Search This Blog

Saturday, September 21, 2019

Ore genesis

From Wikipedia, the free encyclopedia
 
High-grade gold ore from the Harvard Mine, Jamestown, California, a wide quartz-gold vein in California's Mother Lode. Specimen is 3.2 cm (1.3 in) wide.
 
Various theories of ore genesis explain how the various types of mineral deposits form within the Earth's crust. Ore-genesis theories vary depending on the mineral or commodity examined.

Ore-genesis theories generally involve three components: source, transport or conduit, and trap. (This also applies to the petroleum industry: petroleum geologists originated this analysis.)
  • Source is required because metal must come from somewhere, and be liberated by some process.
  • Transport is required first to move the metal-bearing fluids or solid minerals into their current position, and refers to the act of physically moving the metal, as well as to chemical or physical phenomenon which encourage movement.
  • Trapping is required to concentrate the metal via some physical, chemical, or geological mechanism into a concentration which forms mineable ore.
The biggest deposits form when the source is large, the transport mechanism is efficient, and the trap is active and ready at the right time.

Ore genesis processes

Endogenous

Magmatic processes

  • Fractional crystallization: separates ore and non-ore minerals according to their crystallization temperature. As early crystallizing minerals form from magma, they incorporate certain elements, some of which are metals. These crystals may settle onto the bottom of the intrusion, concentrating ore minerals there. Chromite and magnetite are ore minerals that form in this way.
  • Liquid immiscibility: sulfide ores containing copper, nickel, or platinum may form from this process. As a magma changes, parts of it may separate from the main body of magma. Two liquids that will not mix are called immiscible; oil and water are an example. In magmas, sulfides may separate and sink below the silicate-rich part of the intrusion or be injected into the rock surrounding it. These deposits are found in mafic and ultramafic rocks.

Hydrothermal processes

These processes are the physicochemical phenomena and reactions caused by movement of hydrothermal water within the crust, often as a consequence of magmatic intrusion or tectonic upheavals. The foundations of hydrothermal processes are the source-transport-trap mechanism.

Sources of hydrothermal solutions include seawater and meteoric water circulating through fractured rock, formational brines (water trapped within sediments at deposition), and metamorphic fluids created by dehydration of hydrous minerals during metamorphism

Metal sources may include a plethora of rocks. However most metals of economic importance are carried as trace elements within rock-forming minerals, and so may be liberated by hydrothermal processes. This happens because of:
  • incompatibility of the metal with its host mineral, for example zinc in calcite, which favours aqueous fluids in contact with the host mineral during diagenesis.
  • solubility of the host mineral within nascent hydrothermal solutions in the source rocks, for example mineral salts (halite), carbonates (cerussite), phosphates (monazite and thorianite), and sulfates (barite)
  • elevated temperatures causing decomposition reactions of minerals
Transport by hydrothermal solutions usually requires a salt or other soluble species which can form a metal-bearing complex. These metal-bearing complexes facilitate transport of metals within aqueous solutions, generally as hydroxides, but also by processes similar to chelation

This process is especially well understood in gold metallogeny where various thiosulfate, chloride, and other gold-carrying chemical complexes (notably tellurium-chloride/sulfate or antimony-chloride/sulfate). The majority of metal deposits formed by hydrothermal processes include sulfide minerals, indicating sulfur is an important metal-carrying complex. 

Sulfide deposition:
 
Sulfide deposition within the trap zone occurs when metal-carrying sulfate, sulfide, or other complexes become chemically unstable due to one or more of the following processes;
  • falling temperature, which renders the complex unstable or metal insoluble
  • loss of pressure, which has the same effect
  • reaction with chemically reactive wall rocks, usually of reduced oxidation state, such as iron-bearing rocks, mafic or ultramafic rocks, or carbonate rocks
  • degassing of the hydrothermal fluid into a gas and water system, or boiling, which alters the metal carrying capacity of the solution and even destroys metal-carrying chemical complexes
Metal can also precipitate when temperature and pressure or oxidation state favour different ionic complexes in the water, for instance the change from sulfide to sulfate, oxygen fugacity, exchange of metals between sulfide and chloride complexes, et cetera.

Metamorphic processes

Lateral secretion:

Ore deposits formed by lateral secretion are formed by metamorphic reactions during shearing, which liberate mineral constituents such as quartz, sulfides, gold, carbonates, and oxides from deforming rocks, and focus these constituents into zones of reduced pressure or dilation such as faults. This may occur without much hydrothermal fluid flow, and this is typical of podiform chromite deposits.

Metamorphic processes also control many physical processes which form the source of hydrothermal fluids, outlined above.

Sedimentary or surficial processes (exogenous)

Surficial processes are the physical and chemical phenomena which cause concentration of ore material within the regolith, generally by the action of the environment. This includes placer deposits, laterite deposits, and residual or eluvial deposits. The physical processes of ore deposit formation in the surficial realm include;
  • erosion
  • deposition by sedimentary processes, including winnowing, density separation (e.g.; gold placers)
  • weathering via oxidation or chemical attack of a rock, either liberating rock fragments or creating chemically deposited clays, laterites, or supergene enrichment
  • Deposition in low-energy environments in beach environments

Classification of ore deposits

Classification of hydrothermal ore deposits is also achieved by classifying according to the temperature of formation, which roughly also correlates with particular mineralising fluids, mineral associations and structural styles. This scheme, proposed by Waldemar Lindgren (1933) classified hydrothermal deposits as hypothermal, mesothermal, epithermal, and telethermal.
  • Hypothermal hydrothermal rocks and minerals ore deposits are formed at great depth under conditions of high temperature.
  • Mesothermal mineral deposits are formed at moderate temperature and pressure, in and along fissures or other openings in rocks, by deposition at intermediate depths, from hydrothermal fluids.
  • Epithermal mineral ore deposits are formed at low temperatures (50-200 °C) near the Earth's surface (<1500 and="" breccias="" fill="" m="" span="" stockworks.="" that="" veins="">
  • Telethermal mineral ore deposit are formed at shallow depth and relatively low temperatures, with little or no wall-rock alteration, presumably far from the source of hydrothermal solutions.
Ore deposits are usually classified by ore formation processes and geological setting. For example, sedimentary exhalative deposits (SEDEX), are a class of ore deposit formed on the sea floor (sedimentary) by exhalation of brines into seawater (exhalative), causing chemical precipitation of ore minerals when the brine cools, mixes with sea water, and loses its metal carrying capacity. 

