fe-59) in 1937. Iron-59 was useful in the studies of the hemoglobin in human blood. In 1938, Livingood and Seaborg collaborated (as they did for five years) to create an important isotope of iodine, iodine-131 (I-131), which is still used to treat thyroid disease.[14] (Many years later, it was credited with prolonging the life of Seaborg's mother.) As a result of these and other contributions, Seaborg is regarded as a pioneer in nuclear medicine and is one of its most prolific discoverers of isotopes.[15]

In 1939 he became an instructor in chemistry at Berkeley, was promoted to assistant professor in 1941 and professor in 1945.[16] University of California, Berkeley, physicist Edwin McMillan led a team that discovered element 93, which he named neptunium in 1940. In November, he was persuaded to leave Berkeley temporarily to assist with urgent research in radar technology. Since Seaborg and his colleagues had perfected McMillan's oxidation-reduction technique for isolating neptunium, he asked McMillan for permission to continue the research and search for element 94. McMillan agreed to the collaboration.[17] Seaborg first reported alpha decay proportionate to only a fraction of the element 93 under observation. The first hypothesis for this alpha particle accumulation was contamination by uranium, which produces alpha-decay particles; analysis of alpha-decay particles ruled this out. Seaborg then postulated that a distinct alpha-producing element was being formed from element 93.[18]

In February 1941, Seaborg and his collaborators produced plutonium-239 through the bombardment of uranium. In their experiments bombarding uranium with deuterons, they observed the creation of neptunium, element 93. But it then underwent beta-decay, forming a new element, plutonium, with 94 protons. Plutonium is fairly stable, but undergoes alpha-decay, which explained the presence of alpha particles coming from neptunium.[18] Thus, on March 28, 1941, Seaborg, physicist Emilio Segrè and Berkeley chemist Joseph W. Kennedy were able to show that plutonium (then known only as element 94) was fissile, an important distinction that was crucial to the decisions made in directing Manhattan Project research.[19] In 1966, Room 307 of Gilman Hall on the campus at the Berkeley, where Seaborg did his work, was declared a U.S. National Historic Landmark.[20]

In addition to plutonium, he is credited as a lead discoverer of americium, curium, and berkelium, and as a co-discoverer of californium, einsteinium, fermium, mendelevium, nobelium and seaborgium. He shared the Nobel Prize in Chemistry in 1951 with Edwin McMillan for "their discoveries in the chemistry of the first transuranium elements."[1]

Scientific contributions during the Manhattan Project

On April 19, 1942, Seaborg reached Chicago and joined the chemistry group at the Metallurgical Laboratory of the Manhattan Project at the University of Chicago, where Enrico Fermi and his group would later convert uranium-238 to plutonium-239 in a controlled nuclear chain reaction. Seaborg's role was to figure out how to extract the tiny bit of plutonium from the mass of uranium.

Plutonium-239 was isolated in visible amounts using a transmutation reaction on August 20, 1942, and weighed on September 10, 1942, in Seaborg's Chicago laboratory. He was responsible for the multi-stage chemical process that separated, concentrated and isolated plutonium. This process was further developed at the Clinton Engineering Works in Oak Ridge, Tennessee, and then entered full-scale production at the Hanford Engineer Works, in Richland, Washington.[21]

Seaborg's theoretical development of the actinide concept resulted in a redrawing of the Periodic Table of the Elements into its current configuration with the actinide series appearing below the lanthanide series. Seaborg developed the chemical elements americium and curium while in Chicago. He managed to secure patents for both elements. His patent on curium never proved commercially viable because of the element's short half-life, but americium is commonly used in household smoke detectors and thus provided a good source of royalty income to Seaborg in later years. Prior to the test of the first nuclear weapon, Seaborg joined with several other leading scientists in a written statement known as the Franck Report (secret at the time but since published) unsuccessfully calling on President Truman to conduct a public demonstration of the atomic bomb witnessed by the Japanese.[22]

Professor and Chancellor at the University of California, Berkeley


Seaborg (second from left) during Operation Plumbob

After the conclusion of World War II and the Manhattan Project, Seaborg was eager to return to academic life and university research free from the restrictions of wartime secrecy. In 1946, he added to his responsibilities as a professor by heading the nuclear chemistry research at the Lawrence Radiation Laboratory operated by the University of California on behalf of the United States Atomic Energy Commission. Seaborg was named one of the "Ten Outstanding Young Men in America" by the U.S. Junior Chamber of Commerce in 1947 (along with Richard Nixon and others). Seaborg was elected to the National Academy of Sciences in 1948. From 1954 to 1961 he served as associate director of the radiation laboratory. He was appointed by President Truman to serve as a member of the General Advisory Committee of the Atomic Energy Commission, an assignment he retained until 1960.[23]

