Search This Blog

Tuesday, April 13, 2021

Biomedicine

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Biomedicine

Biomedicine (also referred to as Western medicine, mainstream medicine or conventional medicine) is a branch of medical science that applies biological and physiological principles to clinical practice. Biomedicine stresses standardized, evidence-based treatment validated through biological research, with treatment administered via formally trained doctors, nurses, and other such licensed practitioners.

Biomedicine also can relate to many other categories in health and biological related fields. It has been the dominant system of medicine in the Western world for more than a century.

It includes many biomedical disciplines and areas of specialty that typically contain the "bio-" prefix such as molecular biology, biochemistry, biotechnology, cell biology, embryology, nanobiotechnology, biological engineering, laboratory medical biology, cytogenetics, genetics, gene therapy, bioinformatics, biostatistics, systems biology, neuroscience, microbiology, virology, immunology, parasitology, physiology, pathology, anatomy, toxicology, and many others that generally concern life sciences as applied to medicine.

Overview

Biomedicine is the cornerstone of modern health care and laboratory diagnostics. It concerns a wide range of scientific and technological approaches: from in vitro diagnostics to in vitro fertilisation, from the molecular mechanisms of cystic fibrosis to the population dynamics of the HIV virus, from the understanding of molecular interactions to the study of carcinogenesis, from a single-nucleotide polymorphism (SNP) to gene therapy.

Biomedicine is based on molecular biology and combines all issues of developing molecular medicine into large-scale structural and functional relationships of the human genome, transcriptome, proteome, physiome and metabolome with the particular point of view of devising new technologies for prediction, diagnosis and therapy 

Biomedicine involves the study of (patho-) physiological processes with methods from biology and physiology. Approaches range from understanding molecular interactions to the study of the consequences at the in vivo level. These processes are studied with the particular point of view of devising new strategies for diagnosis and therapy.

Depending on the severity of the disease, biomedicine pinpoints a problem within a patient and fixes the problem through medical intervention. Medicine focuses on curing diseases rather than improving one's health.

In social sciences biomedicine is described somewhat differently. Through an anthropological lens biomedicine extends beyond the realm of biology and scientific facts; it is a socio-cultural system which collectively represents reality. While biomedicine is traditionally thought to have no bias due to the evidence-based practices, Gaines & Davis-Floyd (2004) highlight that biomedicine itself has a cultural basis and this is because biomedicine reflects the norms and values of its creators.

Molecular biology

Molecular biology is the process of synthesis and regulation of a cell's DNA, RNA, and protein. Molecular biology consists of different techniques including Polymerase chain reaction, Gel electrophoresis, and macromolecule blotting to manipulate DNA.

Polymerase chain reaction is done by placing a mixture of the desired DNA, DNA polymerase, primers, and nucleotide bases into a machine. The machine heats up and cools down at various temperatures to break the hydrogen bonds binding the DNA and allows the nucleotide bases to be added onto the two DNA templates after it has been separated.

Gel electrophoresis is a technique used to identify similar DNA between two unknown samples of DNA. This process is done by first preparing an agarose gel. This jelly-like sheet will have wells for DNA to be poured into. An electric current is applied so that the DNA, which is negatively charged due to its phosphate groups is attracted to the positive electrode. Different rows of DNA will move at different speeds because some DNA pieces are larger than others. Thus if two DNA samples show a similar pattern on the gel electrophoresis, one can tell that these DNA samples match.

Macromolecule blotting is a process performed after gel electrophoresis. An alkaline solution is prepared in a container. A sponge is placed into the solution and an agaros gel is placed on top of the sponge. Next, nitrocellulose paper is placed on top of the agarose gel and a paper towels are added on top of the nitrocellulose paper to apply pressure. The alkaline solution is drawn upwards towards the paper towel. During this process, the DNA denatures in the alkaline solution and is carried upwards to the nitrocellulose paper. The paper is then placed into a plastic bag and filled with a solution full of the DNA fragments, called the probe, found in the desired sample of DNA. The probes anneal to the complementary DNA of the bands already found on the nitrocellulose sample. Afterwards, probes are washed off and the only ones present are the ones that have annealed to complementary DNA on the paper. Next the paper is stuck onto an x ray film. The radioactivity of the probes creates black bands on the film, called an autoradiograph. As a result, only similar patterns of DNA to that of the probe are present on the film. This allows us the compare similar DNA sequences of multiple DNA samples. The overall process results in a precise reading of similarities in both similar and different DNA sample.

Biochemistry

Biochemistry is the science of the chemical processes which takes place within living organisms. Living organisms need essential elements to survive, among which are carbon, hydrogen, nitrogen, oxygen, calcium, and phosphorus. These elements make up the four macromolecules that living organisms need to survive: carbohydrates, lipids, proteins, and nucleic acids.

Carbohydrates, made up of carbon, hydrogen, and oxygen, are energy-storing molecules. The simplest carbohydrate is glucose,

C6H12O6, is used in cellular respiration to produce ATP, adenosine triphosphate, which supplies cells with energy.

Proteins are chains of amino acids that function, among other things, to contract skeletal muscle, as catalysts, as transport molecules, and as storage molecules. Protein catalysts can facilitate biochemical processes by lowering the activation energy of a reaction. Hemoglobins are also proteins, carrying oxygen to an organism's cells.