Ore deposits rarely fit neatly into the categories in which geologists wish to place them. Many may be formed by one or more of the basic genesis processes above, creating ambiguous classifications and much argument and conjecture. Often ore deposits are classified after examples of their type, for instance Broken Hill type lead-zinc-silver deposits or Carlin–type gold deposits.

Genesis of common ores

As they require the conjunction of specific environmental conditions to form, particular mineral deposit types tend to occupy specific geodynamic niches, therefore, this page has been organised by metal commodity. It is also possible to organise theories the other way, namely according to geological criteria of formation. Often ores of the same metal can be formed by multiple processes, and this is described here under each metal or metal complex.

Iron

Iron ores are overwhelmingly derived from ancient sediments known as banded iron formations (BIFs). These sediments are composed of iron oxide minerals deposited on the sea floor. Particular environmental conditions are needed to transport enough iron in sea water to form these deposits, such as acidic and oxygen-poor atmospheres within the Proterozoic Era.

Often, more recent weathering is required to convert the usual magnetite minerals into more easily processed hematite. Some iron deposits within the Pilbara of Western Australia are placer deposits, formed by accumulation of hematite gravels called pisolites which form channel-iron deposits. These are preferred because they are cheap to mine.

Lead zinc silver

Lead-zinc deposits are generally accompanied by silver, hosted within the lead sulfide mineral galena or within the zinc sulfide mineral sphalerite.

Lead and zinc deposits are formed by discharge of deep sedimentary brine onto the sea floor (termed sedimentary exhalative or SEDEX), or by replacement of limestone, in skarn deposits, some associated with submarine volcanoes (called volcanogenic massive sulfide ore deposits or VMS), or in the aureole of subvolcanic intrusions of granite. The vast majority of SEDEX lead and zinc deposits are Proterozoic in age, although there are significant Jurassic examples in Canada and Alaska. 

The carbonate replacement type deposit is exemplified by the Mississippi valley type (MVT) ore deposits. MVT and similar styles occur by replacement and degradation of carbonate sequences by hydrocarbons, which are thought important for transporting lead.

Gold

High-grade (bonanza) gold ore, brecciated quartz-adularia rhyolite. Native gold (Au) occurs in this rock as colloform bands, partially replaces breccia clasts, and is also disseminated in the matrix. Published research indicates that Sleeper Mine rocks represent an ancient epithermal gold deposit (hot springs gold deposit), formed by volcanism during Basin & Range extensional tectonics. Sleeper Mine, Humboldt County, Nevada.
 
Gold deposits are formed via a very wide variety of geological processes. Deposits are classified as primary, alluvial or placer deposits, or residual or laterite deposits. Often a deposit will contain a mixture of all three types of ore.

Plate tectonics is the underlying mechanism for generating gold deposits. The majority of primary gold deposits fall into two main categories: lode gold deposits or intrusion-related deposits. 

Lode gold deposits are generally high-grade, thin, vein and fault hosted. They are primarily made up of quartz veins also known as lodes or reefs, which contain either native gold or gold sulfides and tellurides. Lode gold deposits are usually hosted in basalt or in sediments known as turbidite, although when in faults, they may occupy intrusive igneous rocks such as granite

Lode-gold deposits are intimately associated with orogeny and other plate collision events within geologic history. It is thought that most lode gold deposits are sourced from metamorphic rocks by the dehydration of basalt during metamorphism. The gold is transported up faults by hydrothermal waters and deposited when the water cools too much to retain gold in solution. 

Intrusive related gold (Lang & Baker, 2001) is generally hosted in granites, porphyry, or rarely dikes. Intrusive related gold usually also contains copper, and is often associated with tin and tungsten, and rarely molybdenum, antimony, and uranium. Intrusive-related gold deposits rely on gold existing in the fluids associated with the magma (White, 2001), and the inevitable discharge of these hydrothermal fluids into the wall-rocks (Lowenstern, 2001). Skarn deposits are another manifestation of intrusive-related deposits. 

Placer deposits are sourced from pre-existing gold deposits and are secondary deposits. Placer deposits are formed by alluvial processes within rivers and streams, and on beaches. Placer gold deposits form via gravity, with the density of gold causing it to sink into trap sites within the river bed, or where water velocity drops, such as bends in rivers and behind boulders. Often placer deposits are found within sedimentary rocks and can be billions of years old, for instance the Witwatersrand deposits in South Africa. Sedimentary placer deposits are known as 'leads' or 'deep leads'. 

Placer deposits are often worked by fossicking, and panning for gold is a popular pastime.

Laterite gold deposits are formed from pre-existing gold deposits (including some placer deposits) during prolonged weathering of the bedrock. Gold is deposited within iron oxides in the weathered rock or regolith, and may be further enriched by reworking by erosion. Some laterite deposits are formed by wind erosion of the bedrock leaving a residuum of native gold metal at surface.

A bacterium, Cupriavidus metallidurans plays a vital role in the formation of gold nuggets, by precipitating metallic gold from a solution of gold (III) tetrachloride, a compound highly toxic to most other microorganisms. Similarly, Delftia acidovorans can form gold nuggets.