Seaborg served as chancellor at the University of California, Berkeley, from 1958 to 1961. His term coincided with a relaxation of McCarthy-era restrictions on students' freedom of expression that had begun under his predecessor, Clark Kerr.[24] In October 1958, Seaborg announced that the University had relaxed its prior prohibitions on political activity on a trial basis,[25] and the ban on communists speaking on campus was lifted. This paved the way for the Free Speech Movement of 1964-65.[24]

Seaborg was an enthusiastic supporter of Cal's sports teams. San Francisco columnist Herb Caen was fond of pointing out that Seaborg's surname is an anagram of "Go Bears", a popular cheer at UC Berkeley.[26] Seaborg was proud of the fact that the Cal Bears won their first and only National Collegiate Athletic Association (NCAA) basketball championship in 1959, while he was chancellor. The football team also won the conference title and played in the Rose Bowl that year.[27] He served on the Faculty Athletic Committee for several years and was the co-author of a book, Roses from the Ashes: Breakup and Rebirth in Pacific Coast Intercollegiate Athletics (2000), concerning the Pacific Coast Conference recruiting scandal, and the founding of what is now the Pac-12, in which he played a role in restoring confidence in the integrity of collegiate sports.[27][28]

Seaborg served on the President's Science Advisory Committee (PSAC) during the Eisenhower administration. PSAC produced a report on "Scientific Progress, the Universities, and the Federal Government", also known as the "Seaborg Report", in November 1960, that urged greater federal funding of science.[29] In 1959, he helped found the Berkeley Space Sciences Laboratory with Clark Kerr.[30]

Chairman of the Atomic Energy Commission

After appointment by President John F. Kennedy and confirmation by the United States Senate, Seaborg was chairman of the Atomic Energy Commission (AEC) from 1961 to 1971. His pending appointment by President-elect Kennedy was nearly derailed in late 1960 when members of the Kennedy transition team learned that Seaborg had been listed in a U.S. News & World Report article as a member of "Nixon's Idea Men". Seaborg said that as a lifetime Democrat he was baffled when the article appeared associating him with outgoing Vice President Richard Nixon, a Republican whom Seaborg considered a casual acquaintance.[31]

President Kennedy and his Atomic Energy Commission Chairman, Glenn Seaborg

While chairman of the AEC, Seaborg participated on the negotiating team for the Limited Test Ban Treaty (LTBT), in which the US, UK, and USSR agreed to ban all above-ground test detonations of nuclear weapons. Seaborg considered his contributions to the achievement of the LTBT as one of his greatest accomplishments. Despite strict rules from the Soviets about photography at the signing ceremony, Seaborg sneaked a tiny camera past the Soviet guards to take a close-up photograph of Soviet Premier Nikita Khrushchev as he signed the treaty.[32]

Seaborg enjoyed a close relationship with President Lyndon Johnson and influenced the administration to pursue the Nuclear Non-Proliferation Treaty.[33] Seaborg was called to the White House in the first week of the Nixon Administration in January 1969 to advise President Richard Nixon on his first diplomatic crisis involving the Soviets and nuclear testing. He clashed with Nixon presidential adviser John Ehrlichman over the treatment of a Jewish scientist, Zalman Shapiro, whom the Nixon administration suspected of leaking nuclear secrets to Israel.[34]

Seaborg published several books and journal articles during his tenure at the Atomic Energy Commission. He predicted the existence of elements beyond those on the period table,[35] the transactinide series and the superactinide series of undiscovered synthetic elements. While most of these theoretical future elements have extremely short half-lives and thus no expected practical applications, he also hypothesized the existence of stable super-heavy isotopes of certain elements in an island of stability.[36] Seaborg served as chairman of the Atomic Energy Commission until 1971.[37]

Return to California


Seaborg (right) with marine biologist Dixy Lee Ray on September 17, 1968

Following his service as Chairman of the Atomic Energy Commission, Seaborg returned to UC Berkeley where he was awarded the position of University Professor. At the time, there had been fewer University Professors at UC Berkeley than Nobel Prize winners. He also served as Chairman of the Lawrence Hall of Science where he became the principal investigator for Great Explorations in Math and Science (GEMS)[38] working with director Jacqueline Barber. Seaborg served as at the University of California, Berkeley, from 1958 to 1961, and served as President of the American Association for the Advancement of Science in 1972 and as President of the American Chemical Society in 1976.[39]

In 1980, he transmuted several thousand atoms of bismuth into gold at the Lawrence Berkeley Laboratory. His experimental technique, using nuclear physics, was able to remove protons and neutrons from the bismuth atoms. Seaborg's technique would have been far too expensive to enable routine manufacturing of gold, but his work was close to the mythical Philosopher's Stone.[40][41]

In 1983, President Ronald Reagan appointed Seaborg to serve on the National Commission on Excellence in Education. The commission produced a report "A Nation at Risk: The Imperative for Educational Reform",[42] which focused national attention on education as a national issue germane to the federal government.[43] In 2008, Margaret Spellings wrote that
A Nation at Risk delivered a wake up call for our education system. It described stark realities like a significant number of functionally illiterate high schoolers, plummeting student performance, and international competitors breathing down our necks. It was a warning, a reproach, and a call to arms.[44]

