Search This Blog

Monday, November 18, 2019

Quartz

From Wikipedia, the free encyclopedia
 
Quartz
Quartz, Tibet.jpg
Quartz crystal cluster from Tibet
General
Categoryoxide mineral
Formula
(repeating unit)
SiO2
Strunz classification4.DA.05 (Oxides)
Dana classification75.01.03.01 (tectosilicates)
Crystal systemα-quartz: trigonal
β-quartz: hexagonal
Crystal classα-quartz: trapezohedral (class 3 2); β-quartz: trapezohedral (class 6 2 2)
Unit cella = 4.9133 Å, c = 5.4053 Å; Z=3
Identification
Formula mass60.083 g·mol−1
ColorColorless through various colors to black
Crystal habit6-sided prism ending in 6-sided pyramid (typical), drusy, fine-grained to microcrystalline, massive
TwinningCommon Dauphine law, Brazil law and Japan law
Cleavage{0110} Indistinct
FractureConchoidal
TenacityBrittle
Mohs scale hardness7 – lower in impure varieties (defining mineral)
LusterVitreous – waxy to dull when massive
StreakWhite
DiaphaneityTransparent to nearly opaque
Specific gravity2.65; variable 2.59–2.63 in impure varieties
Optical propertiesUniaxial (+)
Refractive indexnω = 1.543–1.545
nε = 1.552–1.554
Birefringence+0.009 (B-G interval)
PleochroismNone
Melting point1670 °C (β tridymite) 1713 °C (β cristobalite)
SolubilityInsoluble at STP; 1 ppmmass at 400 °C and 500 lb/in2 to 2600 ppmmass at 500 °C and 1500 lb/in2
Other characteristicslattice: hexagonal, Piezoelectric, may be triboluminescent, chiral (hence optically active if not racemic)

Quartz is a hard, crystalline mineral composed of silicon and oxygen atoms. The atoms are linked in a continuous framework of SiO4 silicon–oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical formula of SiO2. Quartz is the second most abundant mineral in Earth's continental crust, behind feldspar.

Quartz exists in two forms, the normal α-quartz and the high-temperature β-quartz, both of which are chiral. The transformation from α-quartz to β-quartz takes place abruptly at 573 °C (846 K). Since the transformation is accompanied by a significant change in volume, it can easily induce fracturing of ceramics or rocks passing through this temperature threshold.

There are many different varieties of quartz, several of which are semi-precious gemstones. Since antiquity, varieties of quartz have been the most commonly used minerals in the making of jewelry and hardstone carvings, especially in Eurasia.

Etymology

The word "quartz" is derived from the German word "Quarz", which had the same form in the first half of the 14th century in Middle High German in East Central German and which came from the Polish dialect term kwardy, which corresponds to the Czech term tvrdý ("hard").

The Ancient Greeks referred to quartz as κρύσταλλος (krustallos) derived from the Ancient Greek κρύος (kruos) meaning "icy cold", because some philosophers (including Theophrastus) apparently believed the mineral to be a form of supercooled ice. Today, the term rock crystal is sometimes used as an alternative name for the purest form of quartz.

Crystal habit and structure

Quartz mineral embedded in limestone (top right of the sample), easily identifiable by its hexagonal form. It cannot be scratched by steel (see Mohs scale).
 
Quartz belongs to the trigonal crystal system. The ideal crystal shape is a six-sided prism terminating with six-sided pyramids at each end. In nature quartz crystals are often twinned (with twin right-handed and left-handed quartz crystals), distorted, or so intergrown with adjacent crystals of quartz or other minerals as to only show part of this shape, or to lack obvious crystal faces altogether and appear massive. Well-formed crystals typically form in a 'bed' that has unconstrained growth into a void; usually the crystals are attached at the other end to a matrix and only one termination pyramid is present. However, doubly terminated crystals do occur where they develop freely without attachment, for instance within gypsum. A quartz geode is such a situation where the void is approximately spherical in shape, lined with a bed of crystals pointing inward.

α-quartz crystallizes in the trigonal crystal system, space group P3121 or P3221 depending on the chirality. β-quartz belongs to the hexagonal system, space group P6222 and P6422, respectively. These space groups are truly chiral (they each belong to the 11 enantiomorphous pairs). Both α-quartz and β-quartz are examples of chiral crystal structures composed of achiral building blocks (SiO4 tetrahedra in the present case). The transformation between α- and β-quartz only involves a comparatively minor rotation of the tetrahedra with respect to one another, without change in the way they are linked.

