Search This Blog

Tuesday, August 21, 2018

Scientism

    From Wikipedia, the free encyclopedia

    Scientism is the ideology of science. The term scientism generally points to the cosmetic application of science in unwarranted situations not amenable to application of the scientific method or similar scientific standards.

    In philosophy of science, the term scientism frequently implies a critique of the more extreme expressions of logical positivism[1][2] and has been used by social scientists such as Friedrich Hayek,[3] philosophers of science such as Karl Popper,[4] and philosophers such as Hilary Putnam[5] and Tzvetan Todorov[6] to describe (for example) the dogmatic endorsement of scientific methodology and the reduction of all knowledge to only that which is measured or confirmatory.[7]

    More generally, scientism is often interpreted as science applied "in excess". The term scientism has two senses:

    1. The improper usage of science or scientific claims.[8] This usage applies equally in contexts where science might not apply,[9] such as when the topic is perceived as beyond the scope of scientific inquiry, and in contexts where there is insufficient empirical evidence to justify a scientific conclusion. It includes an excessive deference to the claims of scientists or an uncritical eagerness to accept any result described as scientific. This can be a counterargument to appeals to scientific authority. It can also address the attempt to apply "hard science" methodology and claims of certainty to the social sciences, which Friedrich Hayek described in The Counter-Revolution of Science (1952) as being impossible, because that methodology involves attempting to eliminate the "human factor", while social sciences (including his own field of economics) center almost purely on human action.
    2. "The belief that the methods of natural science, or the categories and things recognized in natural science, form the only proper elements in any philosophical or other inquiry",[10] or that "science, and only science, describes the world as it is in itself, independent of perspective"[5] with a concomitant "elimination of the psychological [and spiritual] dimensions of experience".[11][12] Tom Sorell provides this definition: "Scientism is a matter of putting too high a value on natural science in comparison with other branches of learning or culture."[13] Philosophers such as Alexander Rosenberg have also adopted "scientism" as a name for the view that science is the only reliable source of knowledge.[14]
    It is also sometimes used to describe universal applicability of the scientific method and approach, and the view that empirical science constitutes the most authoritative worldview or the most valuable part of human learning—to the complete exclusion of other viewpoints, such as historical, philosophical, economic or cultural worldviews. It has been defined as "the view that the characteristic inductive methods of the natural sciences are the only source of genuine factual knowledge and, in particular, that they alone can yield true knowledge about man and society".[15] The term scientism is also used by historians, philosophers, and cultural critics to highlight the possible dangers of lapses towards excessive reductionism in all fields of human knowledge.

    For social theorists in the tradition of Max Weber, such as Jürgen Habermas and Max Horkheimer, the concept of scientism relates significantly to the philosophy of positivism, but also to the cultural rationalization for modern Western civilization.[7][21] British novelist Sara Maitland has called scientism a "myth as pernicious as any sort of fundamentalism."[22]

    Definitions

    Reviewing the references to scientism in the works of contemporary scholars, Gregory R. Peterson[23] detects two main broad themes:

    1. It is used to criticize a totalizing view of science as if it were capable of describing all reality and knowledge, or as if it were the only true way to acquire knowledge about reality and the nature of things;
    2. It is used, often pejoratively,[24][25][26] to denote a border-crossing violation in which the theories and methods of one (scientific) discipline are inappropriately applied to another (scientific or non-scientific) discipline and its domain. An example of this second usage is to label as scientism any attempt to claim science as the only or primary source of human values (a traditional domain of ethics) or as the source of meaning and purpose (a traditional domain of religion and related worldviews).
    The term scientism was popularized by the Nobel Prize winner F.A. Hayek, who defined it as the "slavish imitation of the method and language of Science".[27] Karl Popper defines scientism as 'the aping of what is widely mistaken for the method of science'. [28]

    Mikael Stenmark proposes the expression scientific expansionism as a synonym of scientism.[29] In the Encyclopedia of science and religion, he writes that, while the doctrines that are described as scientism have many possible forms and varying degrees of ambition, they share the idea that the boundaries of science (that is, typically the natural sciences) could and should be expanded so that something that has not been previously considered as a subject pertinent to science can now be understood as part of science (usually with science becoming the sole or the main arbiter regarding this area or dimension).[29]

    According to Stenmark, the strongest form of scientism states that science has no boundaries and that all human problems and all aspects of human endeavor, with due time, will be dealt with and solved by science alone.[29] This idea has also been called the Myth of Progress.[30]

    E. F. Schumacher, in his A Guide for the Perplexed, criticized scientism as an impoverished world view confined solely to what can be counted, measured and weighed. "The architects of the modern worldview, notably Galileo and Descartes, assumed that those things that could be weighed, measured, and counted were more true than those that could not be quantified. If it couldn't be counted, in other words, it didn't count."[31]

    Intellectual historian T.J. Jackson Lears argues there has been a recent reemergence of "nineteenth-century positivist faith that a reified 'science' has discovered (or is about to discover) all the important truths about human life. Precise measurement and rigorous calculation, in this view, are the basis for finally settling enduring metaphysical and moral controversies." Lears specifically identifies Harvard psychologist Steven Pinker's work as falling in this category.[32] Philosophers John N. Gray and Thomas Nagel have leveled similar criticisms against popular works by moral psychologist Jonathan Haidt, neuroscientist Sam Harris, and writer Malcolm Gladwell.[33][34][35]

    Genetic biologist Austin L. Hughes wrote in conservative journal The New Atlantis that scientism has much in common with superstition: "the stubborn insistence that something...has powers which no evidence supports."[36]

    Relevance to debates about science and religion

    Several scholars use the term to describe the work of vocal critics of religion-as-such. Individuals associated with New Atheism have garnered this label from both religious and non-religious scholars.[37][38] Theologian John Haught argues that Daniel Dennett and other new atheists subscribe to a belief system of scientific naturalism, which holds the central dogma that "only nature, including humans and our creations, is real: that God does not exist; and that science alone can give us complete and reliable knowledge of reality."[39] Haught argues that this belief system is self-refuting since it requires its adherents to assent to beliefs that violate its own stated requirements for knowledge.[40] Christian Philosopher Peter Williams argues that it is only by conflating science with scientism that new atheists feel qualified to "pontificate on metaphysical issues."[41] Philosopher Daniel Dennett responded to religious criticism of his book Breaking the Spell: Religion as a Natural Phenomenon by saying that accusations of scientism "[are] an all-purpose, wild-card smear... When someone puts forward a scientific theory that [religious critics] really don't like, they just try to discredit it as 'scientism'. But when it comes to facts, and explanations of facts, science is the only game in town".[42]

    Non-religious scholars have also linked New Atheist thought with scientism. Atheist philosopher Thomas Nagel argues that neuroscientist Sam Harris conflates all empirical knowledge with that of scientific knowledge.[43] Marxist literary critic Terry Eagleton argues that Christopher Hitchens possesses an "old-fashioned scientistic notion of what counts as evidence" that reduces knowledge to what can and cannot be proven by scientific procedure.[44] Agnostic philosopher Anthony Kenny has also criticized New Atheist philosopher Alexander Rosenberg's The Atheist's Guide to Reality for resurrecting a self-refuting epistemology of logical positivism and reducing all knowledge of the universe to the discipline of physics.[45]

    Michael Shermer, founder of The Skeptics Society, draws a parallel between scientism and traditional religious movements, pointing to the cult of personality that develops around some scientists in the public eye. He defines scientism as a worldview that encompasses natural explanations, eschews supernatural and paranormal speculations, and embraces empiricism and reason.[46]

    The Iranian scholar Seyyed Hossein Nasr has stated that in the Western world, many will accept the ideology of modern science, not as "simple ordinary science", but as a replacement for religion.[47]

    Gregory R. Peterson writes that "for many theologians and philosophers, scientism is among the greatest of intellectual sins".[23]

