Search This Blog

Sunday, February 22, 2015

Circulatory system



From Wikipedia, the free encyclopedia

Circulatory system
Circulatory System en.svg
The human circulatory system (simplified). Red indicates oxygenated blood, blue indicates deoxygenated.

(Not depicted are the intricate network of capillaries, as well as the entire lymphatic system.)
Details
Latin systema cardiovasculare
Identifiers
TA A12.0.00.000
FMA 7161
Anatomical terminology

The circulatory system, also called the cardiovascular system, is an organ system that permits
blood to circulate and transport nutrients (such as amino acids and electrolytes), oxygen, carbon dioxide, hormones, and blood cells to and from cells in the body to nourish it and help to fight diseases, stabilize body temperature and pH, and to maintain homeostasis.

The circulatory system is often seen to be composed of both the cardiovascular system, which distributes blood, and the lymphatic system, which circulates lymph.[1] These are two separate systems. The passage of lymph for example takes a lot longer than that of blood.[2] Blood is a fluid consisting of plasma, red blood cells, white blood cells, and platelets that is circulated by the heart through the vertebrate vascular system, carrying oxygen and nutrients to and waste materials away from all body tissues. Lymph is essentially recycled excess blood plasma after it has been filtered from the interstitial fluid (between cells) and returned to the lymphatic system. The cardiovascular (from Latin words meaning 'heart'-'vessel') system comprises the blood, heart, and blood vessels.[3] The lymph, lymph nodes, and lymph vessels form the lymphatic system, which returns filtered blood plasma from the interstitial fluid (between cells) as lymph.

While humans, as well as other vertebrates, have a closed cardiovascular system (meaning that the blood never leaves the network of arteries, veins and capillaries), some invertebrate groups have an open cardiovascular system. The lymphatic system, on the other hand, is an open system providing an accessory route for excess interstitial fluid to get returned to the blood.[4] The more primitive, diploblastic animal phyla lack circulatory systems.

Structure

Cardiovascular system


Depiction of the heart, major veins and arteries constructed from body scans.
Cross section of a human artery

The essential components of the human cardiovascular system are the heart, blood, and blood vessels.[5] It includes: the pulmonary circulation, a "loop" through the lungs where blood is oxygenated; and the systemic circulation, a "loop" through the rest of the body to provide oxygenated blood. An average adult contains five to six quarts (roughly 4.7 to 5.7 liters) of blood, accounting for approximately 7% of their total body weight.[6] Blood consists of plasma, red blood cells, white blood cells, and platelets. Also, the digestive system works with the circulatory system to provide the nutrients the system needs to keep the heart pumping.[7]

The cardiovascular systems of humans are closed, meaning that the blood never leaves the network of blood vessels. In contrast, oxygen and nutrients diffuse across the blood vessel layers and enter interstitial fluid, which carries oxygen and nutrients to the target cells, and carbon dioxide and wastes in the opposite direction. The other component of the circulatory system, the lymphatic system, is not closed.

Heart


View from the front, which means the right side of the heart is on the left of the diagram (and vice versa)

The heart pumps oxygenated blood to the body and deoxygenated blood to the lungs. In the human heart there is one atrium and one ventricle for each circulation, and with both a systemic and a pulmonary circulation there are four chambers in total: left atrium, left ventricle, right atrium and right ventricle. The right atrium is the upper chamber of the right side of the heart. The blood that is returned to the right atrium is deoxygenated (poor in oxygen) and passed into the right ventricle to be pumped through the pulmonary artery to the lungs for re-oxygenation and removal of carbon dioxide. The left atrium receives newly oxygenated blood from the lungs as well as the pulmonary vein which is passed into the strong left ventricle to be pumped through the aorta to the different organs of the body.
Coronary circulation
Coronary circulatory system provides a blood supply to the myocardium (the heart muscle). It arises from the aorta by two coronary arteries, the left and the right, and after nourishing the myocardium blood returns through the coronary veins into the coronary sinus and from this one into the right atrium. Back flow of blood through its opening during atrial systole is prevented by the Thebesian valve. The smallest cardiac veins drain directly into the heart chambers.[7]
Pulmonary circulation

The pulmonary circulation as it passes from the heart. Showing both pulmonary trunk and bronchial arteries.