Lipids, also known as fats, are small molecules derived from biochemical subunits from either the ketoacyl or isoprene groups. Creating eight distinct categories: fatty acids, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, and polyketides (derived from condensation of ketoacyl subunits); and sterol lipids and prenol lipids (derived from condensation of isoprene subunits). Their primary purpose is to store energy over the long term. Due to their unique structure, lipids provide more than twice the amount of energy that carbohydrates do. Lipids can also be used as insulation. Moreover, lipids can be used in hormone production to maintain a healthy hormonal balance and provide structure to cell membranes.

Nucleic acids are a key component of DNA, the main genetic information-storing substance, found oftentimes in the cell nucleus, and controls the metabolic processes of the cell. DNA consists of two complementary antiparallel strands consisting of varying patterns of nucleotides. RNA is a single strand of DNA, which is transcribed from DNA and used for DNA translation, which is the process for making proteins out of RNA sequences.

 

Biomedical engineering

From Wikipedia, the free encyclopedia

Ultrasound representation of urinary bladder (black butterfly-like shape) a hyperplastic prostate. An example of practical science and medical science working together.
 
Hemodialysis a process of purifying the blood of a person whose kidneys are not working normally.

Biomedical engineering (BME) or medical engineering is the application of engineering principles and design concepts to medicine and biology for healthcare purposes (e.g., diagnostic or therapeutic). BME is also traditionally known as "bioengineering", but this term has come to also refer to biological engineering. This field seeks to close the gap between engineering and medicine, combining the design and problem-solving skills of engineering with medical biological sciences to advance health care treatment, including diagnosis, monitoring, and therapy. Also included under the scope of a biomedical engineer is the management of current medical equipment in hospitals while adhering to relevant industry standards. This involves making equipment recommendations, procurement, routine testing, and preventive maintenance, a role also known as a Biomedical Equipment Technician (BMET) or as clinical engineering.

Biomedical engineering has recently emerged as its own study, as compared to many other engineering fields. Such an evolution is common as a new field transitions from being an interdisciplinary specialization among already-established fields to being considered a field in itself. Much of the work in biomedical engineering consists of research and development, spanning a broad array of subfields (see below). Prominent biomedical engineering applications include the development of biocompatible prostheses, various diagnostic and therapeutic medical devices ranging from clinical equipment to micro-implants, common imaging equipment such as MRIs and EKG/ECGs, regenerative tissue growth, pharmaceutical drugs and therapeutic biologicals.

Bioinformatics

Example of an approximately 40,000 probe spotted oligo microarray with enlarged inset to show detail.

Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyze and interpret biological data.

Bioinformatics is considered both an umbrella term for the body of biological studies that use computer programming as part of their methodology, as well as a reference to specific analysis "pipelines" that are repeatedly used, particularly in the field of genomics. Common uses of bioinformatics include the identification of candidate genes and nucleotides (SNPs). Often, such identification is made with the aim of better understanding the genetic basis of disease, unique adaptations, desirable properties (esp. in agricultural species), or differences between populations. In a less formal way, bioinformatics also tries to understand the organisational principles within nucleic acid and protein sequences.

Biomechanics

Biomechanics is the study of the structure and function of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles, using the methods of mechanics.

Biomaterial

A biomaterial is any matter, surface, or construct that interacts with living systems. As a science, biomaterials is about fifty years old. The study of biomaterials is called biomaterials science or biomaterials engineering. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering and materials science.

Biomedical optics

Biomedical optics refers to the interaction of biological tissue and light, and how this can be exploited for sensing, imaging, and treatment.

Tissue engineering

Tissue engineering, like genetic engineering (see below), is a major segment of biotechnology – which overlaps significantly with BME.

One of the goals of tissue engineering is to create artificial organs (via biological material) for patients that need organ transplants. Biomedical engineers are currently researching methods of creating such organs. Researchers have grown solid jawbones and tracheas from human stem cells towards this end. Several artificial urinary bladders have been grown in laboratories and transplanted successfully into human patients. Bioartificial organs, which use both synthetic and biological component, are also a focus area in research, such as with hepatic assist devices that use liver cells within an artificial bioreactor construct.

Micromass cultures of C3H-10T1/2 cells at varied oxygen tensions stained with Alcian blue.

Genetic engineering

Genetic engineering, recombinant DNA technology, genetic modification/manipulation (GM) and gene splicing are terms that apply to the direct manipulation of an organism's genes. Unlike traditional breeding, an indirect method of genetic manipulation, genetic engineering utilizes modern tools such as molecular cloning and transformation to directly alter the structure and characteristics of target genes. Genetic engineering techniques have found success in numerous applications. Some examples include the improvement of crop technology (not a medical application, but see biological systems engineering), the manufacture of synthetic human insulin through the use of modified bacteria, the manufacture of erythropoietin in hamster ovary cells, and the production of new types of experimental mice such as the oncomouse (cancer mouse) for research.

Neural engineering

Neural engineering (also known as neuroengineering) is a discipline that uses engineering techniques to understand, repair, replace, or enhance neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs.

Pharmaceutical engineering

Pharmaceutical engineering is an interdisciplinary science that includes drug engineering, novel drug delivery and targeting, pharmaceutical technology, unit operations of Chemical Engineering, and Pharmaceutical Analysis. It may be deemed as a part of pharmacy due to its focus on the use of technology on chemical agents in providing better medicinal treatment.