    Philosophy of science

    In his essay Against Method, Paul Feyerabend characterizes science as "an essentially anarchic enterprise"[48] and argues emphatically that science merits no exclusive monopoly over "dealing in knowledge" and that scientists have never operated within a distinct and narrowly self-defined tradition. He depicts the process of contemporary scientific education as a mild form of indoctrination, aimed at "making the history of science duller, simpler, more uniform, more 'objective' and more easily accessible to treatment by strict and unchanging rules."[49]
    [S]cience can stand on its own feet and does not need any help from rationalists, secular humanists, Marxists and similar religious movements; and... non-scientific cultures, procedures and assumptions can also stand on their own feet and should be allowed to do so... Science must be protected from ideologies; and societies, especially democratic societies, must be protected from science... In a democracy scientific institutions, research programmes, and suggestions must therefore be subjected to public control, there must be a separation of state and science just as there is a separation between state and religious institutions, and science should be taught as one view among many and not as the one and only road to truth and reality.
    — Feyerabend, Against Method, p. viii[50]

    Rhetoric of science

    Thomas M. Lessl argues that religious themes persist in what he calls scientism, the public rhetoric of science.[51] There are two methodologies that illustrate this idea of scientism. One is the epistemological approach, the assumption that the scientific method trumps other ways of knowing and the ontological approach, that the rational mind reflects the world and both operate in knowable ways. According to Lessl, the ontological approach is an attempt to "resolve the conflict between rationalism and skepticism". Lessl also argues that without scientism, there would not be a scientific culture.[51]

    Religion and philosophy

    Philosopher of religion Keith Ward has said scientism is philosophically inconsistent or even self-refuting, as the truth of the statements "no statements are true unless they can be proven scientifically (or logically)" or "no statements are true unless they can be shown empirically to be true" cannot themselves be proven scientifically, logically, or empirically.[52][53]

    Rationalization and modernity

    In the introduction to his collected oeuvre on the sociology of religion, Max Weber asks why "the scientific, the artistic, the political, or the economic development [elsewhere]… did not enter upon that path of rationalization which is peculiar to the Occident?" According to the distinguished German social theorist, Jürgen Habermas, "For Weber, the intrinsic (that is, not merely contingent) relationship between modernity and what he called 'Occidental rationalism' was still self-evident." Weber described a process of rationalisation, disenchantment and the "disintegration of religious world views" that resulted in modern secular societies and capitalism.[54]
    "Modernization" was introduced as a technical term only in the 1950s. It is the mark of a theoretical approach that takes up Weber's problem but elaborates it with the tools of social-scientific functionalism… The theory of modernization performs two abstractions on Weber's concept of "modernity". It dissociates "modernity" from its modern European origins and stylizes it into a spatio-temporally neutral model for processes of social development in general. Furthermore, it breaks the internal connections between modernity and the historical context of Western rationalism, so that processes of modernization… [are] no longer burdened with the idea of a completion of modernity, that is to say, of a goal state after which "postmodern" developments would have to set in. …Indeed it is precisely modernization research that has contributed to the currency of the expression "postmodern" even among social scientists.
    Habermas is critical of pure instrumental rationality, arguing that the "Social Life–World" is better suited to literary expression, the former being "intersubjectively accessible experiences" that can be generalized in a formal language, while the latter "must generate an intersubjectivity of mutual understanding in each concrete case":
    The world with which literature deals is the world in which human beings are born and live and finally die; the world in which they love and hate, in which they experience triumph and humiliation, hope and despair; the world of sufferings and enjoyments, of madness and common sense, of silliness, cunning and wisdom; the world of social pressures and individual impulses, of reason against passion, of instincts and conventions, of shared language and unsharable feelings and sensations…

    Media references

  • As a form of dogma: "In essence, scientism sees science as the absolute and only justifiable access to the truth."

Criticism of science

From Wikipedia, the free encyclopedia
 
Personification of "Science" in front of the Boston Public Library

Criticism of science addresses and refines problems within science in order to improve science as a whole and its role in society. It is distinct from the academic positions of antiscience or anti-intellectualism which seek to reject entirely the scientific method.

Philosophical critiques

"All methodologies, even the most obvious ones, have their limits." ―Paul Feyerabend in Against Method

Philosopher of science Paul Feyerabend advanced the idea of epistemological anarchism, which holds that there are no useful and exception-free methodological rules governing the progress of science or the growth of knowledge, and that the idea that science can or should operate according to universal and fixed rules is unrealistic, pernicious and detrimental to science itself.[1] Feyerabend advocates a democratic society where science is treated as an equal to other ideologies or social institutions such as religion, and education, or magic and mythology, and considers the dominance of science in society authoritarian and unjustified.[1] He also contended (along with Imre Lakatos) that the demarcation problem of distinguishing science from pseudoscience on objective grounds is not possible and thus fatal to the notion of science running according to fixed, universal rules.[1]

Feyerabend also criticized science for not having evidence for its own philosophical precepts. Particularly the notion of Uniformity of Law and the Uniformity of Process across time and space, as noted by Steven Jay Gould.[2] "We have to realize that a unified theory of the physical world simply does not exist" says Feyerabend, "We have theories that work in restricted regions, we have purely formal attempts to condense them into a single formula, we have lots of unfounded claims (such as the claim that all of chemistry can be reduced to physics), phenomena that do not fit into the accepted framework are suppressed; in physics, which many scientists regard as the one really basic science, we have now at least three different points of view...without a promise of conceptual (and not only formal) unification".[3] In other words, science is begging the question when it presupposes that there is a universal truth with no proof thereof.

Historian Jacques Barzun termed science "a faith as fanatical as any in history" and warned against the use of scientific thought to suppress considerations of meaning as integral to human existence.[4]

Sociologist Stanley Aronowitz scrutinizes science for operating with the presumption that the only acceptable criticisms of science are those conducted within the methodological framework that science has set up for itself. That science insists that only those who have been inducted into its community, through means of training and credentials, are qualified to make these criticisms.[5] Aronowitz also alleges that while scientists consider it absurd that Fundamentalist Christianity uses biblical references to bolster their claim that the Bible is true, scientists pull the same tactic by using the tools of science to settle disputes concerning its own validity.[6]

Philosopher of religion Alan Watts criticized science for operating under a materialist model of the world that he posited is simply a modified version of the Abrahamic worldview, that "the universe is constructed and maintained by a Lawmaker" (commonly identified as God or the Logos). Watts asserts that during the rise of secularism through the 18th to 20th century when scientific philosophers got rid of the notion of a lawmaker they kept the notion of law, and that the idea that the world is a material machine run by law is a presumption just as unscientific as religious doctrines that affirm it is a material machine made and run by a lawmaker.[7]

Epistemology

David Parkin compared the epistemological stance of science to that of divination. He suggested that, to the degree that divination is an epistemologically specific means of gaining insight into a given question, science itself can be considered a form of divination that is framed from a Western view of the nature (and thus possible applications) of knowledge.[8]

Polymath and Episkopos of Discordianism Robert Anton Wilson stresses that the instruments used in scientific investigation produce meaningful answers relevant only to the instrument, and that there is no objective vantage point from which science could verify its findings since all findings are relative to begin with.[9]

Ethics

Joseph Wright of Derby (1768) An Experiment on a Bird in an Air Pump, National Gallery, London

Several academics have offered critiques concerning ethics in science. In Science and Ethics, for example, the professor of philosophy Bernard Rollin examines the relevance of ethics to science, and argues in favor of making education in ethics part and parcel of scientific training.[10]

Social science scholars, like anthropologists like Tim Ingold, and scholars from philosophy and the humanities, like Adorno in critical theory, have criticized modern science for subservience to economic and technological interests.[11] A related criticism is the debate on positivism. While before the 19th century science was perceived to be in opposition to religion, in contemporary society science is often defined as the antithesis of the humanities and the arts.[12]

Many recent thinkers, such as Carolyn Merchant, Theodor Adorno and E. F. Schumacher considered that the 17th century scientific revolution shifted science from a focus on understanding nature, or wisdom, to a focus on manipulating nature, i.e. power, and that science's emphasis on manipulating nature leads it inevitably to manipulate people, as well.[13] Science's focus on quantitative measures has led to critiques that it is unable to recognize important qualitative aspects of the world.[13]