The pulmonary circulatory system is the portion of the cardiovascular system in which oxygen-depleted blood is pumped away from the heart, via the pulmonary artery, to the lungs and returned, oxygenated, to the heart via the pulmonary vein.

Oxygen deprived blood from the superior and inferior vena cava, enters the right atrium of the heart and flows through the tricuspid valve (right atrioventricular valve) into the right ventricle, from which it is then pumped through the pulmonary semilunar valve into the pulmonary artery to the lungs. Gas exchange occurs in the lungs, whereby CO
2
is released from the blood, and oxygen is absorbed. The pulmonary vein returns the now oxygen-rich blood to the left atrium.[7]
Systemic circulation
Systemic circulation is the circulation of the blood to all parts of the body except the lungs. Systemic circulation is the portion of the cardiovascular system which transports oxygenated blood away from the heart through the aorta from the left ventricle where the blood has been previously deposited from pulmonary circulation, to the rest of the body, and returns oxygen-depleted blood back to the heart. Systemic circulation is, distance-wise, much longer than pulmonary circulation, transporting blood to every part of the body.[7]

Oxygen transportation


An animation of a typical human red blood cell cycle in the circulatory system. This animation occurs at real time (20 seconds of cycle) and shows the red blood cell deform as it enters capillaries, as well as changing color as it alternates in states of oxygenation along the circulatory system.

About 98.5% of the oxygen in a sample of arterial blood in a healthy human breathing air at sea-level pressure is chemically combined with hemoglobin molecules. About 1.5% is physically dissolved in the other blood liquids and not connected to hemoglobin. The hemoglobin molecule is the primary transporter of oxygen in mammals and many other species.

Development


The development of the circulatory system initially occurs by the process of vasculogenesis. The human arterial and venous systems develop from different embryonic areas. While the arterial system develops mainly from the aortic arches, the venous system arises from three bilateral veins during weeks 4 – 8 of human development. Fetal circulation does not include the use of the lungs.

Arterial development

The human arterial system originates from the aortic arches and from the dorsal aortae starting from week 4 of human development. Aortic arch 1 almost completely regresses except to form the maxillary arteries. Aortic arch 2 also completely regresses except to form the stapedial arteries. The definitive formation of the arterial system arise from aortic arches 3, 4 and 6, while aortic arch 5 completely regresses.
The dorsal aortae are initially bilateral and then fuse to form the definitive dorsal aorta. Approximately 30 posterolateral branches arise off the aorta and will form the intercostal arteries, upper and lower extremity arteries, lumbar arteries and the lateral sacral arteries. The lateral branches of the aorta form the definitive renal, suprarrenal and gonadal arteries. Finally, the ventral branches of the aorta consist of the vitelline arteries and umbilical arteries. The vitelline arteries form the celiac, superior and inferior mesenteric arteries of the gastrointestinal tract. After birth, the umbilical arteries will form the internal iliac arteries.

Venous development

The human venous system develops mainly from the vitelline veins, the umbilical veins and the cardinal veins, all of which empty into the sinus venosus.

Clinical significance


A schematic of the heart and circulatory system. Red and blue represent oxygenated and deoxygenated blood, respectively. 

Measurement techniques

  • Electrocardiogram—for cardiac electrophysiology
  • Sphygmomanometer and stethoscope—for blood pressure
  • Pulse meter—for cardiac function (heart rate, rhythm, dropped beats)
  • Pulse—commonly used to determine the heart rate in absence of certain cardiac pathologies
  • Heart rate variability—used to measure variations of time intervals between heart beats
  • Nail bed blanching test—test for perfusion
  • Vessel cannula or catheter pressure measurement—pulmonary wedge pressure or in older animal experiments.

Other animals

Circulation in vertebrates
Fish, amphibians and mammals
1: heart
    venous blood  

2: systemic
    arterial blood   

3: pulmonary
    mixed blood    

Other vertebrates


Two-chambered heart of a fish

The circulatory systems of all vertebrates, as well as of annelids (for example, earthworms) and cephalopods (squids, octopuses and relatives) are closed, just as in humans. Still, the systems of fish, amphibians, reptiles, and birds show various stages of the evolution of the circulatory system.