Medical devices

Schematic of silicone membrane oxygenator

This is an extremely broad category—essentially covering all health care products that do not achieve their intended results through predominantly chemical (e.g., pharmaceuticals) or biological (e.g., vaccines) means, and do not involve metabolism.

A medical device is intended for use in:

  • the diagnosis of disease or other conditions
  • in the cure, mitigation, treatment, or prevention of disease.

Some examples include pacemakers, infusion pumps, the heart-lung machine, dialysis machines, artificial organs, implants, artificial limbs, corrective lenses, cochlear implants, ocular prosthetics, facial prosthetics, somato prosthetics, and dental implants.

Biomedical instrumentation amplifier schematic used in monitoring low voltage biological signals, an example of a biomedical engineering application of electronic engineering to electrophysiology.

Stereolithography is a practical example of medical modeling being used to create physical objects. Beyond modeling organs and the human body, emerging engineering techniques are also currently used in the research and development of new devices for innovative therapies, treatments, patient monitoring, of complex diseases.

Medical devices are regulated and classified (in the US) as follows (see also Regulation):

  • Class I devices present minimal potential for harm to the user and are often simpler in design than Class II or Class III devices. Devices in this category include tongue depressors, bedpans, elastic bandages, examination gloves, and hand-held surgical instruments and other similar types of common equipment.
  • Class II devices are subject to special controls in addition to the general controls of Class I devices. Special controls may include special labeling requirements, mandatory performance standards, and postmarket surveillance. Devices in this class are typically non-invasive and include X-ray machines, PACS, powered wheelchairs, infusion pumps, and surgical drapes.
  • Class III devices generally require premarket approval (PMA) or premarket notification (510k), a scientific review to ensure the device's safety and effectiveness, in addition to the general controls of Class I. Examples include replacement heart valves, hip and knee joint implants, silicone gel-filled breast implants, implanted cerebellar stimulators, implantable pacemaker pulse generators and endosseous (intra-bone) implants.

Medical imaging

Medical/biomedical imaging is a major segment of medical devices. This area deals with enabling clinicians to directly or indirectly "view" things not visible in plain sight (such as due to their size, and/or location). This can involve utilizing ultrasound, magnetism, UV, radiology, and other means.

An MRI scan of a human head, an example of a biomedical engineering application of electrical engineering to diagnostic imaging. Click here to view an animated sequence of slices.

Imaging technologies are often essential to medical diagnosis, and are typically the most complex equipment found in a hospital including: fluoroscopy, magnetic resonance imaging (MRI), nuclear medicine, positron emission tomography (PET), PET-CT scans, projection radiography such as X-rays and CT scans, tomography, ultrasound, optical microscopy, and electron microscopy.

Implants

An implant is a kind of medical device made to replace and act as a missing biological structure (as compared with a transplant, which indicates transplanted biomedical tissue). The surface of implants that contact the body might be made of a biomedical material such as titanium, silicone or apatite depending on what is the most functional. In some cases, implants contain electronics, e.g. artificial pacemakers and cochlear implants. Some implants are bioactive, such as subcutaneous drug delivery devices in the form of implantable pills or drug-eluting stents.

Artificial limbs: The right arm is an example of a prosthesis, and the left arm is an example of myoelectric control.
 
A prosthetic eye, an example of a biomedical engineering application of mechanical engineering and biocompatible materials to ophthalmology.

Bionics

Artificial body part replacements are one of the many applications of bionics. Concerned with the intricate and thorough study of the properties and function of human body systems, bionics may be applied to solve some engineering problems. Careful study of the different functions and processes of the eyes, ears, and other organs paved the way for improved cameras, television, radio transmitters and receivers, and many other tools.

Biomedical sensors

In recent years biomedical sensors based in microwave technology have gained more attention. Different sensors can be manufactured for specific uses in both diagnosing and monitoring disease conditions, for example microwave sensors can be used as a complementary technique to X-ray to monitor lower extremity trauma. The sensor monitor the dielectric properties and can thus notice change in tissue (bone, muscle, fat etc.) under the skin so when measuring at different times during the healing process the response from the sensor will change as the trauma heals.

Clinical engineering

Clinical engineering is the branch of biomedical engineering dealing with the actual implementation of medical equipment and technologies in hospitals or other clinical settings. Major roles of clinical engineers include training and supervising biomedical equipment technicians (BMETs), selecting technological products/services and logistically managing their implementation, working with governmental regulators on inspections/audits, and serving as technological consultants for other hospital staff (e.g. physicians, administrators, I.T., etc.). Clinical engineers also advise and collaborate with medical device producers regarding prospective design improvements based on clinical experiences, as well as monitor the progression of the state of the art so as to redirect procurement patterns accordingly.

Their inherent focus on practical implementation of technology has tended to keep them oriented more towards incremental-level redesigns and re configurations, as opposed to revolutionary research & development or ideas that would be many years from clinical adoption; however, there is a growing effort to expand this time-horizon over which clinical engineers can influence the trajectory of biomedical innovation. In their various roles, they form a "bridge" between the primary designers and the end-users, by combining the perspectives of being both close to the point-of-use, while also trained in product and process engineering. Clinical engineering departments will sometimes hire not just biomedical engineers, but also industrial/systems engineers to help address operations research/optimization, human factors, cost analysis, etc. Also see safety engineering for a discussion of the procedures used to design safe systems. Clinical engineering department is constructed with a manager, supervisor, engineer and technician. One engineer per eighty beds in the hospital is the ratio. Clinical engineers is also authorized audit pharmaceutical and associated stores to monitor FDA recalls of invasive items.

