Search This Blog

Tuesday, February 19, 2019

Thin-film solar cell

From Wikipedia, the free encyclopedia

Thin Film Flexible Solar PV Installation 2.JPG
Cigsep.jpg NREL Array.jpg
Thin Film Flexible Solar PV Ken Fields 1.JPG Lakota MS PV array 2.jpg
Thin-film solar cells, a second generation of photovoltaic (PV) solar cells:
A thin-film solar cell is a second generation solar cell that is made by depositing one or more thin layers, or thin film (TF) of photovoltaic material on a substrate, such as glass, plastic or metal. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).

Film thickness varies from a few nanometers (nm) to tens of micrometers (µm), much thinner than thin-film's rival technology, the conventional, first-generation crystalline silicon solar cell (c-Si), that uses wafers of up to 200 µm thick. This allows thin film cells to be flexible, and lower in weight. It is used in building integrated photovoltaics and as semi-transparent, photovoltaic glazing material that can be laminated onto windows. Other commercial applications use rigid thin film solar panels (sandwiched between two panes of glass) in some of the world's largest photovoltaic power stations.

Thin-film technology has always been cheaper but less efficient than conventional c-Si technology. However, it has significantly improved over the years. The lab cell efficiency for CdTe and CIGS is now beyond 21 percent, outperforming multicrystalline silicon, the dominant material currently used in most solar PV systems. Accelerated life testing of thin film modules under laboratory conditions measured a somewhat faster degradation compared to conventional PV, while a lifetime of 20 years or more is generally expected. Despite these enhancements, market-share of thin-film never reached more than 20 percent in the last two decades and has been declining in recent years to about 9 percent of worldwide photovoltaic installations in 2013.

Other thin-film technologies that are still in an early stage of ongoing research or with limited commercial availability are often classified as emerging or third generation photovoltaic cells and include organic, and dye-sensitized, as well as quantum dot, copper zinc tin sulfide, nanocrystal, micromorph, and perovskite solar cells.

History

Market-share of thin-film technologies in terms of annual production since 1990
 
Thin film cells are well-known since the late 1970s, when solar calculators powered by a small strip of amorphous silicon appeared on the market. 

It is now available in very large modules used in sophisticated building-integrated installations and vehicle charging systems

Although thin-film technology was expected to make significant advances in the market and to surpass the dominating conventional crystalline silicon (c-Si) technology in the long-term, market-share has been declining for several years now. While in 2010, when there was a shortage of conventional PV modules, thin-film accounted for 15 percent of the overall market, it declined to 8 percent in 2014, and is expected to stabilize at 7 percent from 2015 onward, with amorphous silicon expected to lose half of its market-share by the end of the decade.

Materials

Cross-section of a TF cell
 
Thin-film technologies reduce the amount of active material in a cell. Most sandwich active material between two panes of glass. Since silicon solar panels only use one pane of glass, thin film panels are approximately twice as heavy as crystalline silicon panels, although they have a smaller ecological impact (determined from life cycle analysis). The majority of film panels have 2-3 percentage points lower conversion efficiencies than crystalline silicon. Cadmium telluride (CdTe), copper indium gallium selenide (CIGS) and amorphous silicon (a-Si) are three thin-film technologies often used for outdoor applications.

Cadmium telluride

Cadmium telluride (CdTe) is the predominant thin film technology. With about 5 percent of worldwide PV production, it accounts for more than half of the thin film market. The cell's lab efficiency has also increased significantly in recent years and is on a par with CIGS thin film and close to the efficiency of multi-crystalline silicon as of 2013. Also, CdTe has the lowest Energy payback time of all mass-produced PV technologies, and can be as short as eight months in favorable locations. A prominent manufacturer is the US-company First Solar based in Tempe, Arizona, that produces CdTe-panels with an efficiency of about 14 percent at a reported cost of $0.59 per watt.

Although the toxicity of cadmium may not be that much of an issue and environmental concerns completely resolved with the recycling of CdTe modules at the end of their life time, there are still uncertainties and the public opinion is skeptical towards this technology. The usage of rare materials may also become a limiting factor to the industrial scalability of CdTe thin film technology. The rarity of tellurium—of which telluride is the anionic form—is comparable to that of platinum in the earth's crust and contributes significantly to the module's cost.

Copper indium gallium selenide

Possible combinations of Group-(XI, XIII, XVI) elements in the periodic table that yield a compound showing photovoltaic effect: Cu, Ag, AuAl, Ga, InS, Se, Te.
 
A copper indium gallium selenide solar cell or CIGS cell uses an absorber made of copper, indium, gallium, selenide (CIGS), while gallium-free variants of the semiconductor material are abbreviated CIS. It is one of three mainstream thin-film technologies, the other two being cadmium telluride and amorphous silicon, with a lab-efficiency above 20 percent and a share of 2 percent in the overall PV market in 2013. A prominent manufacturer of cylindrical CIGS-panels was the now-bankrupt company Solyndra in Fremont, California. Traditional methods of fabrication involve vacuum processes including co-evaporation and sputtering. In 2008, IBM and Tokyo Ohka Kogyo Co., Ltd. (TOK) announced they had developed a new, non-vacuum, solution-based manufacturing process for CIGS cells and are aiming for efficiencies of 15% and beyond.