Methodology

Cognitive and publication biases

While many scientists and skeptics point out cognitive biases that may permeate commonsense thinking and cause illogical conclusions, the same biases are much less likely to be examined within the scientific community. Critics argue that the biggest bias within science is motivated reasoning, whereby scientists are more likely to accept evidence that supports their hypothesis and more likely to scrutinize findings that do not.[14] Scientists do not practice pure induction but instead often come into science with preconceived ideas and often will, unconsciously or consciously, interpret observations to support their own hypotheses through confirmation bias. For example, scientists may re-run trials when they do not support a hypothesis but use results from the first trial when they do support their hypothesis.[15] It is often argued that while each individual has cognitive biases, these biases are corrected for when scientific evidence converges. However, systematic issues in the publication system of academic journals can often compound these biases. Issues like publication bias, where studies with non-significant results are less likely to be published, and selective outcome reporting bias, where only the significant outcomes out of a variety of outcomes are likely to be published, are common within academic literature. These biases have widespread implications, such as the distortion of meta-analyses where only studies that include positive results are likely to be included.[16] Statistical outcomes can be manipulated as well, for example large numbers of participants can be used and trials overpowered so that small difference cause significant effects or inclusion criteria can be changed to include those are most likely to respond to a treatment.[17] Whether produced on purpose or not, all of these issues need to be taken into consideration within scientific research, and peer-reviewed published evidence should not be assumed to be outside of the realm of bias and error; some critics are now claiming that many results in scientific journals are false or exaggerated.[16]

Reproducibility

The behavioral science and social sciences have long suffered from the problem of their studies being largely not being reproducible.[18] Now, biomedicine has come under similar pressures.[19] In a phenomenon known as the replication crisis, journals are less likely to publish straight replication studies so it may be difficult to disprove results.[20] Another result of publication bias is the Proteus phenomenon: early attempts to replicate results tend to contradict them.[21] However, there are claims that this bias may be beneficial, allowing accurate meta-analysis with fewer publications.[22]

Metascience critiques

There are some critiques of science from metascience, that broadly accepted form of scientific publishing produces mostly insignificant, unreliable and false results, because of studies design and prevalence of scientific misconduct.[23] Because of small statistical power as much as 95% of neuroimaging-base studies could be false.[24] 85% of biomedical research efforts is probably wasted, according to one analysis.[25] In psychology about ⅛ of papers consist statistical error, which could changes conclusions of those papers.[26] Most of economic hypothesis could be false.[27] Also due to replication crisis and omitting from publication negative finding results,[28] most discoveries in science are inflated.[29]

Feminist critiques

Feminist scholars and women scientists such as Emily Martin, Evelyn Fox Keller, Ruth Hubbard, Londa Schiebinger and Bonnie Spanier have critiqued science because they believe it presents itself as objective and neutral while ignoring its inherent gender bias. They assert that gender bias exists in the language and practice of science, as well as in the expected appearance and social acceptance of who can be scientists within society.[30][31][32]

Sandra Harding says that the "moral and political insights of the women's movement have inspired social scientists and biologists to raise critical questions about the ways traditional researchers have explained gender, sex, and relations within and between the social and natural worlds."[33] Anne Fausto-Sterling is a prominent example of this kind of feminist work within biological science. Some feminists, such as Ruth Hubbard and Evelyn Fox Keller, criticize traditional scientific discourse as being historically biased towards a male perspective.[34][35] A part of the feminist research agenda is the examination of the ways in which power inequities are created and/or reinforced in scientific and academic institutions.[36]

Other feminist scholars, such as Ann Hibner Koblitz,[37] Lenore Blum,[38] Mary Gray,[39] Mary Beth Ruskai,[40] and Pnina Abir-Am and Dorinda Outram,[41] have criticized some gender and science theories for ignoring the diverse nature of scientific research and the tremendous variation in women's experiences in different cultures and historical periods. For example, the first generation of women to receive advanced university degrees in Europe were almost entirely in the natural sciences and medicine -- in part because those fields at the time were much more welcoming of women than were the humanities.[42] Koblitz and others who are interested in increasing the number of women in science have expressed concern that some of the statements by feminist critics of science could undermine those efforts, notably the following assertion by Keller:[43]
Just as surely as inauthenticity is the cost a woman suffers by joining men in misogynist jokes, so it is, equally, the cost suffered by a woman who identifies with an image of the scientist modeled on the patriarchal husband. Only if she undergoes a radical disidentification from self can she share masculine pleasure in mastering a nature cast in the image of woman as passive, inert, and blind.

Language in science

Emily Martin examines the metaphors used in science to support her claim that science reinforces socially constructed ideas about gender rather than objective views of nature. In her study about the fertilization process, Martin describes several cases when gender-biased perception skewed the descriptions of biological processes during fertilization and even possibly hampered the research. She asserts that classic metaphors of the strong dominant sperm racing to an idle egg are products of gendered stereotyping rather than a faithful portrayal of human fertilization. The notion that women are passive and men are active are socially constructed attributes of gender which, according to Martin, scientists have projected onto the events of fertilization and so obscuring the fact that eggs do play an active role. For example, she wrote that "even after having revealed...the egg to be a chemically active sperm catcher, even after discussing the egg's role in tethering the sperm, the research team continued for another three years to describe the sperm's role as actively penetrating the egg."[30] Scott Gilbert, a developmental biologist at Swarthmore College supports her position: "if you don’t have an interpretation of fertilization that allows you to look at the egg as active, you won’t look for the molecules that can prove it. You simply won’t find activities that you don’t visualize."[30]

Media and politics

The mass media face a number of pressures that can prevent them from accurately depicting competing scientific claims in terms of their credibility within the scientific community as a whole. Determining how much weight to give different sides in a scientific debate requires considerable expertise regarding the matter.[44] Few journalists have real scientific knowledge, and even beat reporters who know a great deal about certain scientific issues may know little about other ones they are suddenly asked to cover.[45][46]

Many issues damage the relationship of science to the media and the use of science and scientific arguments by politicians. As a very broad generalisation, many politicians seek certainties and facts whilst scientists typically offer probabilities and caveats. However, politicians' ability to be heard in the mass media frequently distorts the scientific understanding by the public. Examples in Britain include the controversy over the MMR inoculation, and the 1988 forced resignation of a government minister, Edwina Currie, for revealing the high probability that battery eggs were contaminated with Salmonella.[47]

Some scientists and philosophers suggest that scientific theories are more or less shaped by the dominant political, economic, or cultural models of the time, even though the scientific community may claim to be exempt from social influences and historical conditions.[48][49] For example, Zoologist Peter Kropotkin thought that the Darwinian theory of evolution overstressed a painful "we must struggle to survive" way of life, which he said was influenced by capitalism and the struggling lifestyles people lived within it.[9][50] Karl Marx also thought that science was largely driven by and used as capital.[51]

Robert Anton Wilson, Stanley Aronowitz, and Paul Feyerabend all thought that the military-industrial complex, large corporations, and the grants that came from them had an immense influence over the research and even results of scientific experiments.[1][52][53][54] Aronowitz even went as far as to say "It does not matter that the scientific community ritualistically denies its alliance with economic/industrial and military power. The evidence is overwhelming that such is the case. Thus, every major power has a national science policy; the United States Military appropriates billions each year for 'basic' as well as 'applied' research".

Rethinking the Mars terraforming debate


In late July, Bruce Jakosky and Christopher Edwards published a paper titled “Inventory of CO2 available for terraforming Mars,” which was sponsored by NASA. The paper analyzed the amount of volatiles, primarily carbon dioxide (CO2), on or in Mars currently, and concluded reasonably that there are not enough volatiles available on Mars to terraform it sufficiently for a person to not need a pressure suit. Jakosky is the principal investigator for MAVEN, the NASA Mars orbiter studying the planet’s atmosphere. He and his co-author wrote what is technically an accurate paper, in spite of what was an existing mild controversy over the amount of some volatiles in the soil and regolith of Mars. The timing of this paper was reasonable, since by 2018, MAVEN data, as well as othee orbiting radar data and related geologic modeling, was available and allowed more accurate estimates of amounts of remaining carbon dioxide and other volatiles.
All of this particular argument actually is “sound and fury signifying nothing,” since the debate is all focused on the wrong volatile and totally ignores the potential of importing volatiles to Mars.

