Search This Blog

Saturday, May 30, 2015

Climate oscillation


From Wikipedia, the free encyclopedia

A climate oscillation or climate cycle is any recurring cyclical oscillation within global or regional climate, and is a type of climate pattern. These fluctuations in atmospheric temperature, sea surface temperature, precipitation or other parameters can be quasi-periodic, often occurring on inter-annual, multi-annual, decadal, multidecadal, century-wide, millennial or longer timescales. They are not perfectly periodic and a Fourier analysis of the data does not give a sharp spectrum.

A prominent example is the El Niño Southern Oscillation, involving sea surface temperatures along a stretch of the equatorial Central and East Pacific Ocean and the western coast of tropical South America, but which affects climate worldwide.

Records of past climate conditions are recovered through geological examination of proxies, found in glacier ice, sea bed sediment, tree ring studies or otherwise.

Examples

Many oscillations on different time-scales are hypothesized, although the causes may be unknown. (Some of them are more like a random walk than an oscillation.) Here is a list of known or proposed climatic oscillations:
Anomalies in oscillations sometimes occur when they coincide, as in the Arctic dipole anomaly (a combination of the Arctic and North Atlantic oscillations) and the longer-term Younger Dryas, a sudden non-linear cooling event that occurred at the onset of the current Holocene interglacial. In the case of volcanoes, large eruptions such as Mount Tambora in 1816, which led to the Year Without a Summer, typically cool the climate, especially when the volcano is located in the tropics. Around 70 000 years ago the Toba supervolcano eruption created an especially cold period during the ice age, leading to a possible genetic bottleneck in human populations. However, outgassing from large igneous provinces such as the Permian Siberian Traps can input carbon dioxide into the atmosphere, warming the climate. Triggering of other mechanisms, such as methane clathrate deposits as during the Paleocene-Eocene Thermal Maximum, increased the rate of climatic temperature change and oceanic extinctions.

Another longer-term near-millennial oscillation involves the Daansgard-Oeschger cycles, occurring on roughly 1,500-year cycles during the last glacial maximum. They may be related to the Holocene Bond events, and may involve factors similar to those responsible for Heinrich events.

Origins and causes

There are close correlations between Earth's climate oscillations and astronomical factors (barycenter changes, solar variation, cosmic ray flux, cloud albedo feedback, Milankovic cycles), and modes of heat distribution between the ocean-atmosphere climate system. In some cases, current, historical and paleoclimatological natural oscillations may be masked by significant volcanic eruptions, impact events, irregularities in climate proxy data, positive feedback processes or anthropogenic emissions of substances such as greenhouse gases.[1][2]

Effects

Extreme phases of short-term climate oscillations such as ENSO can result in characteristic patterns of floods and droughts (including megadroughts), monsoonal disruption and extreme temperatures in the form of heat waves and cold waves. Shorter-term climate oscillations typically do not directly result in longer-term climate change in temperatures. However, the effects of underlying climate trends such as recent global warming and oscillations can be cumulative to global temperature, producing shorter-term fluctuations in the instrumental and satellite temperature records.

Collapses of past civilizations such as the Maya may be related to cycles of precipitation, especially drought, that in this example also correlates to the Western Hemisphere Warm Pool.

One example of possible correlations between factors affecting the climate and global events, popular with the media, is a 2003 study on the correlation between wheat prices and sunspot numbers.[3]

Analysis and uncertainties

Radiative forcings and other factors in a climate oscillation must obey the laws of atmospheric thermodynamics. However, because Earth's climate is inherently a complex system, simple Fourier analysis or climate modelling often does not create a perfect replication of the observed or inferred conditions. No climate cycle is found to be perfectly periodic, although the Milankovich cycles (based on multiple superimposed orbital cycles and Earth's precession) are quite close to being periodic (perhaps almost periodic?).

One difficulty in detecting climate cycles is that the Earth's climate has been changing in non-cyclic ways over most paleoclimatological timescales. For instance, we are now in a period of global warming that appears anthropogenic. In a larger timeframe, the Earth is emerging from the latest ice age, cooling from the Holocene climatic optimum and warming from the so-called "Little Ice Age", which means that climate has been constantly changing over the last 15,000 years or so. During warm periods, temperature fluctuations are often of a lesser amplitude. The Pleistocene period, dominated by repeated glaciations, developed out of more stable conditions in the Miocene and Pliocene climate. Holocene climate has been relatively stable. All of these changes complicate the task of looking for cyclical behavior in the climate.