Varieties (according to microstructure)

Although many of the varietal names historically arose from the color of the mineral, current scientific naming schemes refer primarily to the microstructure of the mineral. Color is a secondary identifier for the cryptocrystalline minerals, although it is a primary identifier for the macrocrystalline varieties.

Major varieties of quartz
Type Color & Description Transparent
Herkimer diamond Colorless Transparent
Rock crystal Colorless Transparent
Amethyst Purple to violet colored quartz Transparent
Citrine Yellow quartz ranging to reddish orange or brown, and occasionally greenish yellow Transparent
Ametrine A mix of amethyst and citrine with hues of purple/violet and yellow or orange/brown Transparent
Rose quartz Pink, may display diasterism Transparent
Chalcedony Fibrous, variously translucent, cryptocrystalline quartz occurring in many varieties.
The term is often used for white, cloudy, or lightly colored material intergrown with moganite.
Otherwise more specific names are used.

Carnelian Reddish orange chalcedony Translucent
Aventurine Quartz with tiny aligned inclusions (usually mica) that shimmer with aventurescence Translucent to opaque
Agate Multi-colored, curved or concentric banded chalcedony (cf. Onyx) Semi-translucent to translucent
Onyx Multi-colored, straight banded chalcedony or chert (cf. Agate) Semi-translucent to opaque
Jasper Opaque cryptocrystalline quartz, typically red to brown but often used for other colors Opaque
Milky quartz White, may display diasterism Translucent to opaque
Smoky quartz Light to dark gray, sometimes with a brownish hue Translucent to opaque
Tiger's eye Fibrous gold, red-brown or bluish colored chalcedony, exhibiting chatoyancy.
Prasiolite Mint green Transparent
Rutilated quartz Contains acicular (needle-like) inclusions of rutile
Dumortierite quartz Contains large amounts of dumortierite crystals

Varieties (according to color)

Quartz crystal demonstrating transparency
 
Pure quartz, traditionally called rock crystal or clear quartz, is colorless and transparent or translucent, and has often been used for hardstone carvings, such as the Lothair Crystal. Common colored varieties include citrine, rose quartz, amethyst, smoky quartz, milky quartz, and others. These color differentiations arise from chromophores which have been incorporated into the crystal structure of the mineral. Polymorphs of quartz include: α-quartz (low), β-quartz, tridymite, moganite, cristobalite, coesite, and stishovite.

The most important distinction between types of quartz is that of macrocrystalline (individual crystals visible to the unaided eye) and the microcrystalline or cryptocrystalline varieties (aggregates of crystals visible only under high magnification). The cryptocrystalline varieties are either translucent or mostly opaque, while the transparent varieties tend to be macrocrystalline. Chalcedony is a cryptocrystalline form of silica consisting of fine intergrowths of both quartz, and its monoclinic polymorph moganite. Other opaque gemstone varieties of quartz, or mixed rocks including quartz, often including contrasting bands or patterns of color, are agate, carnelian or sard, onyx, heliotrope, and jasper.

Amethyst

Amethyst is a form of quartz that ranges from a bright vivid violet to dark or dull lavender shade. The world's largest deposits of amethysts can be found in Brazil, Mexico, Uruguay, Russia, France, Namibia and Morocco. Sometimes amethyst and citrine are found growing in the same crystal. It is then referred to as ametrine. An amethyst is formed when there is iron in the area where it was formed.

Blue quartz

Blue quartz contains inclusions of fibrous magnesio-riebeckite or crocidolite.

Dumortierite quartz

Inclusions of the mineral dumortierite within quartz pieces often result in silky-appearing splotches with a blue hue, shades giving off purple and/or grey colors additionally being found. "Dumortierite quartz" (sometimes called "blue quartz") will sometimes feature contrasting light and dark color zones across the material. Interest in the certain quality forms of blue quartz as a collectible gemstone particularly arises in India and in the United States.

Citrine

Citrine is a variety of quartz whose color ranges from a pale yellow to brown due to ferric impurities. Natural citrines are rare; most commercial citrines are heat-treated amethysts or smoky quartzes. However, a heat-treated amethyst will have small lines in the crystal, as opposed to a natural citrine's cloudy or smokey appearance. It is nearly impossible to differentiate between cut citrine and yellow topaz visually, but they differ in hardness. Brazil is the leading producer of citrine, with much of its production coming from the state of Rio Grande do Sul. The name is derived from the Latin word citrina which means "yellow" and is also the origin of the word "citron". Sometimes citrine and amethyst can be found together in the same crystal, which is then referred to as ametrine. Citrine has been referred to as the "merchant's stone" or "money stone", due to a superstition that it would bring prosperity.