Rehabilitation engineering

Rehabilitation engineering is the systematic application of engineering sciences to design, develop, adapt, test, evaluate, apply, and distribute technological solutions to problems confronted by individuals with disabilities. Functional areas addressed through rehabilitation engineering may include mobility, communications, hearing, vision, and cognition, and activities associated with employment, independent living, education, and integration into the community.

While some rehabilitation engineers have master's degrees in rehabilitation engineering, usually a subspecialty of Biomedical engineering, most rehabilitation engineers have an undergraduate or graduate degrees in biomedical engineering, mechanical engineering, or electrical engineering. A Portuguese university provides an undergraduate degree and a master's degree in Rehabilitation Engineering and Accessibility. Qualification to become a Rehab' Engineer in the UK is possible via a University BSc Honours Degree course such as Health Design & Technology Institute, Coventry University.

The rehabilitation process for people with disabilities often entails the design of assistive devices such as Walking aids intended to promote the inclusion of their users into the mainstream of society, commerce, and recreation.

Schematic representation of a normal ECG trace showing sinus rhythm; an example of widely used clinical medical equipment (operates by applying electronic engineering to electrophysiology and medical diagnosis).

Regulatory issues

Regulatory issues have been constantly increased in the last decades to respond to the many incidents caused by devices to patients. For example, from 2008 to 2011, in US, there were 119 FDA recalls of medical devices classified as class I. According to U.S. Food and Drug Administration (FDA), Class I recall is associated to "a situation in which there is a reasonable probability that the use of, or exposure to, a product will cause serious adverse health consequences or death"

Regardless of the country-specific legislation, the main regulatory objectives coincide worldwide. For example, in the medical device regulations, a product must be: 1) safe and 2) effective and 3) for all the manufactured devices

A product is safe if patients, users and third parties do not run unacceptable risks of physical hazards (death, injuries, ...) in its intended use. Protective measures have to be introduced on the devices to reduce residual risks at acceptable level if compared with the benefit derived from the use of it.

A product is effective if it performs as specified by the manufacturer in the intended use. Effectiveness is achieved through clinical evaluation, compliance to performance standards or demonstrations of substantial equivalence with an already marketed device.

The previous features have to be ensured for all the manufactured items of the medical device. This requires that a quality system shall be in place for all the relevant entities and processes that may impact safety and effectiveness over the whole medical device lifecycle.

The medical device engineering area is among the most heavily regulated fields of engineering, and practicing biomedical engineers must routinely consult and cooperate with regulatory law attorneys and other experts. The Food and Drug Administration (FDA) is the principal healthcare regulatory authority in the United States, having jurisdiction over medical devices, drugs, biologics, and combination products. The paramount objectives driving policy decisions by the FDA are safety and effectiveness of healthcare products that have to be assured through a quality system in place as specified under 21 CFR 829 regulation. In addition, because biomedical engineers often develop devices and technologies for "consumer" use, such as physical therapy devices (which are also "medical" devices), these may also be governed in some respects by the Consumer Product Safety Commission. The greatest hurdles tend to be 510K "clearance" (typically for Class 2 devices) or pre-market "approval" (typically for drugs and class 3 devices).

In the European context, safety effectiveness and quality is ensured through the "Conformity Assessment" that is defined as "the method by which a manufacturer demonstrates that its device complies with the requirements of the European Medical Device Directive". The directive specifies different procedures according to the class of the device ranging from the simple Declaration of Conformity (Annex VII) for Class I devices to EC verification (Annex IV), Production quality assurance (Annex V), Product quality assurance (Annex VI) and Full quality assurance (Annex II). The Medical Device Directive specifies detailed procedures for Certification. In general terms, these procedures include tests and verifications that are to be contained in specific deliveries such as the risk management file, the technical file and the quality system deliveries. The risk management file is the first deliverable that conditions the following design and manufacturing steps. Risk management stage shall drive the product so that product risks are reduced at an acceptable level with respect to the benefits expected for the patients for the use of the device. The technical file contains all the documentation data and records supporting medical device certification. FDA technical file has similar content although organized in different structure. The Quality System deliverables usually includes procedures that ensure quality throughout all product life cycle. The same standard (ISO EN 13485) is usually applied for quality management systems in US and worldwide.

Implants, such as artificial hip joints, are generally extensively regulated due to the invasive nature of such devices.

In the European Union, there are certifying entities named "Notified Bodies", accredited by the European Member States. The Notified Bodies must ensure the effectiveness of the certification process for all medical devices apart from the class I devices where a declaration of conformity produced by the manufacturer is sufficient for marketing. Once a product has passed all the steps required by the Medical Device Directive, the device is entitled to bear a CE marking, indicating that the device is believed to be safe and effective when used as intended, and, therefore, it can be marketed within the European Union area.

The different regulatory arrangements sometimes result in particular technologies being developed first for either the U.S. or in Europe depending on the more favorable form of regulation. While nations often strive for substantive harmony to facilitate cross-national distribution, philosophical differences about the optimal extent of regulation can be a hindrance; more restrictive regulations seem appealing on an intuitive level, but critics decry the tradeoff cost in terms of slowing access to life-saving developments.