In fish, the system has only one circuit, with the blood being pumped through the capillaries of the gills and on to the capillaries of the body tissues. This is known as single cycle circulation. The heart of fish is, therefore, only a single pump (consisting of two chambers).

In amphibians and most reptiles, a double circulatory system is used, but the heart is not always completely separated into two pumps. Amphibians have a three-chambered heart.

In reptiles, the ventricular septum of the heart is incomplete and the pulmonary artery is equipped with a sphincter muscle. This allows a second possible route of blood flow. Instead of blood flowing through the pulmonary artery to the lungs, the sphincter may be contracted to divert this blood flow through the incomplete ventricular septum into the left ventricle and out through the aorta. This means the blood flows from the capillaries to the heart and back to the capillaries instead of to the lungs. This process is useful to ectothermic (cold-blooded) animals in the regulation of their body temperature.

Birds and mammals show complete separation of the heart into two pumps, for a total of four heart chambers; it is thought[citation needed] that the four-chambered heart of birds evolved independently from that of mammals.

Open circulatory system

The open circulatory system is a system in which a fluid in a cavity called the hemocoel bathes the organs directly with oxygen and nutrients and there is no distinction between blood and interstitial fluid; this combined fluid is called hemolymph or haemolymph.[8] Muscular movements by the animal during locomotion can facilitate hemolymph movement, but diverting flow from one area to another is limited. When the heart relaxes, blood is drawn back toward the heart through open-ended pores (ostia).

Hemolymph fills all of the interior hemocoel of the body and surrounds all cells. Hemolymph is composed of water, inorganic salts (mostly Na+, Cl, K+, Mg2+, and Ca2+), and organic compounds (mostly carbohydrates, proteins, and lipids). The primary oxygen transporter molecule is hemocyanin.

There are free-floating cells, the hemocytes, within the hemolymph. They play a role in the arthropod immune system.

Flatworms, such as this Pseudoceros bifurcus, lack specialized circulatory organs

Absence of circulatory system

Circulatory systems are absent in some animals, including flatworms (phylum Platyhelminthes).
Their body cavity has no lining or enclosed fluid. Instead a muscular pharynx leads to an extensively branched digestive system that facilitates direct diffusion of nutrients to all cells. The flatworm's dorso-ventrally flattened body shape also restricts the distance of any cell from the digestive system or the exterior of the organism. Oxygen can diffuse from the surrounding water into the cells, and carbon dioxide can diffuse out. Consequently every cell is able to obtain nutrients, water and oxygen without the need of a transport system.

Some animals, such as jellyfish, have more extensive branching from their gastrovascular cavity (which functions as both a place of digestion and a form of circulation), this branching allows for bodily fluids to reach the outer layers, since the digestion begins in the inner layers.

History of discovery


Human anatomical chart of blood vessels, with heart, lungs, liver and kidneys included. Other organs are numbered and arranged around it. Before cutting out the figures on this page, Vesalius suggests that readers glue the page onto parchment and gives instructions on how to assemble the pieces and paste the multilayered figure onto a base "muscle man" illustration. "Epitome", fol.14a. HMD Collection, WZ 240 V575dhZ 1543.

The earliest known writings on the circulatory system are found in the Ebers Papyrus (16th century BCE), an ancient Egyptian medical papyrus containing over 700 prescriptions and remedies, both physical and spiritual. In the papyrus, it acknowledges the connection of the heart to the arteries. The Egyptians thought air came in through the mouth and into the lungs and heart. From the heart, the air travelled to every member through the arteries. Although this concept of the circulatory system is only partially correct, it represents one of the earliest accounts of scientific thought.

In the 6th century BCE, the knowledge of circulation of vital fluids through the body was known to the Ayurvedic physician Sushruta in ancient India.[9] He also seems to have possessed knowledge of the arteries, described as 'channels' by Dwivedi & Dwivedi (2007).[9] The valves of the heart were discovered by a physician of the Hippocratean school around the 4th century BCE. However their function was not properly understood then. Because blood pools in the veins after death, arteries look empty. Ancient anatomists assumed they were filled with air and that they were for transport of air.