Platinum

Platinum and palladium are precious metals generally found in ultramafic rocks. The source of platinum and palladium deposits is ultramafic rocks which have enough sulfur to form a sulfide mineral while the magma is still liquid. This sulfide mineral (usually pentlandite, pyrite, chalcopyrite, or pyrrhotite) gains platinum by mixing with the bulk of the magma because platinum is chalcophile and is concentrated in sulfides. Alternatively, platinum occurs in association with chromite either within the chromite mineral itself or within sulfides associated with it.

Sulfide phases only form in ultramafic magmas when the magma reaches sulfur saturation. This is generally thought to be nearly impossible by pure fractional crystallisation, so other processes are usually required in ore genesis models to explain sulfur saturation. These include contamination of the magma with crustal material, especially sulfur-rich wall-rocks or sediments; magma mixing; volatile gain or loss.

Often platinum is associated with nickel, copper, chromium, and cobalt deposits.

Nickel

Nickel deposits are generally found in two forms, either as sulfide or laterite.

Sulfide type nickel deposits are formed in essentially the same manner as platinum deposits. Nickel is a chalcophile element which prefers sulfides, so an ultramafic or mafic rock which has a sulfide phase in the magma may form nickel sulfides. The best nickel deposits are formed where sulfide accumulates in the base of lava tubes or volcanic flows — especially komatiite lavas. 

Komatiitic nickel-copper sulfide deposits are considered to be formed by a mixture of sulfide segregation, immiscibility, and thermal erosion of sulfidic sediments. The sediments are considered to be necessary to promote sulfur saturation.

Some subvolcanic sills in the Thompson Belt of Canada host nickel sulfide deposits formed by deposition of sulfides near the feeder vent. Sulfide was accumulated near the vent due to the loss of magma velocity at the vent interface. The massive Voisey's Bay nickel deposit is considered to have formed via a similar process. 

The process of forming nickel laterite deposits is essentially similar to the formation of gold laterite deposits, except that ultramafic or mafic rocks are required. Generally nickel laterites require very large olivine-bearing ultramafic intrusions. Minerals formed in laterite nickel deposits include gibbsite.

Copper

Copper is found in association with many other metals and deposit styles. Commonly, copper is either formed within sedimentary rocks, or associated with igneous rocks. 

The world's major copper deposits are formed within the granitic porphyry copper style. Copper is enriched by processes during crystallisation of the granite and forms as chalcopyrite — a sulfide mineral, which is carried up with the granite. 

Sometimes granites erupt to surface as volcanoes, and copper mineralisation forms during this phase when the granite and volcanic rocks cool via hydrothermal circulation

Sedimentary copper forms within ocean basins in sedimentary rocks. Generally this forms by brine from deeply buried sediments discharging into the deep sea, and precipitating copper and often lead and zinc sulfides directly onto the sea floor. This is then buried by further sediment. This is a process similar to SEDEX zinc and lead, although some carbonate-hosted examples exist.

Often copper is associated with gold, lead, zinc, and nickel deposits.

Uranium

Five cylinder-like bodies on a flat surface: four in a group and one separate.
Citrobacter species can have concentrations of uranium in their bodies 300 times higher than in the surrounding environment.
 
Uranium deposits are usually sourced from radioactive granites, where certain minerals such as monazite are leached during hydrothermal activity or during circulation of groundwater. The uranium is brought into solution by acidic conditions and is deposited when this acidity is neutralised. Generally this occurs in certain carbon-bearing sediments, within an unconformity in sedimentary strata. The majority of the world's nuclear power is sourced from uranium in such deposits. 

Uranium is also found in nearly all coal at several parts per million, and in all granites. Radon is a common problem during mining of uranium as it is a radioactive gas. 

Uranium is also found associated with certain igneous rocks, such as granite and porphyry. The Olympic Dam deposit in Australia is an example of this type of uranium deposit. It contains 70% of Australia's share of 40% of the known global low-cost recoverable uranium inventory.

Titanium and zirconium

Mineral sands are the predominant type of titanium, zirconium, and thorium deposit. They are formed by accumulation of such heavy minerals within beach systems, and are a type of placer deposits. The minerals which contain titanium are ilmenite, rutile, and leucoxene, zirconium is contained within zircon, and thorium is generally contained within monazite. These minerals are sourced from primarily granite bedrock by erosion and transported to the sea by rivers where they accumulate within beach sands. Rarely, but importantly, gold, tin, and platinum deposits can form in beach placer deposits.

Tin, tungsten, and molybdenum

These three metals generally form in a certain type of granite, via a similar mechanism to intrusive-related gold and copper. They are considered together because the process of forming these deposits is essentially the same. Skarn type mineralisation related to these granites is a very important type of tin, tungsten, and molybdenum deposit. Skarn deposits form by reaction of mineralised fluids from the granite reacting with wall rocks such as limestone. Skarn mineralisation is also important in lead, zinc, copper, gold, and occasionally uranium mineralisation. 

Greisen granite is another related tin-molybdenum and topaz mineralisation style.

Rare earth elements, niobium, tantalum, lithium

The overwhelming majority of rare earth elements, tantalum, and lithium are found within pegmatite. Ore genesis theories for these ores are wide and varied, but most involve metamorphism and igneous activity. Lithium is present as spodumene or lepidolite within pegmatite. 

Carbonatite intrusions are an important source of these elements. Ore minerals are essentially part of the unusual mineralogy of carbonatite.

Phosphate

Phosphate is used in fertilisers. Immense quantities of phosphate rock or phosphorite occur in sedimentary shelf deposits, ranging in age from the Proterozoic to currently forming environments. Phosphate deposits are thought to be sourced from the skeletons of dead sea creatures which accumulated on the seafloor. Similar to iron ore deposits and oil, particular conditions in the ocean and environment are thought to have contributed to these deposits within the geological past.

Phosphate deposits are also formed from alkaline igneous rocks such as nepheline syenites, carbonatites, and associated rock types. The phosphate is, in this case, contained within magmatic apatite, monazite, or other rare-earth phosphates.