RoHS II

Directive 2011/65/EU, better known as RoHS 2 is a recast of legislation originally introduced in 2002. The original EU legislation "Restrictions of Certain Hazardous Substances in Electrical and Electronics Devices" (RoHS Directive 2002/95/EC) was replaced and superseded by 2011/65/EU published in July 2011 and commonly known as RoHS 2. RoHS seeks to limit the dangerous substances in circulation in electronics products, in particular toxins and heavy metals, which are subsequently released into the environment when such devices are recycled.

The scope of RoHS 2 is widened to include products previously excluded, such as medical devices and industrial equipment. In addition, manufacturers are now obliged to provide conformity risk assessments and test reports – or explain why they are lacking. For the first time, not only manufacturers but also importers and distributors share a responsibility to ensure Electrical and Electronic Equipment within the scope of RoHS comply with the hazardous substances limits and have a CE mark on their products.

IEC 60601

The new International Standard IEC 60601 for home healthcare electro-medical devices defining the requirements for devices used in the home healthcare environment. IEC 60601-1-11 (2010) must now be incorporated into the design and verification of a wide range of home use and point of care medical devices along with other applicable standards in the IEC 60601 3rd edition series.

The mandatory date for implementation of the EN European version of the standard is June 1, 2013. The US FDA requires the use of the standard on June 30, 2013, while Health Canada recently extended the required date from June 2012 to April 2013. The North American agencies will only require these standards for new device submissions, while the EU will take the more severe approach of requiring all applicable devices being placed on the market to consider the home healthcare standard.

AS/NZS 3551:2012

AS/ANS 3551:2012 is the Australian and New Zealand standards for the management of medical devices. The standard specifies the procedures required to maintain a wide range of medical assets in a clinical setting (e.g. Hospital). The standards are based on the IEC 606101 standards.

The standard covers a wide range of medical equipment management elements including, procurement, acceptance testing, maintenance (electrical safety and preventive maintenance testing) and decommissioning.

Training and certification

Education

Biomedical engineers require considerable knowledge of both engineering and biology, and typically have a Bachelor's (B.Sc., B.S., B.Eng. or B.S.E.) or Master's (M.S., M.Sc., M.S.E., or M.Eng.) or a doctoral (Ph.D.) degree in BME (Biomedical Engineering) or another branch of engineering with considerable potential for BME overlap. As interest in BME increases, many engineering colleges now have a Biomedical Engineering Department or Program, with offerings ranging from the undergraduate (B.Sc., B.S., B.Eng. or B.S.E.) to doctoral levels. Biomedical engineering has only recently been emerging as its own discipline rather than a cross-disciplinary hybrid specialization of other disciplines; and BME programs at all levels are becoming more widespread, including the Bachelor of Science in Biomedical Engineering which actually includes so much biological science content that many students use it as a "pre-med" major in preparation for medical school. The number of biomedical engineers is expected to rise as both a cause and effect of improvements in medical technology.

In the U.S., an increasing number of undergraduate programs are also becoming recognized by ABET as accredited bioengineering/biomedical engineering programs. Over 65 programs are currently accredited by ABET.

In Canada and Australia, accredited graduate programs in biomedical engineering are common. For example, McMaster University offers an M.A.Sc, an MD/PhD, and a PhD in Biomedical engineering. The first Canadian undergraduate BME program was offered at Ryerson University as a four-year B.Eng. program. The Polytechnique in Montreal is also offering a bachelors's degree in biomedical engineering as is Flinders University.

As with many degrees, the reputation and ranking of a program may factor into the desirability of a degree holder for either employment or graduate admission. The reputation of many undergraduate degrees is also linked to the institution's graduate or research programs, which have some tangible factors for rating, such as research funding and volume, publications and citations. With BME specifically, the ranking of a university's hospital and medical school can also be a significant factor in the perceived prestige of its BME department/program.

Graduate education is a particularly important aspect in BME. While many engineering fields (such as mechanical or electrical engineering) do not need graduate-level training to obtain an entry-level job in their field, the majority of BME positions do prefer or even require them. Since most BME-related professions involve scientific research, such as in pharmaceutical and medical device development, graduate education is almost a requirement (as undergraduate degrees typically do not involve sufficient research training and experience). This can be either a Masters or Doctoral level degree; while in certain specialties a Ph.D. is notably more common than in others, it is hardly ever the majority (except in academia). In fact, the perceived need for some kind of graduate credential is so strong that some undergraduate BME programs will actively discourage students from majoring in BME without an expressed intention to also obtain a master's degree or apply to medical school afterwards.

Graduate programs in BME, like in other scientific fields, are highly varied, and particular programs may emphasize certain aspects within the field. They may also feature extensive collaborative efforts with programs in other fields (such as the University's Medical School or other engineering divisions), owing again to the interdisciplinary nature of BME. M.S. and Ph.D. programs will typically require applicants to have an undergraduate degree in BME, or another engineering discipline (plus certain life science coursework), or life science (plus certain engineering coursework).

Education in BME also varies greatly around the world. By virtue of its extensive biotechnology sector, its numerous major universities, and relatively few internal barriers, the U.S. has progressed a great deal in its development of BME education and training opportunities. Europe, which also has a large biotechnology sector and an impressive education system, has encountered trouble in creating uniform standards as the European community attempts to supplant some of the national jurisdictional barriers that still exist. Recently, initiatives such as BIOMEDEA have sprung up to develop BME-related education and professional standards. Other countries, such as Australia, are recognizing and moving to correct deficiencies in their BME education. Also, as high technology endeavors are usually marks of developed nations, some areas of the world are prone to slower development in education, including in BME.