Unfortunately, quite a few in the science and space media, and other more sensationalistic outlets, took the ball and ran with it like the apocryphal rider who “rode madly off in all directions.” The results turned a technical paper into the basis for a vicious debate over whether terraforming Mars is possible at all. Some of the writers implied that the researchers were speaking officially for NASA in saying that terraforming Mars was impossible. Most of the media writers totally ignored a key phrase in the paper’s abstract: “using present day technology.” Is there really anyone who thinks we can terraform Mars right now? In its later phases, the debate and coverage turned into a series of snide and unfair attacks on Elon Musk, who is well known for his interest in terraforming Mars, and who made an incautious but probably jesting remark about the use of nuclear devices to melt the Mars polar caps several years ago. Some of the more outrageous, unfair and untrue article headlines included:

“Sorry Elon, NASA says plans to terraform Mars won’t work”

“Elon Musk’s Dream Has Just been proven Impossible”

“NASA says we can’t terraform Mars”

“It’s Official – We can’t Terraform Mars”

Now, it may seem premature to be arguing over our ability to terraform Mars when humans have not even landed there yet. Fortunately, we already have a huge amount of information on Mars and its atmosphere, so many of the arguments are on solid technical ground.

However, all of this particular argument actually is “sound and fury signifying nothing,” since the debate is all focused on the wrong volatile and totally ignores the potential of importing volatiles to Mars. A “volatile” is any substance which can be turned into a gas easily or is normally a gas. Good common examples are water, oxygen, carbon dioxide, ammonia, and nitrogen. The current focus on carbon dioxide is about its role as a greenhouse gas that could raise the temperature of Mars. While releasing the known amounts of frozen carbon dioxide could raise the temperature and pressure significantly, terraforming Mars requires more than merely making Mars warmer. The day side of the moon can reach 120 degrees Celsius, but with its vacuum, it is not very conducive to life.

The surface pressure on Mars now averages about 0.6 percent of our own sea level pressure, or about 0.087 psi (600 pascals), and is thus a “physiological vacuum”. This means the pressure is less than a tenth of the “Armstrong Limit” of about 0.9 psi (6,200 pascals) where blood boils and far below what is needed to survive even with pure oxygen. You would need to wear a pressure suit to survive on the surface, just like on the Moon. Fortunately, though chilly, the temperatures on Mars are much milder than those on the Moon.

In addition, the surface of Mars is exposed to about 250 millisieverts (mSv) per Earth year of solar and galactic (cosmic) radiation, composed partly of dangerous high-speed atomic nuclei that can leave a trail of dead brain cells behind. Due to these particles, cosmic radiation is more dangerous than “regular” radiation. Crews and early civilian settlers would need to live underground in heavily shielded, pressurized habitat buildings to prevent the cosmic ray nuclei from reaching them. For reference, you would experience some radiation sickness if you got a dose of 1000 mSv all at once. In interplanetary space, you would get about 657 mSv per year without shielding, but on Mars, the planet itself blocks half of the radiation and the thin atmosphere absorbs another 20 percent of what remains. At this lower but constant rate, you would not get sick but there would be cumulative cell damage and a slow increase in cancer risk. On Earth, at sea level, we have in effect a layer of air equivalent in mass to 10.3 meters of water over our heads, which absorbs virtually all of the dangerous high-energy particles. On Mars, that layer is equivalent to about 20 centimeters of water, barely enough to shield anyone from a dangerous solar “proton storm” radiation outburst.
A reasonable mix at about 10 psi would obviously be 70 percent nitrogen and 30 oxygen oxygen, providing the needed 3 psi of oxygen. This would be similar to being at about 3,000 meters on Earth, which the majority of people can obviously tolerate.

So there are three main reasons we need significant air pressure on Mars: to remove the need for pressure suits when working outside (and so that we would no longer need to live in pressurized habitats), to allow water to exist as a liquid on the surface, and to block the ubiquitous cosmic radiation so that buildings can be right on the surface and so that people can work on the surface without being irradiated. We can look at this issue from two points of view: radiation blocking mass and air pressure. So how much air mass and pressure do we really need?

From the radiation perspective, this is primarily a matter of sheer mass. On Earth at sea level, we have enough air over our heads so that only a tiny fraction of the natural background radiation most people get per year, totaling 3 to 6 mSv, is from space. To duplicate that very good level of protection on Mars requires a comparable amount of air mass (10.3 metric tons) over every square meter of Mars surface, ignoring the great altitude differences. Multiply this by the number of square meters of Mars surface and you get the required air mass: 1.493 trillion metric tons. This amount would create about 6.14 psi of air pressure or about 0.42 of Earth sea level pressure. More importantly, essentially all of the dangerous cosmic radiation from space would be blocked. This compares to the paltry 25 trillion metric tons of air currently in place at Mars, almost all of it CO2.

Some may note that for the same air column mass (the mass of air over a given surface area), we are not getting as much air pressure as we do on Earth. With Mars lower gravity, about 38% of Earths, it takes more air mass per square meter than it does on Earth to produce the same amount of pressure. So with the radiation threat now (theoretically) dealt with, how much air pressure do we need and what kind?

Right now, the air you are breathing is about 78 percent nitrogen and only about 21 percent oxygen. Carbon dioxide is a trace gas, at only 0.04 percent. You actually breathe 25 times more argon than carbon dioxide. If you are old enough, or are a space history buff, you may remember the Apollo 1 fire. The first Apollo spacecraft being prepared to be launched with a crew had about 16 psi of pure oxygen inside it during a pre-launch test, and all of the metal and plastic surfaces were saturated with oxygen. The capsule interior was like a fire bomb waiting for one tiny spark. The three astronauts were quickly asphyxiated by smoke within a minute of that spark and most of the interior of the capsule was incinerated. This horrific accident illustrates how dangerous high levels of oxygen are.

So future colonists would have little use for an atmosphere of almost all carbon dioxide, and they would not want an atmosphere mostly of oxygen due to the huge fire risk it would create. It turns out that the oxygen in any future nitrogen-oxygen atmosphere should be less than 50 percent of the total air pressure, but with the 42 percent pressure described above, we would still need a future 50-50 oxygen and nitrogen mix. (The amount of nitrogen delivered should be related to the future oxygen component.) So if we increase the air column mass to about 12.3 metric tons over each meter of surface, we get almost exactly half sea level pressure, or about 7.35 psi. To create this half-atmosphere of pressure (almost all of nitrogen) we need to add 1,784 trillion tons of nitrogen. However, this is equivalent to an altitude on Earth of about 5,200 meters, the altitude of the highest community on Earth in the Andes.

We assume, once we have a half-atmosphere of pressure, early settlers would be using oxygen helmets when working outside, and living inside slightly pressurized habitats, which could then be on the surface, with a nitrogen-oxygen mix. In addition, those in charge of the terraforming process would want to find ways to slowly add oxygen to the atmosphere, such as using the oxygen in some of the carbon dioxide and the existing water on Mars. This may take a long time, but adding oxygen will also add to the atmospheric pressure. Eventually, perhaps after centuries, there would be enough oxygen to breath and green plants could grow outside, but not so much as to be dangerous. A reasonable mix at about 10 psi would obviously be 70 percent nitrogen and 30 oxygen oxygen, providing the needed 3 psi of oxygen. This would be similar to being at about 3,000 meters on Earth, which the majority of people can obviously tolerate. For example, the town of Leadville, Colorado, is at an altitude of 3,100 meters. This is why we want the nitrogen in place first as it is a non-reactive gas.

Now, of course, many people will wonder where do we get all of these trillions of tons of nitrogen to import onto Mars. The planet has very little of it: just a few percent of what is needed, as most of it was lost during the last 3.5 billion years. However, It turns out that the outer solar system has huge amounts of nitrogen, both as a gas, such as on Titan, and as a semi-solid slush or ice on Pluto, Triton, and very probably the other large Kuiper Belt dwarf planets. Small asteroids would not have significant amounts of nitrogen as their gravity would have been too low to hold an atmosphere. We should be able to mine some of this nitrogen and move it to Mars where it can help support life. The current atmospheric loss rate from Mars would be very low.

Right now, it is true we have no means of moving the nitrogen, but chances are, with the new private investments in fusion power, that we will have it before we are ready to start terraforming. Fusion rocket powered tugs would only need to thrust for a few days to a couple weeks to send huge loads of nitrogen—as much as 100 million tons in each load—into the inner solar system at low speeds and carefully intersect the atmosphere of Mars. Ten such loads would deliver a billion tons of nitrogen, as much mass as a cubic kilometer of water, and 10,000 loads would deliver a full trillion tons.
The use of the nitrogen dumps using the existing atmosphere as a brake does away with the need to use either asteroid impacts or nuclear bombs to melt Mars ice, both very temporary and extremely undesirable methods.