Vanadium

Tunicates such as this bluebell tunicate contain vanadium as vanabin.
 
Due to the presence of vanabins, concentration of vanadium found in the blood cells of Ascidia gemmata belonging to the suborder Phlebobranchia is 10,000,000 times higher than that in the surrounding seawater. A similar biological process might have played a role in the formation of vanadium ores. Vanadium is also present in fossil fuel deposits such as crude oil, coal, oil shale, and oil sands. In crude oil, concentrations up to 1200 ppm have been reported.

Ore

From Wikipedia, the free encyclopedia

Manganese ore – psilomelane (size: 6.7 × 5.8 × 5.1 cm)
 
Lead ore – galena and anglesite (size: 4.8 × 4.0 × 3.0 cm)
 
Gold ore (size: 7.5 × 6.1 × 4.1 cm)
 
Cart for carrying ore from a mine on display at the Historic Archive and Museum of Mining in Pachuca, Mexico
 
An ore is a natural occurrence of rock or sediment that contains sufficient minerals with economically important elements, typically metals, that can be economically extracted from the deposit. The ores are extracted at a profit from the earth through mining; they are then refined (often via smelting) to extract the valuable element or elements. 

The ore grade, or concentration of an ore mineral or metal, as well as its form of occurrence, will directly affect the costs associated with mining the ore. The cost of extraction must thus be weighed against the metal value contained in the rock to determine what ore can be processed and what ore is of too low a grade to be worth mining. Metal ores are generally oxides, sulfides, silicates, or native metals (such as native copper) that are not commonly concentrated in the Earth's crust, or noble metals (not usually forming compounds) such as gold. The ores must be processed to extract the elements of interest from the waste rock and from the ore minerals. Ore bodies are formed by a variety of geological processes. The process of ore formation is called ore genesis.

Ore deposits

An ore deposit is an accumulation of ore. This is distinct from a mineral resource as defined by the mineral resource classification criteria. An ore deposit is one occurrence of a particular ore type. Most ore deposits are named according to their location (for example, the Witwatersrand, South Africa), or after a discoverer (e.g. the Kambalda nickel shoots are named after drillers), or after some whimsy, a historical figure, a prominent person, something from mythology (phoenix, kraken, serepentleopard, etc.) or the code name of the resource company which found it (e.g. MKD-5 was the in-house name for the Mount Keith nickel sulphide deposit).

Classification

Ore deposits are classified according to various criteria developed via the study of economic geology, or ore genesis. The classifications below are typical.

Hydrothermal epigenetic deposits

Granite related hydrothermal

Magmatic deposits

Volcanic-related deposits

A cross-section of a typical Volcanic hosted massive sulfide|volcanogenic massive sulfide (VMS) ore deposit

Metamorphically reworked deposits

Carbonatite-alkaline igneous related

Sedimentary deposits

Magnified view of banded iron formation specimen from Upper Michigan. Scale bar is 5.0 mm.

Sedimentary hydrothermal deposits

Astrobleme-related ores

Extraction

Some ore deposits in the world
 
Some additional ore deposits in the world

The basic extraction of ore deposits follows these steps:
  1. Prospecting or exploration to find and then define the extent and value of ore where it is located ("ore body")
  2. Conduct resource estimation to mathematically estimate the size and grade of the deposit
  3. Conduct a pre-feasibility study to determine the theoretical economics of the ore deposit. This identifies, early on, whether further investment in estimation and engineering studies is warranted and identifies key risks and areas for further work.
  4. Conduct a feasibility study to evaluate the financial viability, technical and financial risks and robustness of the project and make a decision as whether to develop or walk away from a proposed mine project. This includes mine planning to evaluate the economically recoverable portion of the deposit, the metallurgy and ore recoverability, marketability and payability of the ore concentrates, engineering, milling and infrastructure costs, finance and equity requirements and a cradle to grave analysis of the possible mine, from the initial excavation all the way through to reclamation.
  5. Development to create access to an ore body and building of mine plant and equipment
  6. The operation of the mine in an active sense
  7. Reclamation to make land where a mine had been suitable for future use

Trade

Ores (metals) are traded internationally and comprise a sizeable portion of international trade in raw materials both in value and volume. This is because the worldwide distribution of ores is unequal and dislocated from locations of peak demand and from smelting infrastructure. 

Most base metals (copper, lead, zinc, nickel) are traded internationally on the London Metal Exchange, with smaller stockpiles and metals exchanges monitored by the COMEX and NYMEX exchanges in the United States and the Shanghai Futures Exchange in China. 

Iron ore is traded between customer and producer, though various benchmark prices are set quarterly between the major mining conglomerates and the major consumers, and this sets the stage for smaller participants. 

Other, lesser, commodities do not have international clearing houses and benchmark prices, with most prices negotiated between suppliers and customers one-on-one. This generally makes determining the price of ores of this nature opaque and difficult. Such metals include lithium, niobium-tantalum, bismuth, antimony and rare earths. Most of these commodities are also dominated by one or two major suppliers with >60% of the world's reserves. The London Metal Exchange aims to add uranium to its list of metals on warrant.

The World Bank reports that China was the top importer of ores and metals in 2005 followed by the US and Japan.