Licensure/certification

As with other learned professions, each state has certain (fairly similar) requirements for becoming licensed as a registered Professional Engineer (PE), but, in US, in industry such a license is not required to be an employee as an engineer in the majority of situations (due to an exception known as the industrial exemption, which effectively applies to the vast majority of American engineers). The US model has generally been only to require the practicing engineers offering engineering services that impact the public welfare, safety, safeguarding of life, health, or property to be licensed, while engineers working in private industry without a direct offering of engineering services to the public or other businesses, education, and government need not be licensed. This is notably not the case in many other countries, where a license is as legally necessary to practice engineering as it is for law or medicine.

Biomedical engineering is regulated in some countries, such as Australia, but registration is typically only recommended and not required.

In the UK, mechanical engineers working in the areas of Medical Engineering, Bioengineering or Biomedical engineering can gain Chartered Engineer status through the Institution of Mechanical Engineers. The Institution also runs the Engineering in Medicine and Health Division. The Institute of Physics and Engineering in Medicine (IPEM) has a panel for the accreditation of MSc courses in Biomedical Engineering and Chartered Engineering status can also be sought through IPEM.

The Fundamentals of Engineering exam – the first (and more general) of two licensure examinations for most U.S. jurisdictions—does now cover biology (although technically not BME). For the second exam, called the Principles and Practices, Part 2, or the Professional Engineering exam, candidates may select a particular engineering discipline's content to be tested on; there is currently not an option for BME with this, meaning that any biomedical engineers seeking a license must prepare to take this examination in another category (which does not affect the actual license, since most jurisdictions do not recognize discipline specialties anyway). However, the Biomedical Engineering Society (BMES) is, as of 2009, exploring the possibility of seeking to implement a BME-specific version of this exam to facilitate biomedical engineers pursuing licensure.

Beyond governmental registration, certain private-sector professional/industrial organizations also offer certifications with varying degrees of prominence. One such example is the Certified Clinical Engineer (CCE) certification for Clinical engineers.

Career prospects

In 2012 there were about 19,400 biomedical engineers employed in the US, and the field was predicted to grow by 27% (much faster than average) from 2012 to 2022. Biomedical engineering has the highest percentage of female engineers compared to other common engineering professions.

Notable figures

Cyborg (partial)

"Cyborg" is not the same thing as bionic, biorobot, or android; it applies to an organism that has restored function or enhanced abilities due to the integration of some artificial component or technology that relies on some sort of feedback. While cyborgs are commonly thought of as mammals, including humans, they might also conceivably be any kind of organism.

D. S. Halacy's Cyborg: Evolution of the Superman (1965) featured an introduction which spoke of a "new frontier" that was "not merely space, but more profoundly the relationship between 'inner space' to 'outer space' – a bridge...between mind and matter."

Biosocial definition

According to some definitions of the term, the physical attachments that humans have with even the most basic technologies have already made them cyborgs. In a typical example, a human with an artificial cardiac pacemaker or implantable cardioverter-defibrillator would be considered a cyborg, since these devices measure voltage potentials in the body, perform signal processing, and can deliver electrical stimuli, using this synthetic feedback mechanism to keep that person alive. Implants, especially cochlear implants, that combine mechanical modification with any kind of feedback response are also cyborg enhancements. Some theorists cite such modifications as contact lenses, hearing aids, smartphones, or intraocular lenses as examples of fitting humans with technology to enhance their biological capabilities.

As cyborgs currently are on the rise, some theorists argue there is a need to develop new definitions of aging. (For instance, a bio-techno-social definition of aging has been suggested.)

The term is also used to address human-technology mixtures in the abstract. This includes not only commonly-used pieces of technology such as phones, computers, the Internet, and so on, but also artifacts that may not popularly be considered technology; for example, pen and paper, and speech and language. When augmented with these technologies and connected in communication with people in other times and places, a person becomes capable of much more than they were before. An example is a computer, which gains power by using Internet protocols to connect with other computers. Another example are social-media bots—either bot-assisted humans or human-assisted-bots—used to target social media with likes and shares. Cybernetic technologies include highways, pipes, electrical wiring, buildings, electrical plants, libraries, and other infrastructure that people hardly notice, but which are critical parts of the cybernetics that humans work within.

Bruce Sterling, in his Shaper/Mechanist universe, suggested an idea of alternative cyborg called 'Lobster', which is made not by using internal implants, but by using an external shell (e.g. a powered exoskeleton). Unlike human cyborgs, who appear human externally but are synthetic internally (e.g., the Bishop type in the Alien franchise), Lobster looks inhuman externally but contains a human internally (such as in Elysium and RoboCop). The computer game Deus Ex: Invisible War prominently featured cyborgs called Omar, which is a Russian translation of the word 'Lobster' (as the Omar are of Russian origin in the game).

Visual appearance of fictional cyborgs

In science fiction, the most stereotypical portrayal of a cyborg is a person (or, more rarely, an animal) with visible added mechanical parts. These include superhero Cyborg (DC Comics) and the Borg (Star Trek).