The Greek physician, Herophilus, distinguished veins from arteries but thought that the pulse was a property of arteries themselves. Greek anatomist Erasistratus observed that arteries that were cut during life bleed. He ascribed the fact to the phenomenon that air escaping from an artery is replaced with blood that entered by very small vessels between veins and arteries. Thus he apparently postulated capillaries but with reversed flow of blood.[10]

In 2nd century AD Rome, the Greek physician Galen knew that blood vessels carried blood and identified venous (dark red) and arterial (brighter and thinner) blood, each with distinct and separate functions. Growth and energy were derived from venous blood created in the liver from chyle, while arterial blood gave vitality by containing pneuma (air) and originated in the heart. Blood flowed from both creating organs to all parts of the body where it was consumed and there was no return of blood to the heart or liver. The heart did not pump blood around, the heart's motion sucked blood in during diastole and the blood moved by the pulsation of the arteries themselves.

Galen believed that the arterial blood was created by venous blood passing from the left ventricle to the right by passing through 'pores' in the interventricular septum, air passed from the lungs via the pulmonary artery to the left side of the heart. As the arterial blood was created 'sooty' vapors were created and passed to the lungs also via the pulmonary artery to be exhaled.

In 1025, The Canon of Medicine by the Persian physician, Avicenna, "erroneously accepted the Greek notion regarding the existence of a hole in the ventricular septum by which the blood traveled between the ventricles." Despite this, Avicenna "correctly wrote on the cardiac cycles and valvular function", and "had a vision of blood circulation" in his Treatise on Pulse.[11][verification needed] While also refining Galen's erroneous theory of the pulse, Avicenna provided the first correct explanation of pulsation: "Every beat of the pulse comprises two movements and two pauses. Thus, expansion : pause : contraction : pause. [...] The pulse is a movement in the heart and arteries ... which takes the form of alternate expansion and contraction."[12]

In 1242, the Arabian physician, Ibn al-Nafis, became the first person to accurately describe the process of pulmonary circulation, for which he is sometimes considered the father of circulatory physiology.[13][not in citation given] Ibn al-Nafis stated in his Commentary on Anatomy in Avicenna's Canon:
"...the blood from the right chamber of the heart must arrive at the left chamber but there is no direct pathway between them. The thick septum of the heart is not perforated and does not have visible pores as some people thought or invisible pores as Galen thought. The blood from the right chamber must flow through the vena arteriosa (pulmonary artery) to the lungs, spread through its substances, be mingled there with air, pass through the arteria venosa (pulmonary vein) to reach the left chamber of the heart and there form the vital spirit..."
In addition, Ibn al-Nafis had an insight into what would become a larger theory of the capillary circulation. He stated that "there must be small communications or pores (manafidh in Arabic) between the pulmonary artery and vein," a prediction that preceded the discovery of the capillary system by more than 400 years.[14] Ibn al-Nafis' theory, however, was confined to blood transit in the lungs and did not extend to the entire body.

Michael Servetus was the first European to describe the function of pulmonary circulation, although his achievement was not widely recognized at the time, for a few reasons. He firstly described it in the "Manuscript of Paris"[15][16] (near 1546), but this work was never published. And later he published this description, but in a theological treatise, Christianismi Restitutio, not in a book on medicine. Only three copies of the book survived, the rest were burned shortly after its publication in 1553 because of persecution of Servetus by religious authorities. Better known was its discovery by Vesalius's successor at Padua, Realdo Colombo, in 1559.

Image of veins from William Harvey's Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus

Finally, William Harvey, a pupil of Hieronymus Fabricius (who had earlier described the valves of the veins without recognizing their function), performed a sequence of experiments, and published Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus in 1628, which "demonstrated that there had to be a direct connection between the venous and arterial systems throughout the body, and not just the lungs. Most importantly, he argued that the beat of the heart produced a continuous circulation of blood through minute connections at the extremities of the body. This is a conceptual leap that was quite different from Ibn al-Nafis' refinement of the anatomy and bloodflow in the heart and lungs."[17] This work, with its essentially correct exposition, slowly convinced the medical world. However, Harvey was not able to identify the capillary system connecting arteries and veins; these were later discovered by Marcello Malpighi in 1661.