Polonium

From Wikipedia, the free encyclopedia
 
Polonium,  84Po
Polonium.jpg
Polonium
Pronunciation/pəˈlniəm/ (pə-LOH-nee-əm)
Allotropesα, β
Appearancesilvery
Mass number209 (most stable isotope)
Polonium in the periodic table
Hydrogen
Helium
Lithium Beryllium
Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium
Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium
Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium

Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Te

Po

Lv
bismuthpoloniumastatine
Atomic number (Z)84
Groupgroup 16 (chalcogens)
Periodperiod 6
Blockp-block
Element category  Post-transition metal, but this status is disputed
Electron configuration[Xe] 4f14 5d10 6s2 6p4
Electrons per shell
2, 8, 18, 32, 18, 6
Physical properties
Phase at STPsolid
Melting point527 K ​(254 °C, ​489 °F)
Boiling point1235 K ​(962 °C, ​1764 °F)
Density (near r.t.)alpha: 9.196 g/cm3
beta: 9.398 g/cm3
Heat of fusionca. 13 kJ/mol
Heat of vaporization102.91 kJ/mol
Molar heat capacity26.4 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K)


(846) 1003 1236
Atomic properties
Oxidation states−2, +2, +4, +5, +6 (an amphoteric oxide)
ElectronegativityPauling scale: 2.0
Ionization energies
  • 1st: 812.1 kJ/mol

Atomic radiusempirical: 168 pm
Covalent radius140±4 pm
Van der Waals radius197 pm
Color lines in a spectral range
Spectral lines of polonium
Other properties
Natural occurrencefrom decay
Crystal structurecubic
Cubic crystal structure for polonium

α-Po
Crystal structurerhombohedral
Rhombohedral crystal structure for polonium

β-Po
Thermal expansion23.5 µm/(m·K) (at 25 °C)
Thermal conductivity20 W/(m·K) (?)
Electrical resistivityα: 0.40 µΩ·m (at 0 °C)
Magnetic orderingnonmagnetic
CAS Number7440-08-6
History
Namingafter Polonia, Latin for Poland, homeland of Marie Curie
DiscoveryPierre and Marie Curie (1898)
First isolationWilly Marckwald (1902)
Main isotopes of polonium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
208Po syn 2.898 y α 204Pb
β+ 208Bi
209Po syn 125.2 y α 205Pb
β+ 209Bi
210Po trace 138.376 d α 206Pb

Polonium is a chemical element with the symbol Po and atomic number 84. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character resembles that of its horizontal neighbors in the periodic table: thallium, lead, and bismuth. Due to the short half-life of all its isotopes, its natural occurrence is limited to tiny traces of the fleeting polonium-210 (with a half-life of 138 days) in uranium ores, as it is the penultimate daughter of natural uranium-238. Though slightly longer-lived isotopes exist, they are much more difficult to produce. Today, polonium is usually produced in milligram quantities by the neutron irradiation of bismuth. Due to its intense radioactivity, which results in the radiolysis of chemical bonds and radioactive self-heating, its chemistry has mostly been investigated on the trace scale only.

Polonium was discovered in 1898 by Marie and Pierre Curie, when it was extracted from the uranium ore pitchblende and identified solely by its strong radioactivity: it was the first element to be so discovered. Polonium was named after Marie Curie's homeland of Poland. Polonium has few applications, and those are related to its radioactivity: heaters in space probes, antistatic devices, sources of neutrons and alpha particles, and poison. It is a radioactive element, and extremely dangerous to humans.

Characteristics

210Po is an alpha emitter that has a half-life of 138.4 days; it decays directly to its stable daughter isotope, 206Pb. A milligram (5 curies) of 210Po emits about as many alpha particles per second as 5 grams of 226Ra. A few curies (1 curie equals 37 gigabecquerels, 1 Ci = 37 GBq) of 210Po emit a blue glow which is caused by ionisation of the surrounding air. 

About one in 100,000 alpha emissions causes an excitation in the nucleus which then results in the emission of a gamma ray with a maximum energy of 803 keV.

Solid state form

The alpha form of solid polonium.
 
Polonium is a radioactive element that exists in two metallic allotropes. The alpha form is the only known example of a simple cubic crystal structure in a single atom basis at STP, with an edge length of 335.2 picometers; the beta form is rhombohedral. The structure of polonium has been characterized by X-ray diffraction and electron diffraction.

210Po (in common with 238Pu) has the ability to become airborne with ease: if a sample is heated in air to 55 °C (131 °F), 50% of it is vaporized in 45 hours to form diatomic Po2 molecules, even though the melting point of polonium is 254 °C (489 °F) and its boiling point is 962 °C (1,764 °F). More than one hypothesis exists for how polonium does this; one suggestion is that small clusters of polonium atoms are spalled off by the alpha decay.

Chemistry

The chemistry of polonium is similar to that of tellurium, although it also shows some similarities to its neighbor bismuth due to its metallic character. Polonium dissolves readily in dilute acids but is only slightly soluble in alkalis. Polonium solutions are first colored in pink by the Po2+ ions, but then rapidly become yellow because alpha radiation from polonium ionizes the solvent and converts Po2+ into Po4+. This process is accompanied by bubbling and emission of heat and light by glassware due to the absorbed alpha particles; as a result, polonium solutions are volatile and will evaporate within days unless sealed. At pH about 1, polonium ions are readily hydrolyzed and complexed by acids such as oxalic acid, citric acid, and tartaric acid.

Compounds

Polonium has no common compounds, and almost all of its compounds are synthetically created; more than 50 of those are known. The most stable class of polonium compounds are polonides, which are prepared by direct reaction of two elements. Na2Po has the antifluorite structure, the polonides of Ca, Ba, Hg, Pb and lanthanides form a NaCl lattice, BePo and CdPo have the wurtzite and MgPo the nickel arsenide structure. Most polonides decompose upon heating to about 600 °C, except for HgPo that decomposes at ~300 °C and the lanthanide polonides, which do not decompose but melt at temperatures above 1000 °C. For example, PrPo melts at 1250 °C and TmPo at 2200 °C. PbPo is one of the very few naturally occurring polonium compounds, as polonium alpha decays to form lead.

Polonium hydride (PoH
2
) is a volatile liquid at room temperature prone to dissociation; it is thermally unstable. Water is the only other known hydrogen chalcogenide which is a liquid at room temperature; however, this is due to hydrogen bonding. The two oxides PoO2 and PoO3 are the products of oxidation of polonium.