Positive feedback, negative feedback, and ecological inertia from the land-ocean-atmosphere system often attenuate or reverse smaller effects, whether from orbital forcings, solar variations or changes in concentrations of greenhouse gases. Most climatologists recognize the existence of various tipping points that push small forcings beyond a certain threshold that makes the change irreversible while the forcings are still in place. Certain feedbacks involving processes such as clouds are also uncertain; for contrails, natural cirrus clouds, oceanic dimethyl sulfide and a land-based equivalent, competing theories exist concerning effects on climatic temperatures, for example contrasting the Iris hypothesis and CLAW hypothesis.

Through geologic and historical time


Climate change over the past 65 million years, using proxy data including Oxygen-18 ratios from foraminifera.

Temperature change over the past 12 000 years, from various sources. The thick black curve is an average.

Various climate forcings are typically in flux throughout geologic time, and some processes of the Earth's temperature may be self-regulating. For example, during the Snowball Earth period, large glacial ice sheets spanned to Earth's equator, covering nearly its entire surface, and very low albedo created extremely low temperatures, while the accumulation of snow and ice likely removed carbon dioxide through atmospheric deposition. However, the absence of plant cover to absorb atmospheric CO2 emitted by volcanoes meant that the greenhouse gas could accumulate in the atmosphere. There was also an absence of exposed silicate rocks, which use CO2 when they undergo weathering. This created a warming that later melted the ice and brought Earth's temperature back to equilibrium. During the following eons of the Paleozoic, cosmic ray flux and occasional nearby supernova explosions (one hypothesis for the cause of the Ordovician–Silurian extinction event) and gamma ray bursts may have induced ice ages or other sudden climate changes.

Throughout the Cenozoic, multiple climate forcings led to warming and cooling of the atmosphere, which led to the early formation of the Antarctic ice sheet, subsequent melting, and its later reglaciation. The temperature changes occurred somewhat suddenly, at carbon dioxide concentrations of about 600–760 ppm and temperatures approximately 4 °C warmer than today. During the Pleistocene, cycles of glaciations and interglacials occurred on cycles of roughly 100,000 years, but may stay longer within an interglacial when orbital eccentricity approaches zero, as during the current interglacial. Previous interglacials such as the Eemian phase created temperatures higher than today, higher sea levels, and some partial melting of the West Antarctic ice sheet. The warmest part of the current interglacial occurred during the early Holocene Optimum, when temperatures were a few degrees Celsius warmer than today, and a strong African Monsoon created grassland conditions in the Sahara during the Neolithic Subpluvial. Since that time, several cooling events have occurred, including:
In contrast, several warm periods have also taken place, and they include but are not limited to:
Certain effects have occurred during these cycles. For example, during the Medieval Warm Period, the American Midwest was in drought, including the Sand Hills of Nebraska which were active sand dunes. The black death plague of Yersinia pestis also occurred during Medieval temperature fluctuations, and may be related to changing climates.

Given that records of solar activity are accurate, solar activity may have contributed to part of the modern warming that peaked in the 1930s, in addition to the 60-year temperature cycles that result in roughly 0.5 °C of warming during the increasing temperature phase. However, solar cycles fail to account for warming observed since the 1980s to the present day. Events such as the opening of the Northwest Passage and recent record low ice minima of the modern Arctic shrinkage have not taken place for at least several centuries, as early explorers were all unable to make an Arctic crossing, even in summer. Shifts in biomes and habitat ranges are also unprecedented, occurring at rates that do not coincide with known climate oscillations. The extinction of many tropical amphibian species, especially in cloud forests, have been attributed to changing global temperatures, fungal disease and possible influence from unusually extreme phases of oceanic climate oscillations.

Atlantic multidecadal oscillation


From Wikipedia, the free encyclopedia

AMO spatial pattern.
Atlantic Multidecadal Oscillation index computed as the linearly detrended North Atlantic sea surface temperature anomalies 1856-2013.

The Atlantic Multidecadal Oscillation (AMO) is an Ocean current, with different modes on multi-decadal times scales, affecting the North Atlantic Ocean, and in particular sea surface temperature (SST).[1] While there is some support for this mode in models and in historical observations, controversy exists with regard to its amplitude, and in particular, the attribution of sea surface temperature change to natural or anthropogenic causes, especially in tropical Atlantic areas important for hurricane development.[2]

Definition

The Atlantic multidecadal oscillation (AMO) was identified by Schlesinger and Ramankutty in 1994.[3]

The AMO signal is usually defined from the patterns of SST variability in the North Atlantic once any linear trend has been removed. This detrending is intended to remove the influence of greenhouse gas-induced global warming from the analysis. However, if the global warming signal is significantly non-linear in time (i.e. not just a smooth linear increase), variations in the forced signal will leak into the AMO definition. Consequently, correlations with the AMO index may mask effects of global warming.