Citrine was first appreciated as a golden-yellow gemstone in Greece between 300 and 150 BC, during the Hellenistic Age. The yellow quartz was used prior to that to decorate jewelry and tools but it was not highly sought after.

Milky quartz

Milk quartz or milky quartz is the most common variety of crystalline quartz. The white color is caused by minute fluid inclusions of gas, liquid, or both, trapped during crystal formation, making it of little value for optical and quality gemstone applications.

Rose quartz

Rose quartz is a type of quartz which exhibits a pale pink to rose red hue. The color is usually considered as due to trace amounts of titanium, iron, or manganese, in the material. Some rose quartz contains microscopic rutile needles which produces an asterism in transmitted light. Recent X-ray diffraction studies suggest that the color is due to thin microscopic fibers of possibly dumortierite within the quartz.

Additionally, there is a rare type of pink quartz (also frequently called crystalline rose quartz) with color that is thought to be caused by trace amounts of phosphate or aluminium. The color in crystals is apparently photosensitive and subject to fading. The first crystals were found in a pegmatite found near Rumford, Maine, USA and in Minas Gerais, Brazil.

Smoky quartz

Smoky quartz is a gray, translucent version of quartz. It ranges in clarity from almost complete transparency to a brownish-gray crystal that is almost opaque. Some can also be black. The translucency results from natural irradiation creating free silicon within the crystal.

Prasiolite

Prasiolite, also known as vermarine, is a variety of quartz that is green in color. Since 1950, almost all natural prasiolite has come from a small Brazilian mine, but it is also seen in Lower Silesia in Poland. Naturally occurring prasiolite is also found in the Thunder Bay area of Canada. It is a rare mineral in nature; most green quartz is heat-treated amethyst.

Synthetic and artificial treatments

A synthetic quartz crystal grown by the hydrothermal method, about 19 cm long and weighing about 127 grams
 
Not all varieties of quartz are naturally occurring. Some clear quartz crystals can be treated using heat or gamma-irradiation to induce color where it would not otherwise have occurred naturally. Susceptibility to such treatments depends on the location from which the quartz was mined.

Prasiolite, an olive colored material, is produced by heat treatment; natural prasiolite has also been observed in Lower Silesia in Poland. Although citrine occurs naturally, the majority is the result of heat-treating amethyst or smoky quartz. Carnelian is widely heat-treated to deepen its color.

Because natural quartz is often twinned, synthetic quartz is produced for use in industry. Large, flawless, single crystals are synthesized in an autoclave via the hydrothermal process; emeralds are also synthesized in this fashion.

Like other crystals, quartz may be coated with metal vapors to give it an attractive sheen.

Occurrence

Granite rock in the cliff of Gros la Tête on Aride Island, Seychelles. The thin (1–3 cm wide) brighter layers are quartz veins, formed during the late stages of crystallization of granitic magmas. They are sometimes called "hydrothermal veins".
 
Quartz is a defining constituent of granite and other felsic igneous rocks. It is very common in sedimentary rocks such as sandstone and shale. It is a common constituent of schist, gneiss, quartzite and other metamorphic rocks. Quartz has the lowest potential for weathering in the Goldich dissolution series and consequently it is very common as a residual mineral in stream sediments and residual soils.

While the majority of quartz crystallizes from molten magma, much quartz also chemically precipitates from hot hydrothermal veins as gangue, sometimes with ore minerals like gold, silver and copper. Large crystals of quartz are found in magmatic pegmatites. Well-formed crystals may reach several meters in length and weigh hundreds of kilograms.

Naturally occurring quartz crystals of extremely high purity, necessary for the crucibles and other equipment used for growing silicon wafers in the semiconductor industry, are expensive and rare. A major mining location for high purity quartz is the Spruce Pine Gem Mine in Spruce Pine, North Carolina, United States. Quartz may also be found in Caldoveiro Peak, in Asturias, Spain.

The largest documented single crystal of quartz was found near Itapore, Goiaz, Brazil; it measured approximately 6.1×1.5×1.5 m and weighed 39,916 kilograms.