Halides of the structure PoX2, PoX4 and PoF6 are known. They are soluble in the corresponding hydrogen halides, i.e., PoClX in HCl, PoBrX in HBr and PoI4 in HI. Polonium dihalides are formed by direct reaction of the elements or by reduction of PoCl4 with SO2 and with PoBr4 with H2S at room temperature. Tetrahalides can be obtained by reacting polonium dioxide with HCl, HBr or HI.

Other polonium compounds include potassium polonite as a polonite, polonate, acetate, bromate, carbonate, citrate, chromate, cyanide, formate, (II) and (IV) hydroxides, nitrate, selenate, selenite, monosulfide, sulfate, disulfate and sulfite.

Oxides

Hydrides

Halides
  • PoX2 (except PoF2)
  • PoX4
  • PoF6
  • PoBr2Cl2 (salmon pink)

Isotopes

Polonium has 42 known isotopes, all of which are radioactive. They have atomic masses that range from 186 to 227 u. 210Po (half-life 138.376 days) is the most widely available and is made via neutron capture by natural bismuth. The longer-lived 209Po (half-life 125.2±3.3 years, longest-lived of all polonium isotopes) and 208Po (half-life 2.9 years) can be made through the alpha, proton, or deuteron bombardment of lead or bismuth in a cyclotron.

History

Tentatively called "radium F", polonium was discovered by Marie and Pierre Curie in 1898, and was named after Marie Curie's native land of Poland (Latin: Polonia). Poland at the time was under Russian, German, and Austro-Hungarian partition, and did not exist as an independent country. It was Curie's hope that naming the element after her native land would publicize its lack of independence. Polonium may be the first element named to highlight a political controversy.

This element was the first one discovered by the Curies while they were investigating the cause of pitchblende radioactivity. Pitchblende, after removal of the radioactive elements uranium and thorium, was more radioactive than the uranium and thorium combined. This spurred the Curies to search for additional radioactive elements. They first separated out polonium from pitchblende in July 1898, and five months later, also isolated radium. German scientist Willy Marckwald successfully isolated 3 milligrams of polonium in 1902, though at the time he believed it was a new element, which he dubbed "radio-tellurium", and it was not until 1905 that it was demonstrated to be the same as polonium.

In the United States, polonium was produced as part of the Manhattan Project's Dayton Project during World War II. Polonium and beryllium were the key ingredients of the 'Urchin' initiator at the center of the bomb's spherical pit. 'Urchin' initiated the nuclear chain reaction at the moment of prompt-criticality to ensure that the weapon did not fizzle. 'Urchin' was used in early U.S. weapons; subsequent U.S. weapons utilized a pulse neutron generator for the same purpose.

Much of the basic physics of polonium was classified until after the war. The fact that it was used as an initiator was classified until the 1960s.

The Atomic Energy Commission and the Manhattan Project funded human experiments using polonium on five people at the University of Rochester between 1943 and 1947. The people were administered between 9 and 22 microcuries (330 and 810 kBq) of polonium to study its excretion.

Occurrence and production

Polonium is a very rare element in nature because of the short half-life of all its isotopes. 210Po, 214Po, and 218Po appear in the decay chain of 238U; thus polonium can be found in uranium ores at about 0.1 mg per metric ton (1 part in 1010), which is approximately 0.2% of the abundance of radium. The amounts in the Earth's crust are not harmful. Polonium has been found in tobacco smoke from tobacco leaves grown with phosphate fertilizers.

Because it is present in small concentrations, isolation of polonium from natural sources is a tedious process. The largest batch of the element ever extracted, performed in the first half of the 20th century, contained only 40 Ci (1.5 TBq) (9 mg) of polonium-210 and was obtained by processing 37 tonnes of residues from radium production. Polonium is now usually obtained by irradiating bismuth with high-energy neutrons or protons.

In 1934, an experiment showed that when natural 209Bi is bombarded with neutrons, 210Bi is created, which then decays to 210Po via beta-minus decay. The final purification is done pyrochemically followed by liquid-liquid extraction techniques. Polonium may now be made in milligram amounts in this procedure which uses high neutron fluxes found in nuclear reactors. Only about 100 grams are produced each year, practically all of it in Russia, making polonium exceedingly rare.

This process can cause problems in lead-bismuth based liquid metal cooled nuclear reactors such as those used in the Soviet Navy's K-27. Measures must be taken in these reactors to deal with the unwanted possibility of 210Po being released from the coolant.

The longer-lived isotopes of polonium, 208Po and 209Po, can be formed by proton or deuteron bombardment of bismuth using a cyclotron. Other more neutron-deficient and more unstable isotopes can be formed by the irradiation of platinum with carbon nuclei.

Applications

Polonium-based sources of alpha particles were produced in the former Soviet Union. Such sources were applied for measuring the thickness of industrial coatings via attenuation of alpha radiation.

Because of intense alpha radiation, a one-gram sample of 210Po will spontaneously heat up to above 500 °C (932 °F) generating about 140 watts of power. Therefore, 210Po is used as an atomic heat source to power radioisotope thermoelectric generators via thermoelectric materials. For example, 210Po heat sources were used in the Lunokhod 1 (1970) and Lunokhod 2 (1973) Moon rovers to keep their internal components warm during the lunar nights, as well as the Kosmos 84 and 90 satellites (1965).

The alpha particles emitted by polonium can be converted to neutrons using beryllium oxide, at a rate of 93 neutrons per million alpha particles. Thus Po-BeO mixtures or alloys are used as a neutron source, for example, in a neutron trigger or initiator for nuclear weapons and for inspections of oil wells. About 1500 sources of this type, with an individual activity of 1,850 Ci (68 TBq), have been used annually in the Soviet Union.