Atlantic Multidecadal Oscillation according to the methodology proposed by van Oldenborgh et al.

Several methods have been proposed to remove the global trend and ENSO influence over the North Atlantic SST.
Trenberth and Shea, assuming that the effect of global forcing over the North Atlantic is similar to the global ocean, subtracted the global (60°N-60°S) mean SST from the North Atlantic SST to derive a revised AMO index.[4]

Ting et al. however argue that the forced SST pattern is not spatially uniform; they separated the forced and internally generated variability using signal to noise maximizing EOF analysis.[2]

Van Oldenborgh et al. derived an AMO index as the SST averaged over the extra-tropical North Atlantic (to remove the influence of ENSO that is greater at tropical latitude) minus the regression on global mean temperature.[5]
Guan and Nigam removed the non stationary global trend and Pacific natural variability before applying an EOF analysis to the residual North Atlantic SST.[6]

The linearly detrended index suggests that the North Atlantic SST anomaly at the end of the twentieth century is equally divided between the externally forced component and internally generated variability, and that the current peak is similar to middle twentieth century; by contrast the others methodology suggest that a large portion of the North Atlantic anomaly at the end of the twentieth century is externally forced.[2]

Mechanisms

In models, AMO-like variability is associated with small changes in the North Atlantic branch of the Thermohaline Circulation, however historical oceanic observations are not sufficient to associate the derived AMO index to present day circulation anomalies.[citation needed]

The Atlantic Multidecadal Oscillation (AMO) is important for how external forcings are linked with North Atlantic SSTs.[7]

Climate impacts worldwide

The AMO index is correlated to air temperatures and rainfall over much of the Northern Hemisphere, in particular, North America and Europe such as North Eastern Brazilian and African Sahel rainfall and North American and European summer climate. It is also associated with changes in the frequency of North American droughts and is reflected in the frequency of severe Atlantic hurricanes.[4]

Recent research suggests that the AMO is related to the past occurrence of major droughts in the US Midwest and the Southwest. When the AMO is in its warm phase, these droughts tend to be more frequent or prolonged. Two of the most severe droughts of the 20th century occurred during the positive AMO between 1925 and 1965: The Dust Bowl of the 1930s and the 1950s drought. Florida and the Pacific Northwest tend to be the opposite—warm AMO, more rainfall.[8]

Climate models suggest that a warm phase of the AMO strengthens the summer rainfall over India and Sahel and the North Atlantic tropical cyclone activity.[9] Paleoclimatologic studies have confirmed this pattern—increased rainfall in AMO warmphase, decreased in cold phase—for the Sahel over the past 3,000 years.[10]

Relation to Atlantic hurricanes


Atlantic basin cyclone intensity by accumulated cyclone energy, timeseries 1895–2007

In viewing actual data on a short time horizon, sparse experience would suggest the frequency of major hurricanes is not strongly correlated with the AMO. During warm phases of the AMO, the number of minor hurricanes (category 1 and 2) saw a modest increase.[11] With full consideration of meteorological science, the number of tropical storms that can mature into severe hurricanes is much greater during warm phases of the AMO than during cool phases, at least twice as many; the AMO is reflected in the frequency of severe Atlantic hurricanes.[8] The hurricane activity index is found to be highly correlated with the Atlantic multidecadal oscillation.[11] If there is an increase in hurricane activity connected to global warming, it is currently obscured by the AMO quasi-periodic cycle.[11] The AMO alternately obscures and exaggerates the global increase in temperatures due to human-induced global warming.[8] Based on the typical duration of negative and positive phases of the AMO, the current warm regime is expected to persist at least until 2015 and possibly as late as 2035. Enfield et al. assume a peak around 2020.[12]

Florida rainfall

The AMO has a strong effect on Florida rainfall. Rainfall in central and south Florida becomes more plentiful when the Atlantic is in its warm phase and droughts and wildfires are more frequent in the cool phase. As a result of these variations, the inflow to Lake Okeechobee — the reservoir for South Florida’s water supply — changes by as much as 40% between AMO extremes. In northern Florida the relationship begins to reverse — less rainfall when the Atlantic is warm.[8]

Periodicity and prediction of AMO shifts

There are only about 130–150 years of data based on instrument data which are too few samples for conventional statistical approaches. With the aid of multi–century proxy reconstruction, a longer period of 424 years was used by Enfield and Cid–Serrano as an illustration of an approach as described in their paper called "The Probabilistic Projection of Climate Risk".[13] Their histogram of zero crossing intervals from a set of five re-sampled and smoothed version of Gray et al. (2004) index together with the Maximum Likelihood Estimate gamma distribution fit to the histogram, showed that the largest frequency of regime interval was around 10–20 year. The cumulative probability for all intervals 20 years or less was about 70% [14]

There is no demonstrated predictability for when the AMO will switch, in any deterministic sense. Computer models, such as those that predict El Niño, are far from being able to do this. Enfield and colleagues have calculated the probability that a change in the AMO will occur within a given future time frame, assuming that historical variability persists. Probabilistic projections of this kind may prove to be useful for long-term planning in climate sensitive applications, such as water management.