Related silica minerals

Tridymite and cristobalite are high-temperature polymorphs of SiO2 that occur in high-silica volcanic rocks. Coesite is a denser polymorph of SiO2 found in some meteorite impact sites and in metamorphic rocks formed at pressures greater than those typical of the Earth's crust. Stishovite is a yet denser and higher-pressure polymorph of SiO2 found in some meteorite impact sites. Lechatelierite is an amorphous silica glass SiO2 which is formed by lightning strikes in quartz sand.

History

The word "quartz" comes from the German About this soundQuarz, which is of Slavic origin (Czech miners called it křemen). Other sources attribute the word's origin to the Saxon word Querkluftertz, meaning cross-vein ore.

Quartz is the most common material identified as the mystical substance maban in Australian Aboriginal mythology. It is found regularly in passage tomb cemeteries in Europe in a burial context, such as Newgrange or Carrowmore in Ireland. The Irish word for quartz is grianchloch, which means 'sunstone'. Quartz was also used in Prehistoric Ireland, as well as many other countries, for stone tools; both vein quartz and rock crystal were knapped as part of the lithic technology of the prehistoric peoples.

While jade has been since earliest times the most prized semi-precious stone for carving in East Asia and Pre-Columbian America, in Europe and the Middle East the different varieties of quartz were the most commonly used for the various types of jewelry and hardstone carving, including engraved gems and cameo gems, rock crystal vases, and extravagant vessels. The tradition continued to produce objects that were very highly valued until the mid-19th century, when it largely fell from fashion except in jewelry. Cameo technique exploits the bands of color in onyx and other varieties.

Roman naturalist Pliny the Elder believed quartz to be water ice, permanently frozen after great lengths of time. (The word "crystal" comes from the Greek word κρύσταλλος, "ice".) He supported this idea by saying that quartz is found near glaciers in the Alps, but not on volcanic mountains, and that large quartz crystals were fashioned into spheres to cool the hands. This idea persisted until at least the 17th century. He also knew of the ability of quartz to split light into a spectrum.

In the 17th century, Nicolas Steno's study of quartz paved the way for modern crystallography. He discovered that regardless of a quartz crystal's size or shape, its long prism faces always joined at a perfect 60° angle.

Quartz's piezoelectric properties were discovered by Jacques and Pierre Curie in 1880. The quartz oscillator or resonator was first developed by Walter Guyton Cady in 1921. George Washington Pierce designed and patented quartz crystal oscillators in 1923. Warren Marrison created the first quartz oscillator clock based on the work of Cady and Pierce in 1927.

Efforts to synthesize quartz began in the mid nineteenth century as scientists attempted to create minerals under laboratory conditions that mimicked the conditions in which the minerals formed in nature: German geologist Karl Emil von Schafhäutl (1803–1890) was the first person to synthesize quartz when in 1845 he created microscopic quartz crystals in a pressure cooker. However, the quality and size of the crystals that were produced by these early efforts were poor.

By the 1930s, the electronics industry had become dependent on quartz crystals. The only source of suitable crystals was Brazil; however, World War II disrupted the supplies from Brazil, so nations attempted to synthesize quartz on a commercial scale. German mineralogist Richard Nacken (1884–1971) achieved some success during the 1930s and 1940s. After the war, many laboratories attempted to grow large quartz crystals. In the United States, the U.S. Army Signal Corps contracted with Bell Laboratories and with the Brush Development Company of Cleveland, Ohio to synthesize crystals following Nacken's lead. (Prior to World War II, Brush Development produced piezoelectric crystals for record players.) By 1948, Brush Development had grown crystals that were 1.5 inches (3.8 cm) in diameter, the largest to date. By the 1950s, hydrothermal synthesis techniques were producing synthetic quartz crystals on an industrial scale, and today virtually all the quartz crystal used in the modern electronics industry is synthetic.

Piezoelectricity

Some types of quartz crystals have piezoelectric properties; they develop an electric potential upon the application of mechanical stress. An early use of this property of quartz crystals was in phonograph pickups. One of the most common piezoelectric uses of quartz today is as a crystal oscillator. The quartz clock is a familiar device using the mineral. The resonant frequency of a quartz crystal oscillator is changed by mechanically loading it, and this principle is used for very accurate measurements of very small mass changes in the quartz crystal microbalance and in thin-film thickness monitors.