In 1956, André Frédéric Cournand, Werner Forssmann and Dickinson W. Richards were awarded the Nobel Prize in Medicine "for their discoveries concerning heart catheterization and pathological changes in the circulatory system."[18]

If Spacetime Were a Superfluid, Would It Unify Physics—or Is the Theory All Wet?

Thinking of space and time as a liquid might help reconcile quantum mechanics and relativity
 
Crab Nebula


Light from the Crab Nebula (shown here in a Hubble Space Telescope photo) limits the possibilities for fluid spacetime.
NASA/ESA/ASU/J. Hester
If spacetime is like a liquid—a concept some physicists say could help resolve a confounding disagreement between two dominant theories in physics—it must be a very special liquid indeed. A recent study compared astrophysical observations with predictions based on the notion of fluid spacetime, and found the idea only works if spacetime is incredibly smooth and freely flowing—in other words, a superfluid.

Thinking of spacetime as a liquid may be a helpful analogy. We often picture space and time as fundamental backdrops to the universe. But what if they are not fundamental, and built instead of smaller ingredients that exist on a deeper layer of reality that we cannot sense? If that were the case, spacetime’s properties would “emerge” from the underlying physics of its constituents, just as water’s properties emerge from the particles that comprise it. “Water is made of discrete, individual molecules, which interact with each other according to the laws of quantum mechanics, but liquid water appears continuous and flowing and transparent and refracting,” explains Ted Jacobson, a physicist at the University of Maryland, College Park. “These are all ‘emergent’ properties that cannot be found in the individual molecules, even though they ultimately derive from the properties of those molecules.”

Physicists have been considering this possibility since the 1990s in an attempt to reconcile the dominant theory of gravity on a large scale—general relativity—with the theory governing the very smallest bits of the universe—quantum mechanics. Both theories appear to work perfectly within their respective domains, but conflict with one another in situations that combine the large and small, such as black holes (extremely large mass, extremely small volume). Many physicists have tried to solve the problem by “quantizing” gravity—dividing it into smaller bits, just as quantum mechanics breaks down many quantities, such as particles’ energy levels, into discrete packets. “There are many attempts to quantize gravity—string theory and loop quantum gravity are alternative approaches that can both claim to have gone a good leg forward,” says Stefano Liberati, a physicist at the International School for Advanced Studies (SISSA) in Trieste, Italy. “But maybe you don’t need to quantize gravity; you need to quantize this fundamental object that makes spacetime.”

Liberati, along with his colleague Luca Maccione of Ludwig Maximilian University in Munich, recently explored how that idea would affect light traveling through the universe. An emergent spacetime, one that acted like a fluid, would not be immediately distinguishable from the spacetime of any other theory. But in extreme situations, such as for very energetic light particles, Liberati and Maccione found that some differences would be noticeable. In fact, by examining observations of high-energy photons flying across the universe from the Crab Nebula, the physicists were able to rule out certain versions of emergent spacetime, finding that if it is a fluid at all, it must be a superfluid. The researchers published their results in the April 14 Physical Review Letters.

In this analogy particles would travel through spacetime like waves in an ocean, and the laws of fluid mechanics—condensed matter physics—would apply. Previously physicists considered how particles of different energies would disperse in spacetime, just as waves of different wavelengths disperse, or travel at different speeds, in water. In the latest study Liberati and Maccione took into account another fluid effect: dissipation. As waves travel through a medium, they lose energy over time. This dampening effect would also happen to photons traveling through spacetime, the researchers found. Although the effect is small, high-energy photons traveling very long distances should lose a noticeable amount of energy, the researchers say.