Seaborg with Vice President Al Gore in the White House during a visit of the 1993 Science Talent Search (STS) finalists on March 4, 1993

Seaborg lived most of his later life in Lafayette, California, where he devoted himself to editing and publishing the journals that documented both his early life and later career. He rallied a group of scientists who criticized the science curriculum in the state of California, which he viewed as far too socially oriented and not nearly focused enough on hard science. California Governor Pete Wilson appointed Seaborg to head a committee that proposed changes to California's science curriculum despite outcries from labor organizations and others.[45]

Personal life

In 1942, Seaborg married Helen Griggs, the secretary of physicist Ernest Lawrence. Under wartime pressure, Seaborg had moved to Chicago while engaged to Griggs. When Seaborg returned to accompany Griggs for the journey back to Chicago, friends expected them to marry in Chicago. But, eager to be married, Seaborg and Griggs impulsively got off the train in the town of Caliente, Nevada, for what they thought would be a quick wedding. When they asked for City Hall, they found Caliente had none—they would have to travel 25 miles (40 km) north to Pioche, the county seat.
With no car, this was no easy feat, but one of Caliente's newest deputy sheriffs turned out to be a recent graduate of the Cal Berkeley chemistry department and was more than happy to do a favor for Seaborg. The deputy sheriff arranged for the wedding couple to ride up and back to Pioche in a mail truck. The witnesses at the Seaborg wedding were a clerk and a janitor.[46] Glenn Seaborg and Helen Griggs Seaborg had six children, of whom the first, Peter Glenn Seaborg, died in 1997. The others were Lynne Seaborg Cobb, David Seaborg, Steve Seaborg, Eric Seaborg, and Dianne Seaborg.[47]

Seaborg was an avid hiker. Upon becoming Chairman of the Atomic Energy Commission in 1961, he commenced taking daily hikes through a trail that he blazed at the headquarters site in Germantown, Maryland. He frequently invited colleagues and visitors to accompany him, and the trail became known as the "Glenn Seaborg Trail." He and his wife Helen are credited with blazing a 12 miles (19 km) trail in the East Bay area near their home in Lafayette, California. This trail has since become a part of the American Hiking Association's cross-country network of trails. Seaborg and his wife walked the trail network from Contra Costa County all the way to the California-Nevada border.[48][49]
There is a beauty in discovery. There is mathematics in music, a kinship of science and poetry in the description of nature, and exquisite form in a molecule. Attempts to place different disciplines in different camps are revealed as artificial in the face of the unity of knowledge. All literate men are sustained by the philosopher, the historian, the political analyst, the economist, the scientist, the poet, the artisan and the musician.
Glenn Seaborg [50]

Seaborg was elected a foreign member of the Royal Swedish Academy of Sciences in 1972 and the Royal Society of London.[51] He was honored as Swedish-American of the Year in 1962 by the Vasa Order of America. In 1991, the organization named "Local Lodge Glenn T. Seaborg No. 719" in his honor during the Seaborg Honors ceremony at which he appeared. This lodge maintains a scholarship fund in his name, as does the unrelated Swedish-American Club of Los Angeles.[52]

Seaborg kept a close bond to his Swedish origin. He visited Sweden every so often, and his family were members of the Swedish Pemer Genealogical Society, a family association open for every descendant of the Pemer family, a Swedish family with German origin, from which Seaborg was descended on his mother's side.[53]

On August 24, 1998, while in Boston to attend a meeting by the American Chemical Society, Seaborg suffered a stroke, which led to his death six months later on February 25, 1999, at his home in Lafayette.[54]

Honors and awards

During his lifetime, Seaborg is said to have been the author or co-author of numerous books and 500 scientific journal articles, many of them brief reports on fast-breaking discoveries in nuclear science while other subjects, most notably the actinide concept, represented major theoretical contributions in the history of science. He held more than 40 patents – among them the only patents ever issued for chemical elements, americium and curium, and received more than 50 doctorates and honorary degrees in his lifetime.[55] At one time, he was listed in the Guinness Book of World Records as having the longest entry in Marquis Who's Who in America. In February 2005, he was posthumously inducted into the National Inventors Hall of Fame.[37] His papers are in the Library of Congress.[56]The element seaborgium was named after Seaborg by Albert Ghiorso, E. Kenneth Hulet, and others, who also credited Seaborg as a co-discoverer.[55] It was named while Seaborg was still alive, which proved controversial. He influenced the naming of so many elements that with the announcement of seaborgium, it was noted in Discover magazine's review of the year in science that he could receive a letter addressed in chemical elements: seaborgium, lawrencium (for the Lawrence Berkeley Laboratory where he worked), berkelium, californium, americium.[57] Seaborgium is the only element to have been named after a living person.[55][58]

Selected Bibliography


Hollow-point bullet

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wi...