Assuming that the AMO continues with its quasi-cycle of roughly 70 years, the peak of the current warm phase would be expected in c. 2020,[15] or based on its 50–90 year quasi-cycle, between 2000 and 2040 (after peaks in c. 1880 and c. 1950).[12][relevant? ]

Meteorology


From Wikipedia, the free encyclopedia

Meteorology is the interdisciplinary scientific study of the atmosphere. Studies in the field stretch back millennia, though significant progress in meteorology did not occur until the 18th century. The 19th century saw modest progress in the field after observing networks formed across several countries. It wasn't until after the development of the computer in the latter half of the 20th century that significant breakthroughs in weather forecasting were achieved.

Meteorological phenomena are observable weather events which illuminate, and are explained by the science of meteorology. Those events are bound by the variables that exist in Earth's atmosphere; temperature, air pressure, water vapor, and the gradients and interactions of each variable, and how they change in time. Different spatial scales are studied to determine how systems on local, regional, and global levels impact weather and climatology.

Meteorology, climatology, atmospheric physics, and atmospheric chemistry are sub-disciplines of the atmospheric sciences. Meteorology and hydrology compose the interdisciplinary field of hydrometeorology. Interactions between Earth's atmosphere and the oceans are part of coupled ocean-atmosphere studies. Meteorology has application in many diverse fields such as the military, energy production, transport, agriculture and construction.

The word "meteorology" is from Greek μετέωρος metéōros "lofty; high (in the sky)" (from μετα- meta- "above" and ἀείρω aeiro "I lift up") and -λογία -logia "-(o)logy", i.e. "the study of things in the air".

History


The beginnings of meteorology can be traced back to ancient India,[1] as the Upanishads contain serious discussion about the processes of cloud formation and rain and the seasonal cycles caused by the movement of earth around the sun. Varāhamihira's classical work Brihatsamhita, written about 500 AD,[1] provides clear evidence that a deep knowledge of atmospheric processes existed even in those times.

In 350 BC, Aristotle wrote Meteorology.[2] Aristotle is considered the founder of meteorology.[3] One of the most impressive achievements described in the Meteorology is the description of what is now known as the hydrologic cycle.[4] The Greek scientist Theophrastus compiled a book on weather forecasting, called the Book of Signs. The work of Theophrastus remained a dominant influence in the study of weather and in weather forecasting for nearly 2,000 years.[5] In 25 AD, Pomponius Mela, a geographer for the Roman Empire, formalized the climatic zone system.[6] According to Toufic Fahd, around the 9th century, Al-Dinawari wrote the Kitab al-Nabat (Book of Plants), in which he deals with the application of meteorology to agriculture during the Muslim Agricultural Revolution. He describes the meteorological character of the sky, the planets and constellations, the sun and moon, the lunar phases indicating seasons and rain, the anwa (heavenly bodies of rain), and atmospheric phenomena such as winds, thunder, lightning, snow, floods, valleys, rivers, lakes.[7][8][verification needed]

Research of visual atmospheric phenomena


Twilight at Baker Beach

Ptolemy wrote on the atmospheric refraction of light in the context of astronomical observations.[9] In 1021, Alhazen showed that atmospheric refraction is also responsible for twilight; he estimated that twilight begins when the sun is 19 degrees below the horizon, and also used a geometric determination based on this to estimate the maximum possible height of the earth's atmosphere as 52,000 passuum (about 49 miles, or 79 km).[10]
St. Albert the Great was the first to propose that each drop of falling rain had the form of a small sphere, and that this form meant that the rainbow was produced by light interacting with each raindrop.[11] Roger Bacon was the first to calculate the angular size of the rainbow. He stated that the rainbow summit can not appear higher than 42 degrees above the horizon.[12] In the late 13th century and early 14th century, Kamāl al-Dīn al-Fārisī and Theodoric of Freiberg were the first to give the correct explanations for the primary rainbow phenomenon. Theoderic went further and also explained the secondary rainbow.[13] In 1716, Edmund Halley suggested that aurorae are caused by "magnetic effluvia" moving along the Earth's magnetic field lines.