The image at the top of this article shows a load of 100,000 chunks of nitrogen (shown as cubes but they could be in huge plastic bags.) Each chunk is about 10 meters across and weighs about 1,000 tons. By aiming these large loads of nitrogen ice so that they come in exactly horizontally at the high atmosphere of Mars over the desired areas, instead of impacting on Mars surface, there are no craters formed and all of the nitrogen is turned into gas and added to the atmosphere over an entry path of hundreds of kilometers. Very large amounts of heat, but no dangerous radiation, are created by these entries, which would occur many times a day and go on for over 100 years.

The entries could be targeted over the ice caps or glaciers and would easily melt them totally, as each entry produces as much radiant heat as a hydrogen bomb but with no dangerous radiation. Thus, the ice cap melting can be done by these repeated entry events, instead of a few, very dangerous cratering events. The fusion tugs back away from their loads before entry and head back to the outer solar system at high speed since they now have no load. Climatologists may have to hurry to get valuable ice cores of all the ice cap areas before they are melted to form a new, but initially shallow, Boreal Ocean and other bodies of water.

Thus, the whole argument over how much carbon dioxide is on Mars now is totally irrelevant, since we need to import the nitrogen, which is far more important than the carbon dioxide. The use of the nitrogen dumps using the existing atmosphere as a brake does away with the need to use either asteroid impacts or nuclear bombs to melt Mars ice, both very temporary and extremely undesirable methods. The paper’s authors probably had no idea of the media firestorm their paper would create, but it left no “out” allowing the possibility of terraforming, such as pointing out that there were other sources and kinds of volatiles besides those on Mars. This almost invited the irresponsible media writers to make the claims that terraforming was impossible.

There was another issue raised by the paper and media debate. The paper’s authors confused chlorofluorocarbons (CFC) gases with perfluorocarbons, which have been identified for a quarter century as the preferred greenhouse gas to use by respected Mars authorities like Christopher McKay. The media did not seem to notice this during their intense focus on the carbon dioxide issue. No one supports using CFCs today, but the mixture of several different perfluorocarbons that has been devised has no chlorine atoms and thus would not damage a future ozone layer over Mars. The essential element in these molecules: fluorine, certainly exists on Mars but we will need to figure out what minerals to extract it from.

Another issue no one discussed is the chance that the desired increased in Mars atmospheric pressure could lead to a great increase in water vapor in the Mars atmosphere. This seems to be exactly what we want, but it could also result in a lot of snow on the surface outside the polar areas, which could actually reduce the planet’s temperature by increasing its albedo or reflectivity. Having additional carbon dioxide and perfluorocarbons present early on before the pressure on Mars was raised would be a good terraforming strategy. This might warm Mars sufficiently so that the snow potentially enable by the higher pressure would melt sooner and run off or sink into the ground. Once the pressure has been raised, the perfluorocarbons would become the main greenhouse gas mixture, eventually protected from photolysis by the new ozone layer high above. Both the perfluorocarbons and the carbon dioxide would remain as trace gases in the Mars atmosphere. Our advanced climatological modeling can help tell what the best course is.

It is important to realize that without full terraforming, with at least a half-atmosphere or more of pressure, the fanciful images of skyscrapers and shimmering domed cities on the surface of Mars are not realistic. Once there are enough humans living under Mars surface, the public pressure for terraforming will build and action will be taken. Eventually creating a living world on the surface of Mars—to act as a backup for Earth’s biome, not as a replacement for it—is a great dream, and a valid one.

Philosophy of science

From Wikipedia, the free encyclopedia

Philosophy of science is a sub-field of philosophy concerned with the foundations, methods, and implications of science. The central questions of this study concern what qualifies as science, the reliability of scientific theories, and the ultimate purpose of science. This discipline overlaps with metaphysics, ontology, and epistemology, for example, when it explores the relationship between science and truth.

There is no consensus among philosophers about many of the central problems concerned with the philosophy of science, including whether science can reveal the truth about unobservable things and whether scientific reasoning can be justified at all. In addition to these general questions about science as a whole, philosophers of science consider problems that apply to particular sciences (such as biology or physics). Some philosophers of science also use contemporary results in science to reach conclusions about philosophy itself.

While philosophical thought pertaining to science dates back at least to the time of Aristotle, philosophy of science emerged as a distinct discipline only in the 20th century in the wake of the logical positivism movement, which aimed to formulate criteria for ensuring all philosophical statements' meaningfulness and objectively assessing them. Thomas Kuhn's 1962 book The Structure of Scientific Revolutions was also formative, challenging the view of scientific progress as steady, cumulative acquisition of knowledge based on a fixed method of systematic experimentation and instead arguing that any progress is relative to a "paradigm," the set of questions, concepts, and practices that define a scientific discipline in a particular historical period.[1] Karl Popper and Charles Sanders Peirce moved on from positivism to establish a modern set of standards for scientific methodology.

Subsequently, the coherentist approach to science, in which a theory is validated if it makes sense of observations as part of a coherent whole, became prominent due to W. V. Quine and others. Some thinkers such as Stephen Jay Gould seek to ground science in axiomatic assumptions, such as the uniformity of nature. A vocal minority of philosophers, and Paul Feyerabend (1924–1994) in particular, argue that there is no such thing as the "scientific method", so all approaches to science should be allowed, including explicitly supernatural ones. Another approach to thinking about science involves studying how knowledge is created from a sociological perspective, an approach represented by scholars like David Bloor and Barry Barnes. Finally, a tradition in continental philosophy approaches science from the perspective of a rigorous analysis of human experience.

Philosophies of the particular sciences range from questions about the nature of time raised by Einstein's general relativity, to the implications of economics for public policy. A central theme is whether one scientific discipline can be reduced to the terms of another. That is, can chemistry be reduced to physics, or can sociology be reduced to individual psychology? The general questions of philosophy of science also arise with greater specificity in some particular sciences. For instance, the question of the validity of scientific reasoning is seen in a different guise in the foundations of statistics. The question of what counts as science and what should be excluded arises as a life-or-death matter in the philosophy of medicine. Additionally, the philosophies of biology, of psychology, and of the social sciences explore whether the scientific studies of human nature can achieve objectivity or are inevitably shaped by values and by social relations.

Introduction

Defining science

Karl Popper in the 1980s

Distinguishing between science and non-science is referred to as the demarcation problem. For example, should psychoanalysis be considered science? How about so-called creation science, the inflationary multiverse hypothesis, or macroeconomics? Karl Popper called this the central question in the philosophy of science.[2] However, no unified account of the problem has won acceptance among philosophers, and some regard the problem as unsolvable or uninteresting.[3][4] Martin Gardner has argued for the use of a Potter Stewart standard ("I know it when I see it") for recognizing pseudoscience.[5]

Early attempts by the logical positivists grounded science in observation while non-science was non-observational and hence meaningless.[6] Popper argued that the central property of science is falsifiability. That is, every genuinely scientific claim is capable of being proven false, at least in principle.[7]

An area of study or speculation that masquerades as science in an attempt to claim a legitimacy that it would not otherwise be able to achieve is referred to as pseudoscience, fringe science, or junk science.[8] Physicist Richard Feynman coined the term "cargo cult science" for cases in which researchers believe they are doing science because their activities have the outward appearance of it but actually lack the "kind of utter honesty" that allows their results to be rigorously evaluated.[9]

Scientific explanation

A closely related question is what counts as a good scientific explanation. In addition to providing predictions about future events, society often takes scientific theories to provide explanations for events that occur regularly or have already occurred. Philosophers have investigated the criteria by which a scientific theory can be said to have successfully explained a phenomenon, as well as what it means to say a scientific theory has explanatory power.
One early and influential theory of scientific explanation is the deductive-nomological model. It says that a successful scientific explanation must deduce the occurrence of the phenomena in question from a scientific law.[10] This view has been subjected to substantial criticism, resulting in several widely acknowledged counterexamples to the theory.[11] It is especially challenging to characterize what is meant by an explanation when the thing to be explained cannot be deduced from any law because it is a matter of chance, or otherwise cannot be perfectly predicted from what is known. Wesley Salmon developed a model in which a good scientific explanation must be statistically relevant to the outcome to be explained.[12][13] Others have argued that the key to a good explanation is unifying disparate phenomena or providing a causal mechanism.[13]

Justifying science

The expectations chickens might form about farmer behavior illustrate the "problem of induction."