Hyperspectral imaging has been used to characterize these cells. Researchers from IRDEP (Institute of Research and Development in Photovoltaic Energy) in collaboration with Photon etc.¸ were able to determine the splitting of the quasi-Fermi level with photoluminescence mapping while the electroluminescence data were used to derive the external quantum efficiency (EQE). Also, through a light beam induced current (LBIC) cartography experiment, the EQE of a microcrystalline CIGS solar cell could be determined at any point in the field of view.

As of September 2014, current conversion efficiency record for a laboratory CIGS cell stands at 21.7%.

Silicon

Three major silicon-based module designs dominate:
  • amorphous silicon cells
  • amorphous / microcrystalline tandem cells (micromorph)
  • thin-film polycrystalline silicon on glass.

Amorphous silicon

Amorphous silicon (a-Si) is a non-crystalline, allotropic form of silicon and the most well-developed thin film technology to-date. Thin-film silicon is an alternative to conventional wafer (or bulk) crystalline silicon. While chalcogenide-based CdTe and CIS thin films cells have been developed in the lab with great success, there is still industry interest in silicon-based thin film cells. Silicon-based devices exhibit fewer problems than their CdTe and CIS counterparts such as toxicity and humidity issues with CdTe cells and low manufacturing yields of CIS due to material complexity. Additionally, due to political resistance to the use non-"green" materials in solar energy production, there is no stigma in the use of standard silicon.

This type of thin-film cell is mostly fabricated by a technique called plasma-enhanced chemical vapor deposition. It uses a gaseous mixture of silane (SiH4) and hydrogen to deposit a very thin layer of only 1 micrometer (µm) of silicon on a substrate, such as glass, plastic or metal, that has already been coated with a layer of transparent conducting oxide. Other methods used to deposit amorphous silicon on a substrate include sputtering and hot wire chemical vapor deposition techniques.

a-Si is attractive as a solar cell material because it's an abundant, non-toxic material. It requires a low processing temperature and enables a scalable production upon a flexible, low-cost substrate with little silicon material required. Due to its band gap of 1.7 eV, amorphous silicon also absorbs a very broad range of the light spectrum, that includes infrared and even some ultraviolet and performs very well at weak light. This allows the cell to generate power in the early morning, or late afternoon and on cloudy and rainy days, contrary to crystalline silicon cells, that are significantly less efficient when exposed at diffuse and indirect daylight.

However, the efficiency of an a-Si cell suffers a significant drop of about 10 to 30 percent during the first six months of operation. This is called the Staebler-Wronski effect (SWE) – a typical loss in electrical output due to changes in photoconductivity and dark conductivity caused by prolonged exposure to sunlight. Although this degradation is perfectly reversible upon annealing at or above 150 °C, conventional c-Si solar cells do not exhibit this effect in the first place. 

Its basic electronic structure is the p-i-n junction. The amorphous structure of a-Si implies high inherent disorder and dangling bonds, making it a bad conductor for charge carriers. These dangling bonds act as recombination centers that severely reduce carrier lifetime. A p-i-n structure is usually used, as opposed to an n-i-p structure. This is because the mobility of electrons in a-Si:H is roughly 1 or 2 orders of magnitude larger than that of holes, and thus the collection rate of electrons moving from the n- to p-type contact is better than holes moving from p- to n-type contact. Therefore, the p-type layer should be placed at the top where the light intensity is stronger, so that the majority of the charge carriers crossing the junction are electrons.

Tandem-cell using a-Si/μc-Si

A layer of amorphous silicon can be combined with layers of other allotropic forms of silicon to produce a multi-junction solar cell. When only two layers (two p-n junctions) are combined, it is called a tandem-cell. By stacking these layers on top of one other, a broader range of the light spectra is absorbed, improving the cell's overall efficiency.

In micromorphous silicon, a layer of microcrystalline silicon (μc-Si) is combined with amorphous silicon, creating a tandem cell. The top a-Si layer absorbs the visible light, leaving the infrared part to the bottom μc-Si layer. The micromorph stacked-cell concept was pioneered and patented at the Institute of Microtechnology (IMT) of the Neuchâtel University in Switzerland, and was licensed to TEL Solar. A new world record PV module based on the micromorph concept with 12.24% module efficiency was independently certified in July 2014.

Because all layers are made of silicon, they can be manufactured using PECVD. The band gap of a-Si is 1.7 eV and that of c-Si is 1.1 eV. The c-Si layer can absorb red and infrared light. The best efficiency can be achieved at transition between a-Si and c-Si. As nanocrystalline silicon (nc-Si) has about the same bandgap as c-Si, nc-Si can replace c-Si.