Instruments and classification scales

A hemispherical cup anemometer

In 1441, King Sejong's son, Prince Munjong, invented the first standardized rain gauge.[citation needed] These were sent throughout the Joseon Dynasty of Korea as an official tool to assess land taxes based upon a farmer's potential harvest. In 1450, Leone Battista Alberti developed a swinging-plate anemometer, and was known as the first anemometer.[14] In 1607, Galileo Galilei constructed a thermoscope. In 1611, Johannes Kepler wrote the first scientific treatise on snow crystals: "Strena Seu de Nive Sexangula (A New Year's Gift of Hexagonal Snow)".[15] In 1643, Evangelista Torricelli invented the mercury barometer.[14] In 1662, Sir Christopher Wren invented the mechanical, self-emptying, tipping bucket rain gauge. In 1714, Gabriel Fahrenheit created a reliable scale for measuring temperature with a mercury-type thermometer.[16] In 1742, Anders Celsius, a Swedish astronomer, proposed the "centigrade" temperature scale, the predecessor of the current Celsius scale.[17] In 1783, the first hair hygrometer was demonstrated by Horace-Bénédict de Saussure. In 1802–1803, Luke Howard wrote On the Modification of Clouds in which he assigns cloud types Latin names.[18] In 1806, Francis Beaufort introduced his system for classifying wind speeds.[19] Near the end of the 19th century the first cloud atlases were published, including the International Cloud Atlas, which has remained in print ever since. The April 1960 launch of the first successful weather satellite, TIROS-1, marked the beginning of the age where weather information became available globally.

Atmospheric composition research

In 1648, Blaise Pascal rediscovered that atmospheric pressure decreases with height, and deduced that there is a vacuum above the atmosphere.[20] In 1738, Daniel Bernoulli published Hydrodynamics, initiating the kinetic theory of gases and established the basic laws for the theory of gases.[21] In 1761, Joseph Black discovered that ice absorbs heat without changing its temperature when melting. In 1772, Black's student Daniel Rutherford discovered nitrogen, which he called phlogisticated air, and together they developed the phlogiston theory.[22] In 1777, Antoine Lavoisier discovered oxygen and developed an explanation for combustion.[23] In 1783, in Lavoisier's book Reflexions sur le phlogistique,[24] he deprecates the phlogiston theory and proposes a caloric theory.[25][26] In 1804, Sir John Leslie observed that a matte black surface radiates heat more effectively than a polished surface, suggesting the importance of black body radiation. In 1808, John Dalton defended caloric theory in A New System of Chemistry and described how it combines with matter, especially gases; he proposed that the heat capacity of gases varies inversely with atomic weight. In 1824, Sadi Carnot analyzed the efficiency of steam engines using caloric theory; he developed the notion of a reversible process and, in postulating that no such thing exists in nature, laid the foundation for the second law of thermodynamics.

Research into cyclones and air flow


The westerlies and trade winds are part of the earth's atmospheric circulation

In 1494, Christopher Columbus experienced a tropical cyclone, which led to the first written European account of a hurricane.[27] In 1686, Edmund Halley presented a systematic study of the trade winds and monsoons and identified solar heating as the cause of atmospheric motions.[28] In 1735, an ideal explanation of global circulation through study of the trade winds was written by George Hadley.[29] In 1743, when Benjamin Franklin was prevented from seeing a lunar eclipse by a hurricane, he decided that cyclones move in a contrary manner to the winds at their periphery.[30] Understanding the kinematics of how exactly the rotation of the earth affects airflow was partial at first. Gaspard-Gustave Coriolis published a paper in 1835 on the energy yield of machines with rotating parts, such as waterwheels.[31] In 1856, William Ferrel proposed the existence of a circulation cell in the mid-latitudes, with air being deflected by the Coriolis force to create the prevailing westerly winds.[32] Late in the 19th century, the full extent of the large-scale interaction of pressure gradient force and deflecting force that in the end causes air masses to move along isobars was understood. By 1912, this deflecting force was named the Coriolis effect.[33] Just after World War I, a group of meteorologists in Norway led by Vilhelm Bjerknes developed the Norwegian cyclone model that explains the generation, intensification and ultimate decay (the life cycle) of mid-latitude cyclones, introducing the idea of fronts, that is, sharply defined boundaries between air masses.[34] The group included Carl-Gustaf Rossby (who was the first to explain the large scale atmospheric flow in terms of fluid dynamics), Tor Bergeron (who first determined the mechanism by which rain forms) and Jacob Bjerknes.