One real-world example is the Crab Nebula, a supernova remnant about 6,500 light-years from Earth that emits high-energy x-ray and gamma-ray light. By the time this light reaches our telescopes, its energy should have dissipated somewhat if spacetime has liquid properties. Observations of the Crab Nebula, however, show no sign of such an effect. “We show the spectrum would be severely affected by this energy loss, even if it’s a very tiny effect, because it travels for so long,” Liberati says. The lack of a dissipation signal allowed the researchers to put strong constraints on the liquid effects that could be present in spacetime, showing they must be extremely small if they are present at all. “This is not telling you that this idea is completely ruled out,” Liberati says. The findings do, however, narrow the possibilities for liquidlike spacetime to only liquids with very low viscosities that cause almost no dampening—superfluids.

Even supporters of the fluid spacetime idea say the concept is not very popular, and perhaps unlikely. But might it be true? “I have absolutely no idea,” says Renaud Parentani, a physicist at the University of Paris–Sud who originally suggested the idea of considering dissipation effects. “My frank opinion is that nobody has any idea. All we can do is model the various possibilities.”

If it is true that spacetime is a superfluid and that photons of different energies travel at different speeds or dissipate over time, that means relativity does not hold in all situations. One of the main tenets of relativity, the Lorentz invariance, states that the speed of light is unchanging, regardless of an observer’s frame of reference. “The possibility that spacetime as we know it emerges from something that violates relativity is a fairly radical one,” Jacobson says. It does, however, clear a potential pathway toward rectifying some of the problems that arise when trying to combine relativity and quantum mechanics. “Violating relativity would open up the possibility of eliminating infinite quantities that arise in present theory and which seem to some unlikely to be physically correct.”

So if spacetime is a superfluid, then it’s surf’s up for theoretical physicists.

Superfluid vacuum theory


From Wikipedia, the free encyclopedia

Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum (non-removable
background) is viewed as superfluid or as a Bose–Einstein condensate (BEC).

The microscopic structure of this physical vacuum is currently unknown and is a subject of intensive studies in SVT. An ultimate goal of this approach is to develop scientific models that unify quantum mechanics (describing three of the four known fundamental interactions) with gravity, making SVT a candidate for the theory of quantum gravity and describing all known interactions in the Universe, at both microscopic and astronomic scales, as different manifestations of the same entity, superfluid vacuum.

History

The concept of a luminiferous aether as a medium sustaining electromagnetic waves was discarded after the advent of the special theory of relativity. The aether, as conceived in classical physics leads to several contradictions; in particular, aether having a definite velocity at each space-time point will exhibit a preferred direction. This conflicts with the relativistic requirement that all directions within a light cone are equivalent. However, as early as in 1951 P.A.M. Dirac published two papers where he pointed out that we should take into account quantum fluctuations in the flow of the aether.[1][2] His arguments involve the application of the uncertainty principle to the velocity of aether at any space-time point, implying that the velocity will not be a well-defined quantity. In fact, it will be distributed over various possible values. At best, one could represent the aether by a wave function representing the perfect vacuum state for which all aether velocities are equally probable. These works can be regarded as the birth point of the theory.

Inspired by the Dirac ideas, K. P. Sinha, C. Sivaram and E. C. G. Sudarshan published in 1975 a series of papers that suggested a new model for the aether according to which it is a superfluid state of fermion and anti-fermion pairs, describable by a macroscopic wave function.[3][4][5] They noted that particle-like small fluctuations of superfluid background obey the Lorentz symmetry, even if the superfluid itself is non-relativistic. Nevertheless, they decided to treat the superfluid as the relativistic matter - by putting it into the stress–energy tensor of the Einstein field equations. This did not allow them to describe the relativistic gravity as a small fluctuation of the superfluid vacuum, as subsequent authors have noted.

As an alternative to the better known string theories, a very different theory by Friedwardt Winterberg proposes instead, that the vacuum is a kind of superfluid plasma compound of positive and negative Planck masses, called a Planck mass plasma.[6][7][citation needed]

Since then, several theories have been proposed within the SVT framework. They differ in how the structure and properties of the background superfluid must look like. In absence of observational data which would rule out some of them, these theories are being pursued independently.