Mica

From Wikipedia, the free encyclopedia
 
Mica
Mica (6911818878).jpg
General
CategoryPhyllosilicates
Formula
(repeating unit)
AB2–3(X, Si)4O10(O, F, OH)2
Identification
Colorpurple, rosy, silver, gray (lepidolite); dark green, brown, black (biotite); yellowish-brown, green-white (phlogopite); colorless, transparent (muscovite)
CleavageAlmost perfect
Fractureflaky
Mohs scale hardness2.5–4 (lepidolite); 2.5–3 biotite; 2.5–3 phlogopite; 2–2.5 muscovite
Lusterpearly, vitreous
StreakWhite, colorless
Specific gravity2.8–3.0
Diagnostic featurescleavage

Sheets of mica
 
Photomicrographs of a thin section containing phlogopite. In cross-polarized light on left, plane-polarized light on right.
 
Dark mica from Eastern Ontario
 
The mica group of sheet silicate (phyllosilicate) minerals includes several closely related materials having nearly perfect basal cleavage. All are monoclinic, with a tendency towards pseudohexagonal crystals, and are similar in chemical composition. The nearly perfect cleavage, which is the most prominent characteristic of mica, is explained by the hexagonal sheet-like arrangement of its atoms.

The word mica is derived from the Latin word mica, meaning a crumb, and probably influenced by micare, to glitter.

Classification

Chemically, micas can be given the general formula
X2Y4–6Z8O20(OH, F)4,
in which
X is K, Na, or Ca or less commonly Ba, Rb, or Cs;
Y is Al, Mg, or Fe or less commonly Mn, Cr, Ti, Li, etc.;
Z is chiefly Si or Al, but also may include Fe3+ or Ti.
Structurally, micas can be classed as dioctahedral (Y = 4) and trioctahedral (Y = 6). If the X ion is K or Na, the mica is a common mica, whereas if the X ion is Ca, the mica is classed as a brittle mica.

Dioctahedral micas

Trioctahedral micas

Common micas:
Brittle micas:

Interlayer-deficient micas

Very fine-grained micas, which typically show more variation in ion and water content, are informally termed "clay micas". They include:
  • Hydro-muscovite with H3O+ along with K in the X site;
  • Illite with a K deficiency in the X site and correspondingly more Si in the Z site;
  • Phengite with Mg or Fe2+ substituting for Al in the Y site and a corresponding increase in Si in the Z site.

Occurrence and production

Mica is widely distributed and occurs in igneous, metamorphic and sedimentary regimes. Large crystals of mica used for various applications are typically mined from graniticpegmatites
 
Until the 19th century, large crystals of mica were quite rare and expensive as a result of the limited supply in Europe. However, their price dramatically dropped when large reserves were found and mined in Africa and South America during the early 19th century. The largest documented single crystal of mica (phlogopite) was found in Lacey Mine, Ontario, Canada; it measured 10 m × 4.3 m × 4.3 m (33 ft × 14 ft × 14 ft) and weighed about 330 tonnes (320 long tons; 360 short tons).[8] Similar-sized crystals were also found in Karelia, Russia.

The British Geological Survey reported that as of 2005, Koderma district in Jharkhand state in India had the largest deposits of mica in the world. China was the top producer of mica with almost a third of the global share, closely followed by the US, South Korea and Canada. Large deposits of sheet mica were mined in New England from the 19th century to the 1970s. Large mines existed in Connecticut, New Hampshire, and Maine.

Scrap and flake mica is produced all over the world. In 2010, the major producers were Russia (100,000 tonnes), Finland (68,000 t), United States (53,000 t), South Korea (50,000 t), France (20,000 t) and Canada (15,000 t). The total global production was 350,000 t, although no reliable data were available for China. Most sheet mica was produced in India (3,500 t) and Russia (1,500 t). Flake mica comes from several sources: the metamorphic rock called schist as a byproduct of processing feldspar and kaolin resources, from placer deposits, and from pegmatites. Sheet mica is considerably less abundant than flake and scrap mica, and is occasionally recovered from mining scrap and flake mica. The most important sources of sheet mica are pegmatite deposits. Sheet mica prices vary with grade and can range from less than $1 per kilogram for low-quality mica to more than $2,000 per kilogram for the highest quality.