Although it is often taken for granted, it is not at all clear how one can infer the validity of a general statement from a number of specific instances or infer the truth of a theory from a series of successful tests.[14] For example, a chicken observes that each morning the farmer comes and gives it food, for hundreds of days in a row. The chicken may therefore use inductive reasoning to infer that the farmer will bring food every morning. However, one morning, the farmer comes and kills the chicken. How is scientific reasoning more trustworthy than the chicken's reasoning?

One approach is to acknowledge that induction cannot achieve certainty, but observing more instances of a general statement can at least make the general statement more probable. So the chicken would be right to conclude from all those mornings that it is likely the farmer will come with food again the next morning, even if it cannot be certain. However, there remain difficult questions about the process of interpreting any given evidence into a probability that the general statement is true. One way out of these particular difficulties is to declare that all beliefs about scientific theories are subjective, or personal, and correct reasoning is merely about how evidence should change one's subjective beliefs over time.[14]

Some argue that what scientists do is not inductive reasoning at all but rather abductive reasoning, or inference to the best explanation. In this account, science is not about generalizing specific instances but rather about hypothesizing explanations for what is observed. As discussed in the previous section, it is not always clear what is meant by the "best explanation." Ockham's razor, which counsels choosing the simplest available explanation, thus plays an important role in some versions of this approach. To return to the example of the chicken, would it be simpler to suppose that the farmer cares about it and will continue taking care of it indefinitely or that the farmer is fattening it up for slaughter? Philosophers have tried to make this heuristic principle more precise in terms of theoretical parsimony or other measures. Yet, although various measures of simplicity have been brought forward as potential candidates, it is generally accepted that there is no such thing as a theory-independent measure of simplicity. In other words, there appear to be as many different measures of simplicity as there are theories themselves, and the task of choosing between measures of simplicity appears to be every bit as problematic as the job of choosing between theories.[15]Nicholas Maxwell has argued for some decades that unity rather than simplicity is the key non-empirical factor in influencing choice of theory in science, persistent preference for unified theories in effect committing science to the acceptance of a metaphysical thesis concerning unity in nature. In order to improve this problematic thesis, it needs to be represented in the form of a hierarchy of theses, each thesis becoming more insubstantial as one goes up the hierarchy[16].

Observation inseparable from theory

A celestial object known as the Einstein Cross.

When making observations, scientists look through telescopes, study images on electronic screens, record meter readings, and so on. Generally, on a basic level, they can agree on what they see, e.g., the thermometer shows 37.9 degrees C. But, if these scientists have different ideas about the theories that have been developed to explain these basic observations, they may disagree about what they are observing. For example, before Albert Einstein's general theory of relativity, observers would have likely interpreted the image at right as five different objects in space. In light of that theory, however, astronomers will tell you that there are actually only two objects, one in the center and four different images of a second object around the sides. Alternatively, if other scientists suspect that something is wrong with the telescope and only one object is actually being observed, they are operating under yet another theory. Observations that cannot be separated from theoretical interpretation are said to be theory-laden.[17]

All observation involves both perception and cognition. That is, one does not make an observation passively, but rather is actively engaged in distinguishing the phenomenon being observed from surrounding sensory data. Therefore, observations are affected by one's underlying understanding of the way in which the world functions, and that understanding may influence what is perceived, noticed, or deemed worthy of consideration. In this sense, it can be argued that all observation is theory-laden.[17]

The purpose of science

Should science aim to determine ultimate truth, or are there questions that science cannot answer? Scientific realists claim that science aims at truth and that one ought to regard scientific theories as true, approximately true, or likely true. Conversely, scientific anti-realists argue that science does not aim (or at least does not succeed) at truth, especially truth about unobservables like electrons or other universes.[18] Instrumentalists argue that scientific theories should only be evaluated on whether they are useful. In their view, whether theories are true or not is beside the point, because the purpose of science is to make predictions and enable effective technology.
Realists often point to the success of recent scientific theories as evidence for the truth (or near truth) of current theories.[19][20] Antirealists point to either the many false theories in the history of science,[21][22] epistemic morals,[23] the success of false modeling assumptions,[24] or widely termed postmodern criticisms of objectivity as evidence against scientific realism.[19] Antirealists attempt to explain the success of scientific theories without reference to truth.[25] Some antirealists claim that scientific theories aim at being accurate only about observable objects and argue that their success is primarily judged by that criterion.[23]

Values and science

Values intersect with science in different ways. There are epistemic values that mainly guide the scientific research. The scientific enterprise is embedded in particular culture and values through individual practitioners. Values emerge from science, both as product and process and can be distributed among several cultures in the society.

If it is unclear what counts as science, how the process of confirming theories works, and what the purpose of science is, there is considerable scope for values and other social influences to shape science. Indeed, values can play a role ranging from determining which research gets funded to influencing which theories achieve scientific consensus.[26] For example, in the 19th century, cultural values held by scientists about race shaped research on evolution, and values concerning social class influenced debates on phrenology (considered scientific at the time).[27] Feminist philosophers of science, sociologists of science, and others explore how social values affect science.

History

Pre-modern

The origins of philosophy of science trace back to Plato and Aristotle[28] who distinguished the forms of approximate and exact reasoning, set out the threefold scheme of abductive, deductive, and inductive inference, and also analyzed reasoning by analogy. The eleventh century Arab polymath Ibn al-Haytham (known in Latin as Alhazen) conducted his research in optics by way of controlled experimental testing and applied geometry, especially in his investigations into the images resulting from the reflection and refraction of light. Roger Bacon (1214–1294), an English thinker and experimenter heavily influenced by al-Haytham, is recognized by many to be the father of modern scientific method.[29] His view that mathematics was essential to a correct understanding of natural philosophy was considered to be 400 years ahead of its time.[30]

Modern

Francis Bacon's statue at Gray's Inn, South Square, London

Francis Bacon (no direct relation to Roger, who lived 300 years earlier) was a seminal figure in philosophy of science at the time of the Scientific Revolution. In his work Novum Organum (1620) – an allusion to Aristotle's Organon – Bacon outlined a new system of logic to improve upon the old philosophical process of syllogism. Bacon's method relied on experimental histories to eliminate alternative theories.[31] In 1637, René Descartes established a new framework for grounding scientific knowledge in his treatise, Discourse on Method, advocating the central role of reason as opposed to sensory experience. By contrast, in 1713, the 2nd edition of Isaac Newton's Philosophiae Naturalis Principia Mathematica argued that "... hypotheses ... have no place in experimental philosophy. In this philosophy[,] propositions are deduced from the phenomena and rendered general by induction. "[32] This passage influenced a "later generation of philosophically-inclined readers to pronounce a ban on causal hypotheses in natural philosophy." [32] In particular, later in the 18th century, David Hume would famously articulate skepticism about the ability of science to determine causality and gave a definitive formulation of the problem of induction. The 19th century writings of John Stuart Mill are also considered important in the formation of current conceptions of the scientific method, as well as anticipating later accounts of scientific explanation.[33]

Logical positivism

Instrumentalism became popular among physicists around the turn of the 20th century, after which logical positivism defined the field for several decades. Logical positivism accepts only testable statements as meaningful, rejects metaphysical interpretations, and embraces verificationism (a set of theories of knowledge that combines logicism, empiricism, and linguistics to ground philosophy on a basis consistent with examples from the empirical sciences). Seeking to overhaul all of philosophy and convert it to a new scientific philosophy,[34] the Berlin Circle and the Vienna Circle propounded logical positivism in the late 1920s.
Interpreting Ludwig Wittgenstein's early philosophy of language, logical positivists identified a verifiability principle or criterion of cognitive meaningfulness. From Bertrand Russell's logicism they sought reduction of mathematics to logic. They also embraced Russell's logical atomism, Ernst Mach's phenomenalism—whereby the mind knows only actual or potential sensory experience, which is the content of all sciences, whether physics or psychology—and Percy Bridgman's operationalism. Thereby, only the verifiable was scientific and cognitively meaningful, whereas the unverifiable was unscientific, cognitively meaningless "pseudostatements"—metaphysical, emotive, or such—not worthy of further review by philosophers, who were newly tasked to organize knowledge rather than develop new knowledge.