Tandem-cell using a-Si/pc-Si

Amorphous silicon can also be combined with protocrystalline silicon (pc-Si) into a tandem-cell. Protocrystalline silicon with a low volume fraction of nanocrystalline silicon is optimal for high open-circuit voltage. These types of silicon present dangling and twisted bonds, which results in deep defects (energy levels in the band gap) as well as deformation of the valence and conduction bands (band tails).

Polycrystalline silicon on glass

A new attempt to fuse the advantages of bulk silicon with those of thin-film devices is thin film polycrystalline silicon on glass. These modules are produced by depositing an anti-reflection coating and doped silicon onto textured glass substrates using plasma-enhanced chemical vapor deposition (PECVD). The texture in the glass enhances the efficiency of the cell by approximately 3% by reducing the amount of incident light reflecting from the solar cell and trapping light inside the solar cell. The silicon film is crystallized by an annealing step, temperatures of 400–600 Celsius, resulting in polycrystalline silicon. 

These new devices show energy conversion efficiencies of 8% and high manufacturing yields of greater than 90%. Crystalline silicon on glass (CSG), where the polycrystalline silicon is 1–2 micrometers, is noted for its stability and durability; the use of thin film techniques also contributes to a cost savings over bulk photovoltaics. These modules do not require the presence of a transparent conducting oxide layer. This simplifies the production process twofold; not only can this step be skipped, but the absence of this layer makes the process of constructing a contact scheme much simpler. Both of these simplifications further reduce the cost of production. Despite the numerous advantages over alternative design, production cost estimations on a per unit area basis show that these devices are comparable in cost to single-junction amorphous thin film cells.

Gallium arsenide

The semiconductor material gallium arsenide (GaAs) is also used for single-crystalline thin film solar cells. Although GaAs cells are very expensive, they hold the world record for the highest-efficiency, single-junction solar cell at 28.8%. GaAs is more commonly used in multi-junction solar cells for solar panels on spacecrafts, as the industry favors efficiency over cost for space-based solar power (InGaP/(In)GaAs/Ge cells). They are also used in concentrator photovoltaics, an emerging technology best suited for locations that receive much sunlight, using lenses to focus sunlight on a much smaller, thus less expensive GaAs concentrator solar cell.

Emerging photovoltaics

An experimental silicon based solar cell developed at the Sandia National Laboratories
 
The National Renewable Energy Laboratory (NREL) classifies a number of thin-film technologies as emerging photovoltaics—most of them have not yet been commercially applied and are still in the research or development phase. Many use organic materials, often organometallic compounds as well as inorganic substances. Despite the fact that their efficiencies had been low and the stability of the absorber material was often too short for commercial applications, there is a lot of research invested into these technologies as they promise to achieve the goal of producing low-cost, high-efficient solar cells. 

Emerging photovoltaics, often called third generation photovoltaic cells, include:
Especially the achievements in the research of perovskite cells have received tremendous attention in the public, as their research efficiencies recently soared above 20 percent. They also offer a wide spectrum of low-cost applications. In addition, another emerging technology, concentrator photovoltaics (CPV), uses high-efficient, multi-junction solar cells in combination with optical lenses and a tracking system.

Efficiencies

Solar cell efficiencies of various cell technologies as tracked by NREL
 
Incremental improvements in efficiency began with the invention of the first modern silicon solar cell in 1954. By 2010 these steady improvements had resulted in modules capable of converting 12 to 18 percent of solar radiation into electricity. The improvements to efficiency have continued to accelerate in the years since 2010, as shown in the accompanying chart. 

Cells made from newer materials tend to be less efficient than bulk silicon, but are less expensive to produce. Their quantum efficiency is also lower due to reduced number of collected charge carriers per incident photon. 

The performance and potential of thin-film materials are high, reaching cell efficiencies of 12–20%; prototype module efficiencies of 7–13%; and production modules in the range of 9%. The thin film cell prototype with the best efficiency yields 20.4% (First Solar), comparable to the best conventional solar cell prototype efficiency of 25.6% from Panasonic.

NREL once predicted that costs would drop below $100/m2 in volume production, and could later fall below $50/m2.

A new record for thin film solar cell efficiency of 22.3% has been achieved by solar frontier the world's largest cis solar energy provider. In joint research with the New Energy and Industrial Technology Development Organization (NEDO) of Japan, Solar Frontier achieved 22.3% conversion efficiency on a 0.5 cm2 cell using its CIS technology. This is an increase of 0.6 percentage points over the industry's previous thin-film record of 21.7%.

Absorption

Multiple techniques have been employed to increase the amount of light that enters the cell and reduce the amount that escapes without absorption. The most obvious technique is to minimizing the top contact coverage of the cell surface, reducing the area that blocks light from reaching the cell. 

The weakly absorbed long wavelength light can be obliquely coupled into silicon and traverses the film several times to enhance absorption.