Observation networks and weather forecasting


Cloud classification by altitude of occurrence

In 1654, Ferdinando II de Medici established the first weather observing network, that consisted of meteorological stations in Florence, Cutigliano, Vallombrosa, Bologna, Parma, Milan, Innsbruck, Osnabrück, Paris and Warsaw.
Collected data were centrally sent to Florence at regular time intervals.[35] In 1832, an electromagnetic telegraph was created by Baron Schilling.[36] The arrival of the electrical telegraph in 1837 afforded, for the first time, a practical method for quickly gathering surface weather observations from a wide area.[37] This data could be used to produce maps of the state of the atmosphere for a region near the earth's surface and to study how these states evolved through time. To make frequent weather forecasts based on these data required a reliable network of observations, but it was not until 1849 that the Smithsonian Institution began to establish an observation network across the United States under the leadership of Joseph Henry.[38] Similar observation networks were established in Europe at this time. In 1854, the United Kingdom government appointed Robert FitzRoy to the new office of Meteorological Statist to the Board of Trade with the role of gathering weather observations at sea. FitzRoy's office became the United Kingdom Meteorological Office in 1854, the first national meteorological service in the world. The first daily weather forecasts made by FitzRoy's Office were published in The Times newspaper in 1860. The following year a system was introduced of hoisting storm warning cones at principal ports when a gale was expected.

Over the next 50 years many countries established national meteorological services. The India Meteorological Department (1875) was established following tropical cyclone and monsoon related famines in the previous decades.[39] The Finnish Meteorological Central Office (1881) was formed from part of Magnetic Observatory of Helsinki University.[40] Japan's Tokyo Meteorological Observatory, the forerunner of the Japan Meteorological Agency, began constructing surface weather maps in 1883.[41] The United States Weather Bureau (1890) was established under the United States Department of Agriculture. The Australian Bureau of Meteorology (1906) was established by a Meteorology Act to unify existing state meteorological services.[42][43]

Numerical weather prediction


A meteorologist at the console of the IBM 7090 in the Joint Numerical Weather Prediction Unit. c. 1965

In 1904, Norwegian scientist Vilhelm Bjerknes first argued in his paper Weather Forecasting as a Problem in Mechanics and Physics that it should be possible to forecast weather from calculations based upon natural laws.[44][45]

It was not until later in the 20th century that advances in the understanding of atmospheric physics led to the foundation of modern numerical weather prediction. In 1922, Lewis Fry Richardson published "Weather Prediction By Numerical Process",[46] after finding notes and derivations he worked on as an ambulance driver in World War I. He described therein how small terms in the prognostic fluid dynamics equations governing atmospheric flow could be neglected, and a finite differencing scheme in time and space could be devised, to allow numerical prediction solutions to be found. Richardson envisioned a large auditorium of thousands of people performing the calculations and passing them to others. However, the sheer number of calculations required was too large to be completed without the use of computers, and the size of the grid and time steps led to unrealistic results in deepening systems. It was later found, through numerical analysis, that this was due to numerical instability.

Starting in the 1950s, numerical forecasts with computers became feasible.[47] The first weather forecasts derived this way used barotropic (single-vertical-level) models, and could successfully predict the large-scale movement of midlatitude Rossby waves, that is, the pattern of atmospheric lows and highs.[48] In 1959, the UK Meteorological Office received its first computer, a Ferranti Mercury.[citation needed]

In the 1960s, the chaotic nature of the atmosphere was first observed and mathematically described by Edward Lorenz, founding the field of chaos theory.[49] These advances have led to the current use of ensemble forecasting in most major forecasting centers, to take into account uncertainty arising from the chaotic nature of the atmosphere.[50] Climate models have been developed that feature a resolution comparable to older weather prediction models. These climate models are used to investigate long-term climate shifts, such as what effects might be caused by human emission of greenhouse gases.

Meteorologists

Meteorologists are scientists who study meteorology.[51] The American Meteorological Society published and continually updates an authoritative electronic Meteorology Glossary.[52] Meteorologists work in government agencies, private consulting and research services, industrial enterprises, utilities, radio and television stations, and in education. In the United States, meteorologists held about 9,400 jobs in 2009.[53]
Meteorologists are best known by the public for weather forecasting. Some radio and television weather forecasters are professional meteorologists, while others are reporters (weather specialist, weatherman, etc.) with no formal meteorological training. The American Meteorological Society and National Weather Association issue "Seals of Approval" to weather broadcasters who meet certain requirements.

Equipment


Satellite image of Hurricane Hugo with a polar low visible at the top of the image.