Logical positivism is commonly portrayed as taking the extreme position that scientific language should never refer to anything unobservable—even the seemingly core notions of causality, mechanism, and principles—but that is an exaggeration. Talk of such unobservables could be allowed as metaphorical—direct observations viewed in the abstract—or at worst metaphysical or emotional. Theoretical laws would be reduced to empirical laws, while theoretical terms would garner meaning from observational terms via correspondence rules. Mathematics in physics would reduce to symbolic logic via logicism, while rational reconstruction would convert ordinary language into standardized equivalents, all networked and united by a logical syntax. A scientific theory would be stated with its method of verification, whereby a logical calculus or empirical operation could verify its falsity or truth.

In the late 1930s, logical positivists fled Germany and Austria for Britain and America. By then, many had replaced Mach's phenomenalism with Otto Neurath's physicalism, and Rudolf Carnap had sought to replace verification with simply confirmation. With World War II's close in 1945, logical positivism became milder, logical empiricism, led largely by Carl Hempel, in America, who expounded the covering law model of scientific explanation as a way of identifying the logical form of explanations without any reference to the suspect notion of "causation". The logical positivist movement became a major underpinning of analytic philosophy,[35] and dominated Anglosphere philosophy, including philosophy of science, while influencing sciences, into the 1960s. Yet the movement failed to resolve its central problems,[36][37][38] and its doctrines were increasingly assaulted. Nevertheless, it brought about the establishment of philosophy of science as a distinct subdiscipline of philosophy, with Carl Hempel playing a key role.[39]

For Kuhn, the addition of epicycles in Ptolemaic astronomy was "normal science" within a paradigm, whereas the Copernican revolution was a paradigm shift.

Thomas Kuhn

In the 1962 book The Structure of Scientific Revolutions, Thomas Kuhn argued that the process of observation and evaluation takes place within a paradigm, a logically consistent "portrait" of the world that is consistent with observations made from its framing. A paradigm also encompasses the set of questions and practices that define a scientific discipline. He characterized normal science as the process of observation and "puzzle solving" which takes place within a paradigm, whereas revolutionary science occurs when one paradigm overtakes another in a paradigm shift.[40]
Kuhn denied that it is ever possible to isolate the hypothesis being tested from the influence of the theory in which the observations are grounded, and he argued that it is not possible to evaluate competing paradigms independently. More than one logically consistent construct can paint a usable likeness of the world, but there is no common ground from which to pit two against each other, theory against theory. Each paradigm has its own distinct questions, aims, and interpretations. Neither provides a standard by which the other can be judged, so there is no clear way to measure scientific progress across paradigms.

For Kuhn, the choice of paradigm was sustained by rational processes, but not ultimately determined by them. The choice between paradigms involves setting two or more "portraits" against the world and deciding which likeness is most promising. For Kuhn, acceptance or rejection of a paradigm is a social process as much as a logical process. Kuhn's position, however, is not one of relativism.[41] According to Kuhn, a paradigm shift occurs when a significant number of observational anomalies arise in the old paradigm and a new paradigm makes sense of them. That is, the choice of a new paradigm is based on observations, even though those observations are made against the background of the old paradigm.

Current approaches

Naturalism's Axiomatic assumptions

All scientific study inescapably builds on at least some essential assumptions that are untested by scientific processes.[42][43] Kuhn concurs that all science is based on an approved agenda of unprovable assumptions about the character of the universe, rather than merely on empirical facts. These assumptions—a paradigm—comprise a collection of beliefs, values and techniques that are held by a given scientific community, which legitimize their systems and set the limitations to their investigation.[44] For naturalists, nature is the only reality, the only paradigm. There is no such thing as 'supernatural'. The scientific method is to be used to investigate all reality.[45]

Naturalism is the implicit philosophy of working scientists.[46] The following basic assumptions are needed to justify the scientific method.[47]
  1. that there is an objective reality shared by all rational observers.[47][48] "The basis for rationality is acceptance of an external objective reality."[49] "Objective reality is clearly an essential thing if we are to develop a meaningful perspective of the world. Nevertheless its very existence is assumed." "Our belief that objective reality exist is an assumption that it arises from a real world outside of ourselves. As infants we made this assumption unconsciously. People are happy to make this assumption that adds meaning to our sensations and feelings, than live with solipsism."[50] Without this assumption, there would be only the thoughts and images in our own mind (which would be the only existing mind) and there would be no need of science, or anything else."[51]
  2. that this objective reality is governed by natural laws;[47][48] "Science, at least today, assumes that the universe obeys to knoweable principles that don't depend on time or place, nor on subjective parameters such as what we think, know or how we behave."[49] Hugh Gauch argues that science presupposes that "the physical world is orderly and comprehensible."[52]
  3. that reality can be discovered by means of systematic observation and experimentation.[47][48] Stanley Sobottka said, "The assumption of external reality is necessary for science to function and to flourish. For the most part, science is the discovering and explaining of the external world."[51] "Science attempts to produce knowledge that is as universal and objective as possible within the realm of human understanding."[49]
  4. that Nature has uniformity of laws and most if not all things in nature must have at least a natural cause.[48] Biologist Stephen Jay Gould referred to these two closely related propositions as the constancy of nature's laws and the operation of known processes.[53] Simpson agrees that the axiom of uniformity of law, an unprovable postulate, is necessary in order for scientists to extrapolate inductive inference into the unobservable past in order to meaningfully study it.[54]
  5. that experimental procedures will be done satisfactorily without any deliberate or unintentional mistakes that will influence the results.[48]
  6. that experimenters won't be significantly biased by their presumptions.[48]
  7. that random sampling is representative of the entire population.[48] A simple random sample (SRS) is the most basic probabilistic option used for creating a sample from a population. The benefit of SRS is that the investigator is guaranteed to choose a sample that represents the population that ensures statistically valid conclusions.[55]

Coherentism

Jeremiah Horrocks makes the first observation of the transit of Venus in 1639, as imagined by the artist W. R. Lavender in 1903

In contrast to the view that science rests on foundational assumptions, coherentism asserts that statements are justified by being a part of a coherent system. Or, rather, individual statements cannot be validated on their own: only coherent systems can be justified.[56] A prediction of a transit of Venus is justified by its being coherent with broader beliefs about celestial mechanics and earlier observations. As explained above, observation is a cognitive act. That is, it relies on a pre-existing understanding, a systematic set of beliefs. An observation of a transit of Venus requires a huge range of auxiliary beliefs, such as those that describe the optics of telescopes, the mechanics of the telescope mount, and an understanding of celestial mechanics. If the prediction fails and a transit is not observed, that is likely to occasion an adjustment in the system, a change in some auxiliary assumption, rather than a rejection of the theoretical system.[citation needed]

In fact, according to the Duhem–Quine thesis, after Pierre Duhem and W. V. Quine, it is impossible to test a theory in isolation.[57] One must always add auxiliary hypotheses in order to make testable predictions. For example, to test Newton's Law of Gravitation in the solar system, one needs information about the masses and positions of the Sun and all the planets. Famously, the failure to predict the orbit of Uranus in the 19th century led not to the rejection of Newton's Law but rather to the rejection of the hypothesis that the solar system comprises only seven planets. The investigations that followed led to the discovery of an eighth planet, Neptune. If a test fails, something is wrong. But there is a problem in figuring out what that something is: a missing planet, badly calibrated test equipment, an unsuspected curvature of space, or something else.[citation needed]

One consequence of the Duhem–Quine thesis is that one can make any theory compatible with any empirical observation by the addition of a sufficient number of suitable ad hoc hypotheses. Karl Popper accepted this thesis, leading him to reject naïve falsification. Instead, he favored a "survival of the fittest" view in which the most falsifiable scientific theories are to be preferred.[58]

Anything goes methodology


Paul Feyerabend (1924–1994) argued that no description of scientific method could possibly be broad enough to include all the approaches and methods used by scientists, and that there are no useful and exception-free methodological rules governing the progress of science. He argued that "the only principle that does not inhibit progress is: anything goes".[59]