Multiple methods have been developed to increase absorption by reducing the number of incident photons being reflected away from the cell surface. An additional anti-reflective coating can cause destructive interference within the cell by modulating the refractive index of the surface coating. Destructive interference eliminates the reflective wave, causing all incident light to enter the cell. 

Surface texturing is another option for increasing absorption, but increases costs. By applying a texture to the active material's surface, the reflected light can be refracted into striking the surface again, thus reducing reflectance.For example, black silicon texturing by reactive ion etching(RIE) is an effective and economic approach to increase the absorption of thin-film silicon solar cells. A textured backreflector can prevent light from escaping through the rear of the cell. 

In addition to surface texturing, the plasmonic light-trapping scheme attracted a lot of attention to aid photocurrent enhancement in thin film solar cells. This method makes use of collective oscillation of excited free electrons in noble metal nanoparticles, which are influenced by particle shape, size and dielectric properties of the surrounding medium.

In addition to minimizing reflective loss, the solar cell material itself can be optimized to have higher chance of absorbing a photon that reaches it. Thermal processing techniques can significantly enhance the crystal quality of silicon cells and thereby increase efficiency. Layering thin-film cells to create a multi-junction solar cell can also be done. Each layer's band gap can be designed to best absorb a different range of wavelengths, such that together they can absorb a greater spectrum of light.

Further advancement into geometric considerations can exploit nanomaterial dimensionality. Large, parallel nanowire arrays enable long absorption lengths along the length of the wire while maintaining short minority carrier diffusion lengths along the radial direction. Adding nanoparticles between the nanowires allows conduction. The natural geometry of these arrays forms a textured surface that traps more light.

Production, cost and market

With the advances in conventional crystalline silicon (c-Si) technology in recent years, and the falling cost of the polysilicon feedstock, that followed after a period of severe global shortage, pressure increased on manufacturers of commercial thin-film technologies, including amorphous thin-film silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS), leading to the bankruptcy of several companies. As of 2013, thin-film manufacturers continue to face price competition from Chinese refiners of silicon and manufacturers of conventional c-Si solar panels. Some companies together with their patents were sold to Chinese firms below cost.

Market-share

In 2013 thin-film technologies accounted for about 9 percent of worldwide deployment, while 91 percent was held by crystalline silicon (mono-Si and multi-Si). With 5 percent of the overall market, CdTe holds more than half of the thin-film market, leaving 2 percent to each CIGS and amorphous silicon.

CIGS technology

Several prominent manufacturers couldn't stand the pressure caused by advances in conventional c-Si technology of recent years. The company Solyndra ceased all business activity and filed for Chapter 11 bankruptcy in 2011, and Nanosolar, also a CIGS manufacturer, closed its doors in 2013. Although both companies produced CIGS solar cells, it has been pointed out, that the failure was not due to the technology but rather because of the companies themselves, using a flawed architecture, such as, for example, Solyndra's cylindrical substrates. In 2014, Korean LG Electronics terminated research on CIGS restructuring its solar business, and Samsung SDI decided to cease CIGS-production, while Chinese PV manufacturer Hanergy is expected to ramp up production capacity of their 15.5% efficient, 650 mm×1650 mm CIGS-modules. One of the largest producers of CI(G)S photovoltaics is the Japanese company Solar Frontier with a manufacturing capacity in the gigawatt-scale. (Also see List of CIGS companies).

CdTe technology

The company First Solar, a leading manufacturer of CdTe, has been building several of the world's largest solar power stations, such as the Desert Sunlight Solar Farm and Topaz Solar Farm, both in the Californian desert with a 550 MW capacity each, as well as the 102-megawatt Nyngan Solar Plant in Australia, the largest PV power station in the Southern Hemisphere, commissioned in 2015.
In 2011, GE announced plans to spend $600 million on a new CdTe solar cell plant and enter this market, and in 2013, First Solar bought GE's CdTe thin-film intellectual property portfolio and formed a business partnership. In 2012 Abound Solar, a manufacturer of cadmium telluride modules, went bankrupt.

a-Si technology

In 2012, ECD solar, once one of the world's leading manufacturer of amorphous silicon (a-Si) technology, filed for bankruptcy in Michigan, United States. Swiss OC Oerlikon divested its solar division that produced a-Si/μc-Si tandem cells to Tokyo Electron Limited. In 2014, the Japanese electronics and semiconductor company announced the closure of its micromorph technology development program. "Micromorph" was the commercial name for a solar tandem cell using a microcrystalline silicon layer above the amorphous layer (a-Si/µ-Si).
Other companies that left the amorphous silicon thin-film market include DuPont, BP, Flexcell, Inventux, Pramac, Schuco, Sencera, EPV Solar, NovaSolar (formerly OptiSolar) and Suntech Power that stopped manufacturing a-Si modules in 2010 to focus on conventional silicon solar panels. In 2013, Suntech filed for bankruptcy in China. In August 2013, the spot market price of thin-film a-Si and a-Si/µ-Si dropped to €0.36 and €0.46, respectively (about $0.50 and $0.60) per watt.