However, cyborgs can also be portrayed as looking more robotic or more organic. They may appear as humanoid robots, such as Robotman (from DC's Doom Patrol) or most varieties of the Cybermen (Doctor Who); they can appear as non-humanoid robots such as the Daleks (again, from Doctor Who) or like the majority of the motorball players in Battle Angel Alita.

More human-appearing cyborgs may cover up their mechanical parts with armor or clothing, such as Darth Vader (Star Wars) or Misty Knight (Marvel Comics). Cyborgs may have mechanical parts or bodies that appear human. For example, the eponymous Six Million Dollar Man and the Bionic Woman (from their respective television series) have prostheses externally identical to the body parts that they replace; while Motoko Kusanagi (Ghost in the Shell) is a full-body cyborg whose body appears human. In these examples, among others, it is common for cyborgs to have superhuman (physical or mental) abilities, including great strength, enhanced senses, computer-assisted brains, or built-in weaponry.

Origins

The concept of a man-machine mixture was widespread in science fiction before World War II. As early as 1843, Edgar Allan Poe described a man with extensive prostheses in the short story "The Man That Was Used Up". In 1911, Jean de La Hire introduced the Nyctalope, a science fiction hero who was perhaps the first literary cyborg, in Le Mystère des XV (later translated as The Nyctalope on Mars). Nearly two decades later, Edmond Hamilton presented space explorers with a mixture of organic and machine parts in his 1928 novel The Comet Doom. He later featured the talking, living brain of an old scientist, Simon Wright, floating around in a transparent case, in all the adventures of his famous hero, Captain Future. In 1944, in the short story "No Woman Born", C. L. Moore wrote of Deirdre, a dancer, whose body was burned completely and whose brain was placed in a faceless but beautiful and supple mechanical body.

In 1960, the term cyborg was coined by Manfred E. Clynes and Nathan S. Kline to refer to their conception of an enhanced human being who could survive in extraterrestrial environments:

For the exogenously extended organizational complex functioning as an integrated homeostatic system unconsciously, we propose the term 'Cyborg'.

Their concept was the outcome of thinking about the need for an intimate relationship between human and machine as the new frontier of space exploration was beginning to open up. A designer of physiological instrumentation and electronic data-processing systems, Clynes was the chief research scientist in the Dynamic Simulation Laboratory at Rockland State Hospital in New York.

The term first appears in print 5 months earlier when The New York Times reported on the "Psychophysiological Aspects of Space Flight Symposium" where Clynes and Kline first presented their paper:

A cyborg is essentially a man-machine system in which the control mechanisms of the human portion are modified externally by drugs or regulatory devices so that the being can live in an environment different from the normal one.

Thereafter, Hamilton would first use the term cyborg explicitly in the 1962 short story, "After a Judgment Day", to describe the "mechanical analogs" called "Charlies," explaining that "[c]yborgs, they had been called from the first one in the 1960s...cybernetic organisms."

In 2001, a book titled Cyborg: Digital Destiny and Human Possibility in the Age of the Wearable Computer was published by Doubleday. Some of the ideas in the book were incorporated into the 35-mm motion picture film Cyberman that same year.

Cyborg tissues in engineering

Cyborg tissues structured with carbon nanotubes and plant or fungal cells have been used in artificial tissue engineering to produce new materials for mechanical and electrical uses.

Such work was presented by Raffaele Di Giacomo, Bruno Maresca, and others, at the Materials Research Society's spring conference on 3 April 2013. The cyborg obtained was inexpensive, light and had unique mechanical properties. It could also be shaped in the desired forms. Cells combined with multi-walled nanotubes (MWCNTs) co-precipitated as a specific aggregate of cells and nanotubes that formed a viscous material. Likewise, dried cells still acted as a stable matrix for the MWCNT network. When observed by optical microscopy, the material resembled an artificial "tissue" composed of highly-packed cells. The effect of cell drying was manifested by their "ghost cell" appearance. A rather specific physical interaction between MWCNTs and cells was observed by electron microscopy, suggesting that the cell wall (the most outer part of fungal and plant cells) may play a major active role in establishing a carbon nanotube's network and its stabilization. This novel material can be used in a wide range of electronic applications, from heating to sensing. For instance, using Candida albicans cells cyborg tissue materials with temperature sensing properties have been reported.

Actual cyborgization attempts

Cyborg Neil Harbisson with his antenna implant

In current prosthetic applications, the C-Leg system developed by Otto Bock HealthCare is used to replace a human leg that has been amputated because of injury or illness. The use of sensors in the artificial C-Leg aids in walking significantly by attempting to replicate the user's natural gait, as it would be prior to amputation. Prostheses like the C-Leg and the more advanced iLimb are considered by some to be the first real steps towards the next generation of real-world cyborg applications. Additionally cochlear implants and magnetic implants which provide people with a sense that they would not otherwise have had can additionally be thought of as creating cyborgs.

In vision science, direct brain implants have been used to treat non-congenital (acquired) blindness. One of the first scientists to come up with a working brain interface to restore sight was a private researcher William Dobelle. Dobelle's first prototype was implanted into "Jerry", a man blinded in adulthood, in 1978. A single-array BCI containing 68 electrodes was implanted onto Jerry's visual cortex and succeeded in producing phosphenes, the sensation of seeing light. The system included cameras mounted on glasses to send signals to the implant. Initially, the implant allowed Jerry to see shades of grey in a limited field of vision at a low frame-rate. This also required him to be hooked up to a two-ton mainframe, but shrinking electronics and faster computers made his artificial eye more portable and now enable him to perform simple tasks unassisted.