Polonium was also part of brushes or more complex tools that eliminate static charges in photographic plates, textile mills, paper rolls, sheet plastics, and on substrates (such as automotive) prior to the application of coatings. Alpha particles emitted by polonium ionize air molecules that neutralize charges on the nearby surfaces. Some anti-static brushes contain up to 500 microcuries (20 MBq) of 210Po as a source of charged particles for neutralizing static electricity. In the US, devices with no more than 500 μCi (19 MBq) of (sealed) 210Po per unit can be bought in any amount under a "general license", which means that a buyer need not be registered by any authorities. Polonium needs to be replaced in these devices nearly every year because of its short half-life; it is also highly radioactive and therefore has been mostly replaced by less dangerous beta particle sources.

Tiny amounts of 210Po are sometimes used in the laboratory and for teaching purposes—typically of the order of 4–40 kBq (0.11–1.08 μCi), in the form of sealed sources, with the polonium deposited on a substrate or in a resin or polymer matrix—are often exempt from licensing by the NRC and similar authorities as they are not considered hazardous. Small amounts of 210Po are manufactured for sale to the public in the United States as 'needle sources' for laboratory experimentation, and they are retailed by scientific supply companies. The polonium is a layer of plating which in turn is plated with a material such as gold, which allows the alpha radiation (used in experiments such as cloud chambers) to pass while preventing the polonium from being released and presenting a toxic hazard. According to United Nuclear, they typically sell between four and eight such sources per year.

Polonium spark plugs were marketed by Firestone from 1940 to 1953. While the amount of radiation from the plugs was minuscule and not a threat to the consumer, the benefits of such plugs quickly diminished after approximately a month because of polonium's short half-life and because buildup on the conductors would block the radiation that improved engine performance. (The premise behind the polonium spark plug, as well as Alfred Matthew Hubbard's prototype radium plug that preceded it, was that the radiation would improve ionization of the fuel in the cylinder and thus allow the motor to fire more quickly and efficiently.)

Biology and toxicity

Overview

Polonium is highly dangerous and has no biological role. By mass, polonium-210 is around 250,000 times more toxic than hydrogen cyanide (the LD50 for 210Po is less than 1 microgram for an average adult (see below) compared with about 250 milligrams for hydrogen cyanide). The main hazard is its intense radioactivity (as an alpha emitter), which makes it difficult to handle safely. Even in microgram amounts, handling 210Po is extremely dangerous, requiring specialized equipment (a negative pressure alpha glove box equipped with high-performance filters), adequate monitoring, and strict handling procedures to avoid any contamination. Alpha particles emitted by polonium will damage organic tissue easily if polonium is ingested, inhaled, or absorbed, although they do not penetrate the epidermis and hence are not hazardous as long as the alpha particles remain outside the body. Wearing chemically resistant and intact gloves is a mandatory precaution to avoid transcutaneous diffusion of polonium directly through the skin. Polonium delivered in concentrated nitric acid can easily diffuse through inadequate gloves (e.g., latex gloves) or the acid may damage the gloves.

Polonium does not have toxic chemical properties.

It has been reported that some microbes can methylate polonium by the action of methylcobalamin. This is similar to the way in which mercury, selenium, and tellurium are methylated in living things to create organometallic compounds. Studies investigating the metabolism of polonium-210 in rats have shown that only 0.002 to 0.009% of polonium-210 ingested is excreted as volatile polonium-210.

Acute effects

The median lethal dose (LD50) for acute radiation exposure is about 4.5 Sv. The committed effective dose equivalent 210Po is 0.51 µSv/Bq if ingested, and 2.5 µSv/Bq if inhaled.[79] So a fatal 4.5 Sv dose can be caused by ingesting 8.8 MBq (240 μCi), about 50 nanograms (ng), or inhaling 1.8 MBq (49 μCi), about 10 ng. One gram of 210Po could thus in theory poison 20 million people of whom 10 million would die. The actual toxicity of 210Po is lower than these estimates because radiation exposure that is spread out over several weeks (the biological half-life of polonium in humans is 30 to 50 days) is somewhat less damaging than an instantaneous dose. It has been estimated that a median lethal dose of 210Po is 15 megabecquerels (0.41 mCi), or 0.089 micrograms (μg), still an extremely small amount. For comparison, one grain of table salt is about 0.06 mg = 60 μg.

Long term (chronic) effects

In addition to the acute effects, radiation exposure (both internal and external) carries a long-term risk of death from cancer of 5–10% per Sv. The general population is exposed to small amounts of polonium as a radon daughter in indoor air; the isotopes 214Po and 218Po are thought to cause the majority of the estimated 15,000–22,000 lung cancer deaths in the US every year that have been attributed to indoor radon. Tobacco smoking causes additional exposure to polonium.

Regulatory exposure limits and handling

The maximum allowable body burden for ingested 210Po is only 1.1 kBq (30 nCi), which is equivalent to a particle massing only 6.8 picograms. The maximum permissible workplace concentration of airborne 210Po is about 10 Bq/m3 (3×10−10 µCi/cm3). The target organs for polonium in humans are the spleen and liver. As the spleen (150 g) and the liver (1.3 to 3 kg) are much smaller than the rest of the body, if the polonium is concentrated in these vital organs, it is a greater threat to life than the dose which would be suffered (on average) by the whole body if it were spread evenly throughout the body, in the same way as caesium or tritium (as T2O).

210Po is widely used in industry, and readily available with little regulation or restriction. In the US, a tracking system run by the Nuclear Regulatory Commission was implemented in 2007 to register purchases of more than 16 curies (590 GBq) of polonium-210 (enough to make up 5,000 lethal doses). The IAEA "is said to be considering tighter regulations ... There is talk that it might tighten the polonium reporting requirement by a factor of 10, to 1.6 curies (59 GBq)." As of 2013, this is still the only alpha emitting byproduct material available, as a NRC Exempt Quantity, which may be held without a radioactive material license.