Awards

Thin-film photovoltaic cells were included in Time Magazine's Best Inventions of 2008.

Solar vehicle

From Wikipedia, the free encyclopedia

U.S. Secretary of State John Kerry admires a solar-powered car built by members of the Tomodachi Initiative youth engagement program in Tokyo, Japan, on April 14, 2013.

A solar vehicle is an electric vehicle powered completely or significantly by direct solar energy. Usually, photovoltaic (PV) cells contained in solar panels convert the sun's energy directly into electric energy. The term "solar vehicle" usually implies that solar energy is used to power all or part of a vehicle's propulsion. Solar power may be also used to provide power for communications or controls or other auxiliary functions.

Solar vehicles are not sold as practical day-to-day transportation devices at present, but are primarily demonstration vehicles and engineering exercises, often sponsored by government agencies. However, indirectly solar-charged vehicles are widespread and solar boats are available commercially.

Land

Solar cars

Solar cars depend on PV cells to convert sunlight into electricity to drive electric motors. Unlike solar thermal energy which converts solar energy to heat, PV cells directly convert sunlight into electricity.

The design of a solar car is severely limited by the amount of energy input into the car. Solar cars are built for solar car races and also for public use. Even the best solar cells can only collect limited power and energy over the area of a car's surface. This limits solar cars to ultralight composite bodies to save weight. Solar cars lack the safety and convenience features of conventional vehicles. The first solar family car was built in 2013 by students in the Netherlands. This vehicle is capable of 550 miles on one charge during sunlight. It weighs 850 pounds and has a 1.5kw solar array. Solar vehicles must be light and efficient. 3,000 pound or even 2,000 pound vehicles are less practical. Stella Lux, the predecessor to Stella, broke a record with a 932 mile single charge range. The Dutch are trying to commercialize this technology. During racing Stella Lux is capable of 700 miles during daylight. At 45 mph Stella Lux has infinite range. This is again due to high efficiency including a Coefficient of drag of .16. The average family who never drive more than 200 miles a day would never need to charge from the mains. They would only plug in if they wanted to return energy to the grid. Solar cars are often fitted with gauges and/or wireless telemetry, to carefully monitor the car's energy consumption, solar energy capture and other parameters. Wireless telemetry is typically preferred as it frees the driver to concentrate on driving, which can be dangerous in such a small, lightweight car. The Solar Electric Vehicle system was designed and engineered as an easy to install (2 to 3 hours) integrated accessory system with a custom molded low profile solar module, supplemental battery pack and a proven charge controlling system. 

As an alternative, a battery-powered electric vehicle may use a solar array to recharge; the array may be connected to the general electrical distribution grid.

Solar buses

Solar buses are propulsed by solar energy, all or part of which is collected from stationary solar panel installations. The Tindo bus is a 100% solar bus that operates as free public transport service in Adelaide City as an initiative of the City Council. Bus services which use electric buses that are partially powered by solar panels installed on the bus roof, intended to reduce energy consumption and to prolong the life cycle of the rechargable battery of the electric bus, have been put in place in China.

Solar buses are to be distinguished from conventional buses in which electric functions of the bus such as lighting, heating or air-conditioning, but not the propulsion itself, are fed by solar energy. Such systems are more widespread as they allow bus companies to meet specific regulations, for example the anti-idling laws that are in force in several of the US states, and can be retrofitted to existing vehicle batteries without changing the conventional engine.

Single-track vehicles

The first solar "cars" were actually tricycles or Quadracycles built with bicycle technology. These were called solarmobiles at the first solar race, the Tour de Sol in Switzerland in 1985. With 72 participants, half used solar power exclusively while the other half used solar-human-powered hybrids. A few true solar bicycles were built, either with a large solar roof, a small rear panel, or a trailer with a solar panel. Later more practical solar bicycles were built with foldable panels to be set up only during parking. Even later the panels were left at home, feeding into the electric mains, and the bicycles charged from the mains. Today highly developed electric bicycles are available and these use so little power that it costs little to buy the equivalent amount of solar electricity. The "solar" has evolved from actual hardware to an indirect accounting system. The same system also works for electric motorcycles, which were also first developed for the Tour de Sol.

Applications

The Venturi Astrolab in 2006 was the world's first commercial electro-solar hybrid car, and was originally due to be released in January 2008.

In May 2007 a partnership of Canadian companies led by Hymotion altered a Toyota Prius to use solar cells to generate up to 240 watts of electrical power in full sunshine. This is reported as permitting up to 15 km extra range on a sunny summer day while using only the electric motors. 

An inventor from Michigan, USA built a street legal, licensed, insured, solar charged electric scooter in 2005. It had a top speed controlled at a bit over 30 mph, and used fold-out solar panels to charge the batteries while parked.

Nuna 3 PV powered car

Auxiliary power

Photovoltaic modules are used commercially as auxiliary power units on passenger cars in order to ventilate the car, reducing the temperature of the passenger compartment while it is parked in the sun. Vehicles such as the 2010 Prius, Aptera 2, Audi A8, and Mazda 929 have had solar sunroof options for ventilation purposes.