Relation to other concepts and theories

Lorentz and Galilean symmetries

According to the approach, the background superfluid is assumed to be essentially non-relativistic whereas the Lorentz symmetry is not an exact symmetry of Nature but rather the approximate description valid only for small fluctuations. An observer who resides inside such vacuum and is capable of creating or measuring the small fluctuations would observe them as relativistic objects - unless their energy and momentum are sufficiently high to make the Lorentz-breaking corrections detectable.[8] If the energies and momenta are below the excitation threshold then the superfluid background behaves like the ideal fluid, therefore, the Michelson–Morley-type experiments would observe no drag force from such aether.[1][2]

Further, in the theory of relativity the Galilean symmetry (pertinent to our macroscopic non-relativistic world) arises as the approximate one - when particles' velocities are small compared to speed of light in vacuum. In SVT one does not need to go through Lorentz symmetry to obtain the Galilean one - the dispersion relations of most non-relativistic superfluids are known to obey the non-relativistic behavior at large momenta.[9][10][11]

To summarize, the fluctuations of vacuum superfluid behave like relativistic objects at "small"[nb 1] momenta (a.k.a. the "phononic limit")
E2|p⃗ |2
and like non-relativistic ones
E|p⃗ |2
at large momenta. The yet unknown nontrivial physics is believed to be located somewhere between these two regimes.

Relativistic quantum field theory

In the relativistic quantum field theory the physical vacuum is also assumed to be some sort of non-trivial medium to which one can associate certain energy. This is because the concept of absolutely empty space (or "mathematical vacuum") contradicts to the postulates of quantum mechanics. According to QFT, even in absence of real particles the background is always filled by pairs of creating and annihilating virtual particles. However, a direct attempt to describe such medium leads to the so-called ultraviolet divergences. In some QFT models, such as quantum electrodynamics, these problems can be "solved" using the renormalization technique, namely, replacing the diverging physical values by their experimentally measured values. In other theories, such as the quantum general relativity, this trick does not work, and reliable perturbation theory cannot be constructed.

According to SVT, this is because in the high-energy ("ultraviolet") regime the Lorentz symmetry starts failing so dependent theories cannot be regarded valid for all scales of energies and momenta. Correspondingly, while the Lorentz-symmetric quantum field models are obviously a good approximation below the vacuum-energy threshold, in its close vicinity the relativistic description becomes more and more "effective" and less and less natural since one will need to adjust the expressions for the covariant field-theoretical actions by hand.

Curved space-time

According to general relativity, gravitational interaction is described in terms of space-time curvature using the mathematical formalism of Riemannian geometry. This was supported by numerous experiments and observations in the regime of low energies. However, the attempts to quantize general relativity led to various severe problems, therefore, the microscopic structure of gravity is still ill-defined. There may be a fundamental reason for this—the degrees of freedom of general relativity are based on may be only approximate and effective. The question of whether general relativity is an effective theory has been raised for a long time.[12]

According to SVT, the curved space-time arises as the small-amplitude collective excitation mode of the non-relativistic background condensate.[8][13] The mathematical description of this is similar to fluid-gravity analogy which is being used also in the analog gravity models.[14] Thus, relativistic gravity is essentially a long-wavelength theory of the collective modes whose amplitude is small compared to the background one. Outside this requirement the curved-space description of gravity in terms of the Riemannian geometry becomes incomplete or ill-defined.

Cosmological constant

The notion of the cosmological constant makes sense in a relativistic theory only, therefore, within the SVT framework this constant can refer at most to the energy of small fluctuations of the vacuum above a background value but not to the energy of vacuum itself.[15] Thus, in SVT this constant does not have any fundamental physical meaning and the related problems, such as the vacuum catastrophe, simply do not occur in first place.