Each science has its own unique sets of laboratory equipment. In the atmosphere, there are many things or qualities of the atmosphere that can be measured. Rain, which can be observed, or seen anywhere and anytime was one of the first ones to be measured historically. Also, two other accurately measured qualities are wind and humidity. Neither of these can be seen but can be felt. The devices to measure these three sprang up in the mid-15th century and were respectively the rain gauge, the anemometer, and the hygrometer. Many attempts had been made prior to the 15th century to construct adequate equipment to measure the many atmospheric variables. Many were faulty in some way or were simply not reliable. Even Aristotle noted this in some of his work; as the difficulty to measure the air.

Sets of surface measurements are important data to meteorologists. They give a snapshot of a variety of weather conditions at one single location and are usually at a weather station, a ship or a weather buoy. The measurements taken at a weather station can include any number of atmospheric observables. Usually, temperature, pressure, wind measurements, and humidity are the variables that are measured by a thermometer, barometer, anemometer, and hygrometer, respectively.[54] Upper air data are of crucial importance for weather forecasting. The most widely used technique is launches of radiosondes. Supplementing the radiosondes a network of aircraft collection is organized by the World Meteorological Organization.

Remote sensing, as used in meteorology, is the concept of collecting data from remote weather events and subsequently producing weather information. The common types of remote sensing are Radar, Lidar, and satellites (or photogrammetry). Each collects data about the atmosphere from a remote location and, usually, stores the data where the instrument is located. Radar and Lidar are not passive because both use EM radiation to illuminate a specific portion of the atmosphere.[55] Weather satellites along with more general-purpose Earth-observing satellites circling the earth at various altitudes have become an indispensable tool for studying a wide range of phenomena from forest fires to El Niño.

Spatial scales

In the study of the atmosphere, meteorology can be divided into distinct areas of emphasis depending on the temporal scope and spatial scope of interest. At one extreme of this scale is climatology. In the timescales of hours to days, meteorology separates into micro-, meso-, and synoptic scale meteorology. Respectively, the geospatial size of each of these three scales relates directly with the appropriate timescale.

Other subclassifications are available based on the need by or by the unique, local or broad effects that are studied within that sub-class.

Microscale

Microscale meteorology is the study of atmospheric phenomena of about 1 km or less. Individual thunderstorms, clouds, and local turbulence caused by buildings and other obstacles (such as individual hills) fall within this category.[56]

Mesoscale

Mesoscale meteorology is the study of atmospheric phenomena that has horizontal scales ranging from microscale limits to synoptic scale limits and a vertical scale that starts at the Earth's surface and includes the atmospheric boundary layer, troposphere, tropopause, and the lower section of the stratosphere. Mesoscale timescales last from less than a day to the lifetime of the event, which in some cases can be weeks. The events typically of interest are thunderstorms, squall lines, fronts, precipitation bands in tropical and extratropical cyclones, and topographically generated weather systems such as mountain waves and sea and land breezes.[57]

Synoptic scale


NOAA: Synoptic scale weather analysis.

Synoptic scale meteorology is generally large area dynamics referred to in horizontal coordinates and with respect to time. The phenomena typically described by synoptic meteorology include events like extratropical cyclones, baroclinic troughs and ridges, frontal zones, and to some extent jet streams. All of these are typically given on weather maps for a specific time. The minimum horizontal scale of synoptic phenomena is limited to the spacing between surface observation stations.[58]

Global scale


Annual mean sea surface temperatures.

Global scale meteorology is study of weather patterns related to the transport of heat from the tropics to the poles. Also, very large scale oscillations are of importance. These oscillations have time periods typically on the order of months, such as the Madden-Julian Oscillation, or years, such as the El Niño-Southern Oscillation and the Pacific decadal oscillation. Global scale pushes the thresholds of the perception of meteorology into climatology. The traditional definition of climate is pushed into larger timescales with the further understanding of how the global oscillations cause both climate and weather disturbances in the synoptic and mesoscale timescales.

Numerical Weather Prediction is a main focus in understanding air–sea interaction, tropical meteorology, atmospheric predictability, and tropospheric/stratospheric processes.[59] The Naval Research Laboratory in Monterey California developed a global atmospheric model called Navy Operational Global Atmospheric Prediction System (NOGAPS). NOGAPS is run operationally at Fleet Numerical Meteorology and Oceanography Center for the United States Military. Many other global atmospheric models are run by national meteorological agencies.

Some meteorological principles

Boundary layer meteorology

Boundary layer meteorology is the study of processes in the air layer directly above earth's surface, known as the atmospheric boundary layer (ABL). The effects of the surface – heating, cooling, and friction – cause turbulent mixing within the air layer. Significant fluxes of heat, matter, or momentum on time scales of less than a day are advected by turbulent motions.[60] Boundary layer meteorology includes the study of all types of surface–atmosphere boundary, including ocean, lake, urban land and non-urban land for the study of meteorology.