The area of photovoltaic modules required to power a car with conventional design is too large to be carried on board. A prototype car and trailer has been built Solar Taxi. According to the website, it is capable of 100 km/day using 6m2 of standard crystalline silicon cells. Electricity is stored using a nickel/salt battery. A stationary system such as a rooftop solar panel, however, can be used to charge conventional electric vehicles.

It is also possible to use solar panels to extend the range of a hybrid or electric car, as incorporated in the Fisker Karma, available as an option on the Chevy Volt, on the hood and roof of "Destiny 2000" modifications of Pontiac Fieros, Italdesign Quaranta, Free Drive EV Solar Bug, and numerous other electric vehicles, both concept and production. In May 2007 a partnership of Canadian companies led by Hymotion added PV cells to a Toyota Prius to extend the range. SEV claims 20 miles per day from their combined 215W module mounted on the car roof and an additional 3kWh battery.

On 9 June 2008, the German and French Presidents announced a plan to offer a credit of 6-8g/km of CO2 emissions for cars fitted with technologies "not yet taken into consideration during the standard measuring cycle of the emissions of a car". This has given rise to speculation that photovoltaic panels might be widely adopted on autos in the near future.

It is also technically possible to use photovoltaic technology, (specifically thermophotovoltaic (TPV) technology) to provide motive power for a car. Fuel is used to heat an emitter. The infrared radiation generated is converted to electricity by a low band gap PV cell (e.g. GaSb). A prototype TPV hybrid car was even built. The "Viking 29" was the World’s first thermophotovoltaic (TPV) powered automobile, designed and built by the Vehicle Research Institute (VRI) at Western Washington University. Efficiency would need to be increased and cost decreased to make TPV competitive with fuel cells or internal combustion engines.

Personal rapid transit

JPods PRT concept with photovoltaic panels above guideways

Several personal rapid transit (PRT) concepts incorporate photovoltaic panels.

Rail

Railway presents a low rolling resistance option that would be beneficial of planned journeys and stops. PV panels were tested as APUs on Italian rolling stock under EU project.PVTRAIN. Direct feed to a DC grids avoids losses through DC to AC conversion. DC grids are only to be found in electric powered transport: railways, trams and trolleybuses. Conversion of DC from PV panels to grid alternating current (AC) was estimated to cause around 3% of the electricity being wasted. 

PVTrain concluded that the most interest for PV in rail transport was on freight cars where on board electrical power would allow new functionality:
  • GPS or other positioning devices, so as to improve its use in fleet management and efficiency.
  • Electric locks, a video monitor and remote control system for cars with sliding doors, so as to reduce the risk of robbery for valuable goods.
  • ABS brakes, which would raise the maximum velocity of freight cars to 160 km/h, improving productivity.
The Kismaros – Királyrét narrow-gauge line near Budapest has built a solar powered railcar called 'Vili'. With a maximum speed of 25 km/h, 'Vili' is driven by two 7 kW motors capable of regenerative braking and powered by 9.9m2 of PV panels. Electricity is stored in on-board batteries. In addition to on-board solar panels, there is the possibility to use stationary (off-board) panels to generate electricity specifically for use in transport.

A few pilot projects have also been built in the framework of the "Heliotram" project, such as the tram depots in Hannover Leinhausen and Geneva (Bachet de Pesay). The 150 kWp Geneva site injected 600V DC directly into the tram/trolleybus electricity network provided about 1% of the electricity used by the Geneva transport network at its opening in 1999. On December 16, 2017 a fully solar-powered train was launched in New South Wales, Australia. The train is powered using onboard solar panels and onboard rechargeable batteries. It holds a capacity for 100 seated passenger for a 3 km journey. 

Recently Imperial College London and the environmental charity 10:10 have announced the Renewable Traction Power project to investigate using track-side solar panels to power trains. Meanwhile, Indian railways announced their intention to use on board PV to run air conditioning systems in railway coaches.. Also, Indian Railways announced it is to conduct a trial run by the end of May 2016. It hopes that an average of 90,800 liters of diesel per train will be saved on an annual basis, which in turn results in reduction of 239 tones of CO2.

Water

PlanetSolar, the world's largest solar-powered boat and the first ever solar electric vehicle to circumnavigate the globe (in 2012).
 
Solar powered boats have mainly been limited to rivers and canals, but in 2007 an experimental 14m catamaran, the Sun21 sailed the Atlantic from Seville to Miami, and from there to New York. It was the first crossing of the Atlantic powered only by solar.

Japan's biggest shipping line Nippon Yusen KK and Nippon Oil Corporation said solar panels capable of generating 40 kilowatts of electricity would be placed on top of a 60,213 ton car carrier ship to be used by Toyota Motor Corporation.

In 2010, the Tûranor PlanetSolar, a 30 meter long, 15.2 metre wide catamaran yacht powered by 470 square metres of solar panels, was unveiled. It is, so far, the largest solar-powered boat ever built. In 2012, PlanetSolar became the first ever solar electric vehicle to circumnavigate the globe.