In 1997, Philip Kennedy, a scientist and physician, created the world's first human cyborg from Johnny Ray, a Vietnam veteran who suffered a stroke. Ray's body, as doctors called it, was "locked in". Ray wanted his old life back so he agreed to Kennedy's experiment. Kennedy embedded an implant he designed (and named "neurotrophic electrode") near the part of Ray's brain so that Ray would be able to have some movement back in his body. The surgery went successfully, but in 2002, Johnny Ray died.

In 2002, Canadian Jens Naumann, also blinded in adulthood, became the first in a series of 16 paying patients to receive Dobelle's second generation implant, marking one of the earliest commercial uses of BCIs. The second-generation device used a more sophisticated implant enabling better mapping of phosphenes into a coherent vision. Phosphenes are spread out across the visual field in what researchers call the starry-night effect. Immediately after his implant, Naumann was able to use his imperfectly restored vision to drive slowly around the parking area of the research institute.

In contrast to replacement technologies, in 2002, under the heading Project Cyborg, a British scientist, Kevin Warwick, had an array of 100 electrodes fired into his nervous system in order to link his nervous system into the internet to investigate enhancement possibilities. With this in place, Warwick successfully carried out a series of experiments including extending his nervous system over the internet to control a robotic hand, also receiving feedback from the fingertips in order to control the hand's grip. This was a form of extended sensory input. Subsequently, he investigated ultrasonic input in order to remotely detect the distance to objects. Finally, with electrodes also implanted into his wife's nervous system, they conducted the first direct electronic communication experiment between the nervous systems of two humans.

Since 2004, British artist Neil Harbisson has had a cyborg antenna implanted in his head that allows him to extend his perception of colors beyond the human visual spectrum through vibrations in his skull. His antenna was included within his 2004 passport photograph which has been claimed to confirm his cyborg status. In 2012 at TEDGlobal, Harbisson explained that he started to feel cyborg when he noticed that the software and his brain had united and given him an extra sense. Neil Harbisson is a co-founder of the Cyborg Foundation (2004) and cofounded the Transpecies Society in 2017, which is an association that empowers the individuals with non-human identities and supports them in their decisions to develop unique senses and new organs. Neil Harbisson is a global advocate for the rights of cyborgs.

Rob Spence, a Toronto-based film-maker, who titles himself a real-life "Eyeborg," severely damaged his right eye in a shooting accident on his grandfather's farm as a child. Many years later, in 2005, he decided to have his ever-deteriorating and now technically blind eye surgically removed, whereafter he wore an eye patch for some time before he later, after having played for some time with the idea of installing a camera instead, contacted professor Steve Mann at the Massachusetts Institute of Technology, an expert in wearable computing and cyborg technology.

Under Mann's guidance, Spence, at age 36, created a prototype in the form of the miniature camera which could be fitted inside his prosthetic eye; an invention would come to be named by Time magazine as one of the best inventions of 2009. The bionic eye records everything he sees and contains a 1.5 mm-square, low-resolution video camera, a small round printed circuit board, a wireless video transmitter, which allows him to transmit what he is seeing in real-time to a computer, and a 3-voltage rechargeable Varta microbattery. The eye is not connected to his brain and has not restored his sense of vision. Additionally, Spence has also installed a laser-like LED light in one version of the prototype.

Furthermore, many cyborgs with multifunctional microchips injected into their hand are known to exist. With the chips they are able to swipe cards, open or unlock doors, operate devices such as printers or, with some using a cryptocurrency, buy products, such as drinks, with a wave of the hand.

bodyNET

bodyNET is an application of human-electronic interaction currently in development by researchers from Stanford University. The technology is based on stretchable semiconductor materials (Elastronic). According to their article in Nature, the technology is composed of smart devices, screens, and a network of sensors that can be implanted into the body, woven into the skin or worn as clothes. It has been suggested, that this platform can potentially replace the smartphone in the future.

Animal cyborgs

The US-based company Backyard Brains released what they refer to as the "world's first commercially available cyborg" called the RoboRoach. The project started as a senior design project for a University of Michigan biomedical engineering student in 2010, and was launched as an available beta product on 25 February 2011.

The RoboRoach was officially released into production via a TED talk at the TED Global conference; and via the crowdsourcing website Kickstarter in 2013, the kit allows students to use microstimulation to momentarily control the movements of a walking cockroach (left and right) using a bluetooth-enabled smartphone as the controller.

Other groups have developed cyborg insects, including researchers at North Carolina State University, UC Berkeley, and Nanyang Technological University, Singapore, but the RoboRoach was the first kit available to the general public and was funded by the National Institute of Mental Health as a device to serve as a teaching aid to promote an interest in neuroscience. Several animal welfare organizations including the RSPCA and PETA have expressed concerns about the ethics and welfare of animals in this project.

In the late 2010s, scientists created cyborg jellyfish using a microelectronic prosthetic that propels the animal to swim almost three times faster while using just twice the metabolic energy of their unmodified peers. The prosthetics can be removed without harming the jellyfish.

Brønsted–Lowry acid–base theory

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Br%C3%B8nsted%E2%80%93Lowry_acid%E2%80%93base_theory The B...