Dynamic meteorology

Dynamic meteorology generally focuses on the fluid dynamics of the atmosphere. The idea of air parcel is used to define the smallest element of the atmosphere, while ignoring the discrete molecular and chemical nature of the atmosphere. An air parcel is defined as a point in the fluid continuum of the atmosphere. The fundamental laws of fluid dynamics, thermodynamics, and motion are used to study the atmosphere. The physical quantities that characterize the state of the atmosphere are temperature, density, pressure, etc. These variables have unique values in the continuum.[61]

Applications

Weather forecasting


Forecast of surface pressures five days into the future for the north Pacific, North America, and north Atlantic Ocean

Weather forecasting is the application of science and technology to predict the state of the atmosphere for a future time and a given location. Human beings have attempted to predict the weather informally for millennia, and formally since at least the 19th century.[62][63] Weather forecasts are made by collecting quantitative data about the current state of the atmosphere and using scientific understanding of atmospheric processes to project how the atmosphere will evolve.[64]

Once an all-human endeavor based mainly upon changes in barometric pressure, current weather conditions, and sky condition,[65][66] forecast models are now used to determine future conditions. Human input is still required to pick the best possible forecast model to base the forecast upon, which involves pattern recognition skills, teleconnections, knowledge of model performance, and knowledge of model biases. The chaotic nature of the atmosphere, the massive computational power required to solve the equations that describe the atmosphere, error involved in measuring the initial conditions, and an incomplete understanding of atmospheric processes mean that forecasts become less accurate as the difference in current time and the time for which the forecast is being made (the range of the forecast) increases. The use of ensembles and model consensus help narrow the error and pick the most likely outcome.[67][68][69]

There are a variety of end uses to weather forecasts. Weather warnings are important forecasts because they are used to protect life and property.[70] Forecasts based on temperature and precipitation are important to agriculture,[71][72][73][74] and therefore to commodity traders within stock markets. Temperature forecasts are used by utility companies to estimate demand over coming days.[75][76][77] On an everyday basis, people use weather forecasts to determine what to wear on a given day. Since outdoor activities are severely curtailed by heavy rain, snow and the wind chill, forecasts can be used to plan activities around these events, and to plan ahead and survive them.

Aviation meteorology

Aviation meteorology deals with the impact of weather on air traffic management. It is important for air crews to understand the implications of weather on their flight plan as well as their aircraft, as noted by the Aeronautical Information Manual:[78]
The effects of ice on aircraft are cumulative—thrust is reduced, drag increases, lift lessens, and weight increases. The results are an increase in stall speed and a deterioration of aircraft performance. In extreme cases, 2 to 3 inches of ice can form on the leading edge of the airfoil in less than 5 minutes. It takes but 1/2 inch of ice to reduce the lifting power of some aircraft by 50 percent and increases the frictional drag by an equal percentage.[79]

Agricultural meteorology

Meteorologists, soil scientists, agricultural hydrologists, and agronomists are persons concerned with studying the effects of weather and climate on plant distribution, crop yield, water-use efficiency, phenology of plant and animal development, and the energy balance of managed and natural ecosystems. Conversely, they are interested in the role of vegetation on climate and weather.[80]

Hydrometeorology

Hydrometeorology is the branch of meteorology that deals with the hydrologic cycle, the water budget, and the rainfall statistics of storms.[81] A hydrometeorologist prepares and issues forecasts of accumulating (quantitative) precipitation, heavy rain, heavy snow, and highlights areas with the potential for flash flooding. Typically the range of knowledge that is required overlaps with climatology, mesoscale and synoptic meteorology, and other geosciences.[82]

The multidisciplinary nature of the branch can result in technical challenges, since tools and solutions from each of the individual disciplines involved may behave slightly differently, be optimized for different hard- and software platforms and use different data formats. There are some initiatives - such as the DRIHM project[83] - that are trying to address this issue.[84]

Nuclear meteorology

Nuclear meteorology investigates the distribution of radioactive aerosols and gases in the atmosphere.[85]

Maritime meteorology

Maritime meteorology deals with air and wave forecasts for ships operating at sea. Organizations such as the Ocean Prediction Center, Honolulu National Weather Service forecast office, United Kingdom Met Office, and JMA prepare high seas forecasts for the world's oceans.

Military meteorology

Military meteorology is the research and application of meteorology for military purposes. In the United States, the United States Navy's Commander, Naval Meteorology and Oceanography Command oversees meteorological efforts for the Navy and Marine Corps while the United States Air Force's Air Force Weather Agency is responsible for the Air Force and Army.

Citation signal

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cit...