Properties and uses

The mica group represents 37 phyllosilicate minerals that have a layered or platy texture. The commercially important micas are muscovite and phlogopite, which are used in a variety of applications. Mica's value is based on several of its unique physical properties. The crystalline structure of mica forms layers that can be split or delaminated into thin sheets usually causing foliation in rocks. These sheets are chemically inert, dielectric, elastic, flexible, hydrophilic, insulating, lightweight, platy, reflective, refractive, resilient, and range in opacity from transparent to opaque. Mica is stable when exposed to electricity, light, moisture, and extreme temperatures. It has superior electrical properties as an insulator and as a dielectric, and can support an electrostatic field while dissipating minimal energy in the form of heat; it can be split very thin (0.025 to 0.125 millimeters or thinner) while maintaining its electrical properties, has a high dielectric breakdown, is thermally stable to 500 °C (932 °F), and is resistant to corona discharge. Muscovite, the principal mica used by the electrical industry, is used in capacitors that are ideal for high frequency and radio frequency. Phlogopite mica remains stable at higher temperatures (to 900 °C (1,650 °F)) and is used in applications in which a combination of high-heat stability and electrical properties is required. Muscovite and phlogopite are used in sheet and ground forms.

Ground mica

The leading use of dry-ground mica in the US is in the joint compound for filling and finishing seams and blemishes in gypsum wallboard (drywall). The mica acts as a filler and extender, provides a smooth consistency, improves the workability of the compound, and provides resistance to cracking. In 2008, joint compound accounted for 54% of dry-ground mica consumption. In the paint industry, ground mica is used as a pigment extender that also facilitates suspension, reduces chalking, prevents shrinking and shearing of the paint film, increases the resistance of the paint film to water penetration and weathering and brightens the tone of colored pigments. Mica also promotes paint adhesion in aqueous and oleoresinous formulations. Consumption of dry-ground mica in paint, the second-ranked use, accounted for 22% of the dry-ground mica used in 2008.

Ground mica is used in the well-drilling industry as an additive to drilling fluids. The coarsely ground mica flakes help prevent the loss of circulation by sealing porous sections of the drill hole. Well drilling muds accounted for 15% of dry-ground mica use in 2008. The plastics industry used dry-ground mica as an extender and filler, especially in parts for automobiles as lightweight insulation to suppress sound and vibration. Mica is used in plastic automobile fascia and fenders as a reinforcing material, providing improved mechanical properties and increased dimensional stability, stiffness, and strength. Mica-reinforced plastics also have high-heat dimensional stability, reduced warpage, and the best surface properties of any filled plastic composite. In 2008, consumption of dry-ground mica in plastic applications accounted for 2% of the market. The rubber industry used ground mica as an inert filler and mold release compound in the manufacture of molded rubber products such as tires and roofing. The platy texture acts as an anti-blocking, anti-sticking agent. Rubber mold lubricant accounted for 1.5% of the dry-ground mica used in 2008. As a rubber additive, mica reduces gas permeation and improves resiliency.

Dry-ground mica is used in the production of rolled roofing and asphalt shingles, where it serves as a surface coating to prevent sticking of adjacent surfaces. The coating is not absorbed by freshly manufactured roofing because mica's platy structure is unaffected by the acid in asphalt or by weather conditions. Mica is used in decorative coatings on wallpaper, concrete, stucco, and tile surfaces. It also is used as an ingredient in flux coatings on welding rods, in some special greases, and as coatings for core and mold release compounds, facing agents, and mold washes in foundry applications. Dry-ground phlogopite mica is used in automotive brake linings and clutch plates to reduce noise and vibration (asbestos substitute); as sound-absorbing insulation for coatings and polymer systems; in reinforcing additives for polymers to increase strength and stiffness and to improve stability to heat, chemicals, and ultraviolet (UV) radiation; in heat shields and temperature insulation; in industrial coating additive to decrease the permeability of moisture and hydrocarbons; and in polar polymer formulations to increase the strength of epoxies, nylons, and polyesters.

Mica flakes embedded in a fresco for glitter
 
Wet-ground mica, which retains the brilliance of its cleavage faces, is used primarily in pearlescent paints by the automotive industry. Many metallic-looking pigments are composed of a substrate of mica coated with another mineral, usually titanium dioxide (TiO2). The resultant pigment produces a reflective color depending on the thickness of the coating. These products are used to produce automobile paint, shimmery plastic containers, high-quality inks used in advertising and security applications. In the cosmetics industry, its reflective and refractive properties make mica an important ingredient in blushes, eye liner, eye shadow, foundation, hair and body glitter, lipstick, lip gloss, mascara, moisturizing lotions, and nail polish. Some brands of toothpaste include powdered white mica. This acts as a mild abrasive to aid polishing of the tooth surface, and also adds a cosmetically pleasing, glittery shimmer to the paste. Mica is added to latex balloons to provide a colored shiny surface.