Gravitational waves and gravitons

According to general relativity, the conventional gravitational wave is:
  1. the small fluctuation of curved spacetime which
  2. has been separated from its source and propagates independently.
Superfluid vacuum theory brings into question the possibility that a relativistic object possessing both of these properties exists in nature.[13] Indeed, according to the approach, the curved spacetime itself is the small collective excitation of the superfluid background, therefore, the property (1) means that the graviton would be in fact the "small fluctuation of the small fluctuation", which does not look like a physically robust concept (as if somebody tried to introduce small fluctuations inside a phonon, for instance). As a result, it may be not just a coincidence that in general relativity the gravitational field alone has no well-defined stress–energy tensor, only the pseudotensor one.[16] Therefore, the property (2) cannot be completely justified in a theory with exact Lorentz symmetry which the general relativity is. Though, SVT does not a priori forbid an existence of the non-localized wave-like excitations of the superfluid background which might be responsible for the astrophysical phenomena which are currently being attributed to gravitational waves, such as the Hulse–Taylor binary.
However, such excitations cannot be correctly described within the framework of a fully relativistic theory.

Mass generation and Higgs boson

The Higgs boson is the spin-0 particle that has been introduced in electroweak theory to give mass to the weak bosons. The origin of mass of the Higgs boson itself is not explained by electroweak theory. Instead, this mass is introduced as a free parameter by means of the Higgs potential, which thus makes it yet another free parameter of the Standard Model.[17] Within the framework of the Standard Model (or its extensions) the theoretical estimates of this parameter's value are possible only indirectly and results differ from each other significantly.[18] Thus, the usage of the Higgs boson (or any other elementary particle with predefined mass) alone is not the most fundamental solution of the mass generation problem but only its reformulation ad infinitum. Another known issue of the Glashow–Weinberg–Salam model is the wrong sign of mass term in the (unbroken) Higgs sector for energies above the symmetry-breaking scale.[nb 2]

While SVT does not explicitly forbid the existence of the electroweak Higgs particle, it has its own idea of the fundamental mass generation mechanism - elementary particles acquire mass due to the interaction with the vacuum condensate, similarly to the gap generation mechanism in superconductors or superfluids.[13][19] Although this idea is not entirely new, one could recall the relativistic Coleman-Weinberg approach,[20] SVT gives the meaning to the symmetry-breaking relativistic scalar field as describing small fluctuations of background superfluid which can be interpreted as an elementary particle only under certain conditions.[21] In general, one allows two scenarios to happen:
  • Higgs boson exists: in this case SVT provides the mass generation mechanism which underlies the electroweak one and explains the origin of mass of the Higgs boson itself;
  • Higgs boson does not exist: then the weak bosons acquire mass by directly interacting with the vacuum condensate.
Thus, the Higgs boson, even if it exists, would be a by-product of the fundamental mass generation phenomenon rather than its cause.[21]

Also, some versions of SVT favor a wave equation based on the logarithmic potential rather than on the quartic one. The former potential has not only the Mexican-hat shape, necessary for the spontaneous symmetry breaking, but also some other features which make it more suitable for the vacuum's description.

Logarithmic BEC vacuum theory

In this model the physical vacuum is conjectured to be strongly-correlated quantum Bose liquid whose ground-state wavefunction is described by the logarithmic Schrödinger equation. It was shown that the relativistic gravitational interaction arises as the small-amplitude collective excitation mode whereas relativistic elementary particles can be described by the particle-like modes in the limit of low energies and momenta.[19] The essential difference of this theory from others is that in the logarithmic superfluid the maximal velocity of fluctuations is constant in the leading (classical) order. This allows to fully recover the relativity postulates in the "phononic" (linearized) limit.[13]

The proposed theory has many observational consequences. They are based on the fact that at high energies and momenta the behavior of the particle-like modes eventually becomes distinct from the relativistic one - they can reach the speed of light limit at finite energy.[22] Among other predicted effects is the superluminal propagation and vacuum Cherenkov radiation.[23]

Theory advocates the mass generation mechanism which is supposed to replace or alter the electroweak Higgs one. It was shown that masses of elementary particles can arise as a result of interaction with the superfluid vacuum, similarly to the gap generation mechanism in superconductors.[13][19] For instance, the photon propagating in the average interstellar vacuum acquires a tiny mass which is estimated to be about 10−35 electronvolt. One can also derive an effective potential for the Higgs sector which is different from the one used in the Glashow–Weinberg–Salam model, yet it yields the mass generation and it is free of the imaginary-mass problem[nb 2] appearing in the conventional Higgs potential.[21]

Authorship of the Bible

From Wikipedia, the free encyclopedia ...