Various demonstration systems have been made. Curiously, none yet takes advantage of the huge power gain that water cooling would bring. 

The low power density of current solar panels limits the use of solar propelled vessels, however boats that use sails (which do not generate electricity unlike combustion engines) rely on battery power for electrical appliances (such as refrigeration, lighting and communications). Here solar panels have become popular for recharging batteries as they do not create noise, require fuel and often can be seamlessly added to existing deck space.

Air

The Swiss solar-powered aircraft Solar Impulse completed a circumnavigation of the world in 2016.
 
Gossamer Penguin
 
Solar ships can refer to solar powered airships or hybrid airships.

There is considerable military interest in unmanned aerial vehicles (UAVs); solar power would enable these to stay aloft for months, becoming a much cheaper means of doing some tasks done today by satellites. In September 2007, the first successful flight for 48h under constant power of a UAV was reported. This is likely to be the first commercial use for photovoltaics in flight. 

Many demonstration solar aircraft have been built, some of the best known by AeroVironment.

Manned solar aircraft

  • Gossamer Penguin,
  • Solar Challenger - This aircraft flew 163 miles (262 km) from Paris, France to England on solar power.
  • Sunseeker
  • Solar Impulse – two single-seat aircraft, the second of which circumnavigated the Earth. The first aircraft completed a 26-hour test flight in Switzerland on 8-9 July 2010. The aircraft was flown to a height of nearly 28,000 feet (8,500 meters) by Andre Borschberg. It flew overnight using battery power. The second aircraft, slightly larger and more powerful, took off from Abu Dhabi in 2015, flew towards India and then eastward across Asia. However, after experiencing battery overheating, it was forced to halt in Hawaii over the winter. In April 2016, it resumed its journey, and completed its circumnavigation of the globe, returning to Abu Dhabi on 26 July 2016.
  • SolarStratos – Swiss stratospheric 2-seater solar plane aims to climb into space.

Hybrid airships

An Australian-based company is working on a project to develop an air crane called the SkyLifter, a "vertical pick-up and delivery aircraft" being capable of lifting up to 150 tons.

A Canadian start-up, Solar Ship Inc, is developing solar powered hybrid airships that can run on solar power alone. The idea is to create a viable platform that can travel anywhere in the world delivering cold medical supplies and other necessitates to locations in Africa and Northern Canada without needing any kind of fuel or infrastructure. The hope is that technology developments in solar cells and the large surface area provided by the hybrid airship are enough to make a practical solar powered aircraft. Some key features of the Solarship are that it can fly on aerodynamic lift alone without any lifting gas, and the solar cells along with the large volume of the envelope allow the hybrid airship to be reconfigured into a mobile shelter that can recharge batteries and other equipment.

The Hunt GravityPlane (not to be confused with the ground-based gravity plane) is a proposed gravity-powered glider by Hunt Aviation in the USA. It also has aerofoil wings, improving its lift-drag ratio and making it more efficient. The GravityPlane requires a large size in order to obtain a large enough volume-to-weight ratio to support this wing structure, and no example has yet been built. Unlike a powered glider, the GravityPlane does not consume power during the climbing phase of flight. It does however consume power at the points where it changes its buoyancy between positive and negative values. Hunt claim that this can nevertheless improve the energy efficiency of the craft, similar to the improved energy efficiency of underwater gliders over conventional methods of propulsion. Hunt suggest that the low power consumption should allow the craft to harvest sufficient energy to stay aloft indefinitely. The conventional approach to this requirement is the use of solar panels in a solar-powered aircraft. Hunt has proposed two alternative approaches. One is to use a wind turbine and harvest energy from the airflow generated by the gliding motion, the other is a thermal cycle to extract energy from the differences in air temperature at different altitudes.

Unmanned aerial vehicles

  • Pathfinder and Pathfinder-Plus - This UAV demonstrated that an airplane could stay aloft for an extended period of time fueled purely by solar power.
  • Helios - Derived from the Pathfinder-Plus, this solar cell and fuel cell powered UAV set a world record for flight at 96,863 feet (29,524 m).
  • Zephyr - built by Qinetiq, this UAV set the unofficial world record for longest duration unmanned flight at over 82 hours on 31 July 2008. Just 15 days after the Solar Impulse flight mentioned above, on 23 July 2010 the Zephyr, a lightweight unmanned aerial vehicle engineered by the United Kingdom defense firm QinetiQ, claimed the endurance record for an unmanned aerial vehicle. It flew in the skies of Arizona for over two weeks (336 hours). It has also soared to over 70,700 feet (21.5 km).
  • China's designed and manufactured UAV successfully reached an altitude of 20,000 meters during a test flight in the country's northwest regions. Named "Caihong" (CH), or "Rainbow" in English, it was developed by a research team from CASC.