Mica is also used as an insulator in concrete block and home attics and can be poured into walls (usually in retrofitting uninsulated open top walls). Mica may also be used as a soil conditioner, especially in potting soil mixes and in gardening plots. Greases used for axles are composed of a compound of fatty oils to which mica, tar or graphite is added to increase the durability of the grease and give it a better surface.

Built-up mica

Muscovite and phlogopite splittings can be fabricated into various built-up mica products. Produced by mechanized or hand setting of overlapping splittings and alternate layers of binders and splittings, built-up mica is used primarily as an electrical insulation material. Mica insulation is used in high-temperature and fire-resistant power cables in aluminium plants, blast furnaces, critical wiring circuits (for example, defense systems, fire and security alarm systems, and surveillance systems), heaters and boilers, lumber kilns, metal smelters, and tanks and furnace wiring. Specific high-temperature mica-insulated wire and cable is rated to work for up to 15 minutes in molten aluminium, glass, and steel. Major products are bonding materials; flexible, heater, molding, and segment plates; mica paper; and tape.

Flexible plate is used in electric motor and generator armatures, field coil insulation, and magnet and commutator core insulation. Mica consumption in flexible plate was about 21 tonnes in 2008 in the US. Heater plate is used where high-temperature insulation is required. Molding plate is sheet mica from which V-rings are cut and stamped for use in insulating the copper segments from the steel shaft ends of a commutator. Molding plate is also fabricated into tubes and rings for insulation in armatures, motor starters, and transformers. Segment plate acts as insulation between the copper commutator segments of direct-current universal motors and generators. Phlogopite built-up mica is preferred because it wears at the same rate as the copper segments. Although muscovite has a greater resistance to wear, it causes uneven ridges that may interfere with the operation of a motor or generator. Consumption of segment plate was about 149 t in 2008 in the US. Some types of built-up mica have the bonded splittings reinforced with cloth, glass, linen, muslin, plastic, silk, or special paper. These products are very flexible and are produced in wide, continuous sheets that are either shipped, rolled, or cut into ribbons or tapes, or trimmed to specified dimensions. Built-up mica products may also be corrugated or reinforced by multiple layering. In 2008, about 351 t of built-up mica was consumed in the US, mostly for molding plates (19%) and segment plates (42%).

Sheet mica

Mica insulator items
 
Muscovite windows
 
Technical grade sheet mica is used in electrical components, electronics, in atomic force microscopy and as window sheets. Other uses include diaphragms for oxygen-breathing equipment, marker dials for navigation compasses, optical filters, pyrometers, thermal regulators, stove and kerosene heater windows, radiation aperture covers for microwave ovens, and micathermic heater elements. Mica is birefringent and is therefore commonly used to make quarter and half wave plates. Specialized applications for sheet mica are found in aerospace components in air-, ground-, and sea-launched missile systems, laser devices, medical electronics and radar systems. Mica is mechanically stable in micrometer-thin sheets which are relatively transparent to radiation (such as alpha particles) while being impervious to most gases. It is therefore used as a window on radiation detectors such as Geiger-Müller tubes

In 2008, mica splittings represented the largest part of the sheet mica industry in the United States. Consumption of muscovite and phlogopite splittings was about 308 t in 2008. Muscovite splittings from India accounted for essentially all US consumption. The remainder was primarily imported from Madagascar.

Small squared pieces of sheet mica are also used in the traditional Japanese Kodo ceremony to burn incense: A burning piece of coal is placed inside a cone made of white ash. The sheet of mica is placed on top, acting as a separator between the heat source and the incense, in order to spread the fragrance without burning it.

Electrical and electronic

Sheet mica is used principally in the electronic and electrical industries. Its usefulness in these applications is derived from its unique electrical and thermal properties and its mechanical properties, which allow it to be cut, punched, stamped, and machined to close tolerances. Specifically, mica is unusual in that it is a good electrical insulator at the same time as being a good thermal conductor. The leading use of block mica is as an electrical insulator in electronic equipment. High-quality block mica is processed to line the gauge glasses of high-pressure steam boilers because of its flexibility, transparency, and resistance to heat and chemical attack. Only high-quality muscovite film mica, which is variously called India ruby mica or ruby muscovite mica, is used as a dielectric in capacitors. The highest quality mica film is used to manufacture capacitors for calibration standards. The next lower grade is used in transmitting capacitors. Receiving capacitors use a slightly lower grade of high-quality muscovite.