Polonium and its compounds must be handled in a glove box, which is further enclosed in another box, maintained at a slightly higher pressure than the glove box to prevent the radioactive materials from leaking out. Gloves made of natural rubber do not provide sufficient protection against the radiation from polonium; surgical gloves are necessary. Neoprene gloves shield radiation from polonium better than natural rubber.

Cases of poisoning

20th century

Polonium was administered to humans for experimental purposes from 1943 to 1947; it was injected into four hospitalised patients, and orally given to a fifth. Studies such as this were funded by the Manhattan Project and the AEC and conducted at the University of Rochester. The objective was to obtain data on human excretion of polonium to correlate with more extensive data from rats. Patients selected as subjects were chosen because experimenters wanted persons who had not been exposed to polonium either through work or accident. All subjects had incurable diseases. Excretion of polonium was followed, and an autopsy was conducted at that time on the deceased patient to determine which organs absorbed the polonium. Patients' ages ranged from "early thirties" to "early forties". The experiments were described in Chapter 3 of Biological Studies with Polonium, Radium, and Plutonium, National Nuclear Energy Series, Volume VI-3, McGraw-Hill, New York, 1950. Not specified is the isotope under study, but at the time polonium-210 was the most readily available polonium isotope. The DoE factsheet submitted for this experiment reported no follow up on these subjects.

It has also been suggested that Irène Joliot-Curie was the first person to die from the radiation effects of polonium. She was accidentally exposed to polonium in 1946 when a sealed capsule of the element exploded on her laboratory bench. In 1956, she died from leukemia.

According to the 2008 book The Bomb in the Basement, several deaths in Israel during 1957–1969 were caused by 210Po. A leak was discovered at a Weizmann Institute laboratory in 1957. Traces of 210Po were found on the hands of Professor Dror Sadeh, a physicist who researched radioactive materials. Medical tests indicated no harm, but the tests did not include bone marrow. Sadeh died from cancer. One of his students died of leukemia, and two colleagues died after a few years, both from cancer. The issue was investigated secretly, and there was never any formal admission that a connection between the leak and the deaths had existed.

21st century

The cause of death in the 2006 homicide of Alexander Litvinenko, a Russian KGB agent who had defected to the British MI6 intelligence agency, was determined to be 210Po poisoning. According to Prof. Nick Priest of Middlesex University, an environmental toxicologist and radiation expert, speaking on Sky News on December 3, 2006, Litvinenko was probably the first person to die of the acute α-radiation effects of 210Po.

Abnormally high concentrations of 210Po were detected in July 2012 in clothes and personal belongings of the Palestinian leader Yasser Arafat, a heavy smoker, who died on 11 November 2004 of uncertain causes. The spokesman for the Institut de Radiophysique in Lausanne, Switzerland, where those items were analyzed, stressed that the "clinical symptoms described in Arafat's medical reports were not consistent with polonium-210 and that conclusions could not be drawn as to whether the Palestinian leader was poisoned or not", and that "the only way to confirm the findings would be to exhume Arafat's body to test it for polonium-210." On 27 November 2012 Arafat's body was exhumed, and samples were taken for separate analysis by experts from France, Switzerland and Russia. On 12 October 2013, The Lancet published the group's finding that high levels of the element were found in Arafat's blood, urine, and in saliva stains on his clothes and toothbrush. The French tests later found some polonium but stated it was from "natural environmental origin". Following later Russian tests, Vladimir Uiba, the head of the Russian Federal Medical and Biological Agency, stated in December 2013 that Arafat died of natural causes, and they had no plans to conduct further tests.

Treatment

It has been suggested that chelation agents, such as British Anti-Lewisite (dimercaprol), can be used to decontaminate humans. In one experiment, rats were given a fatal dose of 1.45 MBq/kg (8.7 ng/kg) of 210Po; all untreated rats were dead after 44 days, but 90% of the rats treated with the chelation agent HOEtTTC remained alive for 5 months.

Detection in biological specimens

Polonium-210 may be quantified in biological specimens by alpha particle spectrometry to confirm a diagnosis of poisoning in hospitalized patients or to provide evidence in a medicolegal death investigation. The baseline urinary excretion of polonium-210 in healthy persons due to routine exposure to environmental sources is normally in a range of 5–15 mBq/day. Levels in excess of 30 mBq/day are suggestive of excessive exposure to the radionuclide.

Occurrence in humans and the biosphere

Polonium-210 is widespread in the biosphere, including in human tissues, because of its position in the uranium-238 decay chain. Natural uranium-238 in the Earth's crust decays through a series of solid radioactive intermediates including radium-226 to the radioactive noble gas radon-222, some of which, during its 3.8-day half-life, diffuses into the atmosphere. There it decays through several more steps to polonium-210, much of which, during its 138-day half-life, is washed back down to the Earth's surface, thus entering the biosphere, before finally decaying to stable lead-206.

As early as the 1920s Antoine Lacassagne, using polonium provided by his colleague Marie Curie, showed that the element has a specific pattern of uptake in rabbit tissues, with high concentrations, particularly in liver, kidney, and testes. More recent evidence suggests that this behavior results from polonium substituting for its congener sulfur, also in group 16 of the periodic table, in sulfur-containing amino-acids or related molecules and that similar patterns of distribution occur in human tissues. Polonium is indeed an element naturally present in all humans, contributing appreciably to natural background dose, with wide geographical and cultural variations, and particularly high levels in arctic residents, for example.

Tobacco

Polonium-210 in tobacco contributes to many of the cases of lung cancer worldwide. Most of this polonium is derived from lead-210 deposited on tobacco leaves from the atmosphere; the lead-210 is a product of radon-222 gas, much of which appears to originate from the decay of radium-226 from fertilizers applied to the tobacco soils.

The presence of polonium in tobacco smoke has been known since the early 1960s. Some of the world's biggest tobacco firms researched ways to remove the substance—to no avail—over a 40-year period. The results were never published.

Food

Polonium is found in the food chain, especially in seafood.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...