Future projects

  • The Persistent High Altitude Solar Aircraft Phasa-35 being developed by BAE Systems & aerospace technology firm Prismatic for test flights in 2019.
  • Titan Aerospace acquired by Google aimed to develop the Solar UAV, however the project seems to be abandoned
  • Sky-Sailor (aimed at Martian flight)
  • Various solar airship projects, such as Lockheed Martin's "High Altitude Airship"

Space

Solar powered spacecraft


Solar energy is often used to supply power for satellites and spacecraft operating in the inner solar system since it can supply energy for a long time without excess fuel mass. A Communications satellite contains multiple radio transmitters which operate continually during its life. It would be uneconomic to operate such a vehicle (which may be on-orbit for years) from primary batteries or fuel cells, and refueling in orbit is not practical. Solar power is not generally used to adjust the satellite's position, however, and the useful life of a communications satellite will be limited by the on-board station-keeping fuel supply.

Solar propelled spacecraft

A few spacecraft operating within the orbit of Mars have used solar power as an energy source for their propulsion system. 

All current solar powered spacecraft use solar panels in conjunction with electric propulsion, typically ion drives as this gives a very high exhaust velocity, and reduces the propellant over that of a rocket by more than a factor of ten. Since propellant is usually the biggest mass on many spacecraft, this reduces launch costs. 

Other proposals for solar spacecraft include solar thermal heating of propellant, typically hydrogen or sometimes water is proposed. An electrodynamic tether can be used to change a satellite's orientation or adjust its orbit. 

Another concept for solar propulsion in space is the light sail; this doesn't require conversion of light to electrical energy, instead relying directly on the tiny but persistent radiation pressure of light.

Planetary exploration

Perhaps the most successful solar-propelled vehicles have been the "rovers" used to explore surfaces of the Moon and Mars. The 1977 Lunokhod program and the 1997 Mars Pathfinder used solar power to propel remote controlled vehicles. The operating life of these rovers far exceeded the limits of endurance that would have been imposed, had they been operated on conventional fuels.

Electric vehicle with solar assist

A Swiss project, called "Solartaxi", has circumnavigated the world. This is the first time in history an electric vehicle (not self sufficient solar vehicle) has gone around the world, covering 50000 km in 18 months and crossing 40 countries. It is a road-worthy electric vehicle hauling a trailer with solar panels, carrying a 6 m² sized solar array. The Solartaxi has Zebra batteries, which permit a range of 400 km without recharging. The car can also run for 200 km without the trailer. Its maximum speed is 90 km/h. The car weighs 500 kg and the trailer weighs 200 kg. According to initiator and tour director Louis Palmer, the car in mass production could be produced for 16000 Euro. Solartaxi has toured the World from July 2007 till December 2008 to show that solutions to stop global warming are available and to encourage people in pursuing alternatives to fossil fuel. Palmer suggests the most economical location for solar panels for an electric car is on building rooftops though, likening it to putting money into a bank in one location and withdrawing it in another.

Louis Palmer standing in the Solartaxi.
 
Solar Electrical Vehicles is adding convex solar cells to the roof of hybrid electric vehicles.

Plug-in hybrid and solar vehicles

An interesting variant of the electric vehicle is the triple hybrid vehicle—the PHEV that has solar panels as well to assist. 

The 2010 Toyota Prius model has an option to mount solar panels on the roof. They power a ventilation system while parked to help provide cooling. There are many applications of photovoltaics in transport either for motive power or as auxiliary power units, particularly where fuel, maintenance, emissions or noise requirements preclude internal combustion engines or fuel cells. Due to the limited area available on each vehicle either speed or range or both are limited when used for motive power. 

PV used for auxiliary power on a yacht

Limitations

There are limits to using photovoltaic (PV) cells for vehicles:
  • Power density: Power from a solar array is limited by the size of the vehicle and area that can be exposed to sunlight. This can also be overcome by adding a flatbed and connecting it to the car and this gives more area for panels for powering the car. While energy can be accumulated in batteries to lower peak demand on the array and provide operation in sunless conditions, the battery adds weight and cost to the vehicle. The power limit can be mitigated by use of conventional electric cars supplied by solar (or other) power, recharging from the electrical grid.
  • Cost: While sunlight is free, the creation of PV cells to capture that sunlight is expensive. Costs for solar panels are steadily declining (22% cost reduction per doubling of production volume).
  • Design considerations: Even though sunlight has no lifespan, PV cells do. The lifetime of a solar module is approximately 30 years. Standard photovoltaics often come with a warranty of 90% (from nominal power) after 10 years and 80% after 25 years. Mobile applications are unlikely to require lifetimes as long as building integrated PV and solar parks. Current PV panels are mostly designed for stationary installations. However, to be successful in mobile applications, PV panels need to be designed to withstand vibrations. Also, solar panels, especially those incorporating glass, have significant weight. In order for its addition to be of value, a solar panel must provide energy equivalent to or greater than the energy consumed to propel its weight.

Personality theories of addiction

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Personality_theories_of_addiction ...