Mica sheets are used to provide structure for heating wire (such as in Kanthal or Nichrome) in heating elements and can withstand up to 900 °C (1,650 °F).

Peepholes

Thin transparent sheets of mica were used for peepholes in boilers, lanterns, stoves, and kerosene heaters because they were less likely to shatter than glass when exposed to extreme temperature gradients. Such peepholes were also used in "isinglass curtains" in horse-drawn carriages and early 20th-century cars.

Atomic force microscopy

Another use of mica is as a substrate in the production of ultraflat, thin-film surfaces, e.g. gold surfaces. Although the deposited film surface is still rough due to deposition kinetics, the back side of the film at the mica-film interface is ultraflat once the film is removed from the substrate. Freshly-cleaved mica surfaces have been used as clean imaging substrates in atomic force microscopy, enabling for example the imaging of bismuth films, plasma glycoproteins, membrane bilayers, and DNA molecules.

Early history

Hand carved from mica from the Hopewell tradition
 
Human use of mica dates back to prehistoric times. Mica was known to ancient Indian, Egyptian, Greek and Roman and Chinese civilizations, as well as the Aztec civilization of the New World.

The earliest use of mica has been found in cave paintings created during the Upper Paleolithic period (40,000 BC to 10,000 BC). The first hues were red (iron oxide, hematite, or red ochre) and black (manganese dioxide, pyrolusite), though black from juniper or pine carbons has also been discovered. White from kaolin or mica was used occasionally. 

A few kilometers northeast of Mexico City stands the ancient site of Teotihuacan. The most striking structure of Teotihuacan is the towering Pyramid of the Sun. The pyramid contained considerable amounts of mica in layers up to 30 cm (12 in) thick.

Natural mica was and still is used by the Taos and Picuris Pueblos Indians in north-central New Mexico to make pottery. The pottery is made from weathered Precambrian mica schist, and has flecks of mica throughout the vessels. Tewa Pueblo pottery is made by coating the clay with mica to provide a dense, glittery micaceous finish over the entire object.

Mica flakes (called abrak in Urdu and written as ابرک) are also used in Pakistan to embellish women's summer clothes, especially dupattas (long light-weight scarves, often colorful and matching the dress). Thin mica flakes are added to a hot starch water solution, and the dupatta is dipped in this water mixture for 3–5 minutes. Then it is hung to air dry.

Mica powder

Throughout the ages, fine powders of mica have been used for various purposes, including decorations. Powdered mica glitter is used to decorate traditional water clay pots in India, Pakistan and Bangladesh; it is also used on traditional Pueblo pottery, though not restricted to use on water pots in this case. The gulal and abir (colored powders) used by North Indian Hindus during the festive season of Holi contain fine crystals of mica to create a sparkling effect. The majestic Padmanabhapuram Palace, 65 km (40 mi) from Trivandrum in India, has colored mica windows. Mica powder is also used as a decoration in traditional Japanese woodblock printmaking, as when applied to wet ink and allowed to dry it sparkles and reflects light.

Medicine

Ayurveda, the Hindu system of ancient medicine prevalent in India, includes the purification and processing of mica in preparing Abhraka bhasma, which is employed in treating diseases of the respiratory and digestive tracts.

Health impact

Mica dust in the workplace is regarded as a hazardous substance for respiratory exposure above certain concentrations.

United States

The Occupational Safety and Health Administration (OSHA) has set the legal limit (permissible exposure limit) for mica exposure in the workplace as 20 mppcf over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 3 mg/m3 respiratory exposure over an 8-hour workday. At levels of 1,500 mg/m3, mica is immediately dangerous to life and health.

Substitutes

Some lightweight aggregates, such as diatomite, perlite, and vermiculite, may be substituted for ground mica when used as filler. Ground synthetic fluorophlogopite, a fluorine-rich mica, may replace natural ground mica for uses that require thermal and electrical properties of mica. Many materials can be substituted for mica in numerous electrical, electronic, and insulation uses. Substitutes include acrylate polymers, cellulose acetate, fiberglass, fishpaper, nylon, phenolics, polycarbonate, polyester, styrene, vinyl-PVC, and vulcanized fiber. Mica paper made from scrap mica can be substituted for sheet mica in electrical and insulation applications.

Personality theories of addiction

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Personality_theories_of_addiction ...