Feyerabend said that science started as a liberating movement, but that over time it had become increasingly dogmatic and rigid and had some oppressive features. and thus had become increasingly an ideology. Because of this, he said it was impossible to come up with an unambiguous way to distinguish science from religion, magic, or mythology. He saw the exclusive dominance of science as a means of directing society as authoritarian and ungrounded.[59] Promulgation of this epistemological anarchism earned Feyerabend the title of "the worst enemy of science" from his detractors.[60]

Sociology of scientific knowledge methodology

According to Kuhn, science is an inherently communal activity which can only be done as part of a community.[61] For him, the fundamental difference between science and other disciplines is the way in which the communities function. Others, especially Feyerabend and some post-modernist thinkers, have argued that there is insufficient difference between social practices in science and other disciplines to maintain this distinction. For them, social factors play an important and direct role in scientific method, but they do not serve to differentiate science from other disciplines. On this account, science is socially constructed, though this does not necessarily imply the more radical notion that reality itself is a social construct.
However, some (such as Quine) do maintain that scientific reality is a social construct:
Physical objects are conceptually imported into the situation as convenient intermediaries not by definition in terms of experience, but simply as irreducible posits comparable, epistemologically, to the gods of Homer ... For my part I do, qua lay physicist, believe in physical objects and not in Homer's gods; and I consider it a scientific error to believe otherwise. But in point of epistemological footing, the physical objects and the gods differ only in degree and not in kind. Both sorts of entities enter our conceptions only as cultural posits.[62]
The public backlash of scientists against such views, particularly in the 1990s, became known as the science wars.[63]

A major development in recent decades has been the study of the formation, structure, and evolution of scientific communities by sociologists and anthropologists - including David Bloor, Harry Collins, Bruno Latour, and Anselm Strauss. Concepts and methods (such as rational choice, social choice or game theory) from economics have also been applied[by whom?] for understanding the efficiency of scientific communities in the production of knowledge. This interdisciplinary field has come to be known as science and technology studies.[64] Here the approach to the philosophy of science is to study how scientific communities actually operate.

Continental philosophy

Philosophers in the continental philosophical tradition are not traditionally categorized as philosophers of science. However, they have much to say about science, some of which has anticipated themes in the analytical tradition. For example, Friedrich Nietzsche advanced the thesis in his "The Genealogy of Morals" that the motive for search of truth in sciences is a kind of ascetic ideal.[65]

Hegel with his Berlin students
Sketch by Franz Kugler

In general, science in continental philosophy is viewed from a world-historical perspective. One of the first philosophers who supported this view was Georg Wilhelm Friedrich Hegel. Philosophers such as Pierre Duhem and Gaston Bachelard also wrote their works with this world-historical approach to science, predating Kuhn by a generation or more. All of these approaches involve a historical and sociological turn to science, with a priority on lived experience (a kind of Husserlian "life-world"), rather than a progress-based or anti-historical approach as done in the analytic tradition. This emphasis can be traced through Edmund Husserl's phenomenology, the late works of Merleau-Ponty (Nature: Course Notes from the Collège de France, 1956–1960), and Martin Heidegger's hermeneutics.[66]

The largest effect on the continental tradition with respect to science was Martin Heidegger's critique of the theoretical attitude in general which of course includes the scientific attitude.[67] For this reason the continental tradition has remained much more skeptical of the importance of science in human life and philosophical inquiry. Nonetheless, there have been a number of important works: especially a Kuhnian precursor, Alexandre Koyré. Another important development was that of Michel Foucault's analysis of the historical and scientific thought in The Order of Things and his study of power and corruption within the "science" of madness. Post-Heideggerian authors contributing to the continental philosophy of science in the second half of the 20th century include Jürgen Habermas (e.g., "Truth and Justification", 1998), Carl Friedrich von Weizsäcker ("The Unity of Nature", 1980), and Wolfgang Stegmüller ("Probleme und Resultate der Wissenschafttheorie und Analytischen Philosophie", 1973–1986).

Other topics

Reductionism

Analysis is the activity of breaking an observation or theory down into simpler concepts in order to understand it. Reductionism can refer to one of several philosophical positions related to this approach. One type of reductionism is the belief that all fields of study are ultimately amenable to scientific explanation. Perhaps a historical event might be explained in sociological and psychological terms, which in turn might be described in terms of human physiology, which in turn might be described in terms of chemistry and physics.[68] Daniel Dennett distinguishes legitimate reductionism from what he calls greedy reductionism, which denies real complexities and leaps too quickly to sweeping generalizations.[69]

Social accountability

A broad issue affecting the neutrality of science concerns the areas which science chooses to explore, that is, what part of the world and man is studied by science. Philip Kitcher in his "Science, Truth, and Democracy"[70] argues that scientific studies that attempt to show one segment of the population as being less intelligent, successful or emotionally backward compared to others have a political feedback effect which further excludes such groups from access to science. Thus such studies undermine the broad consensus required for good science by excluding certain people, and so proving themselves in the end to be unscientific.

Philosophy of particular sciences

There is no such thing as philosophy-free science; there is only science whose philosophical baggage is taken on board without examination.[71]
— Daniel Dennett, Darwin's Dangerous Idea, 1995
In addition to addressing the general questions regarding science and induction, many philosophers of science are occupied by investigating foundational problems in particular sciences. They also examine the implications of particular sciences for broader philosophical questions. The late 20th and early 21st century has seen a rise in the number of practitioners of philosophy of a particular science.[72]

Philosophy of statistics

The problem of induction discussed above is seen in another form in debates over the foundations of statistics.[73] The standard approach to statistical hypothesis testing avoids claims about whether evidence supports a hypothesis or makes it more probable. Instead, the typical test yields a p-value, which is the probability of the evidence being such as it is, under the assumption that the hypothesis being tested is true. If the p-value is too low, the hypothesis is rejected, in a way analogous to falsification. In contrast, Bayesian inference seeks to assign probabilities to hypotheses. Related topics in philosophy of statistics include probability interpretations, overfitting, and the difference between correlation and causation.

A triangle.

Philosophy of mathematics

Philosophy of mathematics is concerned with the philosophical foundations and implications of mathematics.[74] The central questions are whether numbers, triangles, and other mathematical entities exist independently of the human mind and what is the nature of mathematical propositions. Is asking whether "1+1=2" is true fundamentally different from asking whether a ball is red? Was calculus invented or discovered? A related question is whether learning mathematics requires experience or reason alone. What does it mean to prove a mathematical theorem and how does one know whether a mathematical proof is correct? Philosophers of mathematics also aim to clarify the relationships between mathematics and logic, human capabilities such as intuition, and the material universe.

Philosophy of physics

Philosophy of physics is the study of the fundamental, philosophical questions underlying modern physics, the study of matter and energy and how they interact. The main questions concern the nature of space and time, atoms and atomism. Also included are the predictions of cosmology, the interpretation of quantum mechanics, the foundations of statistical mechanics, causality, determinism, and the nature of physical laws.[75] Classically, several of these questions were studied as part of metaphysics (for example, those about causality, determinism, and space and time).

Philosophy of chemistry

Philosophy of chemistry is the philosophical study of the methodology and content of the science of chemistry. It is explored by philosophers, chemists, and philosopher-chemist teams. It includes research on general philosophy of science issues as applied to chemistry. For example, can all chemical phenomena be explained by quantum mechanics or is it not possible to reduce chemistry to physics? For another example, chemists have discussed the philosophy of how theories are confirmed in the context of confirming reaction mechanisms. Determining reaction mechanisms is difficult because they cannot be observed directly. Chemists can use a number of indirect measures as evidence to rule out certain mechanisms, but they are often unsure if the remaining mechanism is correct because there are many other possible mechanisms that they have not tested or even thought of.[76] Philosophers have also sought to clarify the meaning of chemical concepts which do not refer to specific physical entities, such as chemical bonds.

Philosophy of Earth sciences

The philosophy of Earth science is concerned with how humans obtain and verify knowledge of the workings of the Earth system, including the atmosphere, hydrosphere, and geosphere (solid earth). Earth scientists’ ways of knowing and habits of mind share important commonalities with other sciences but also have distinctive attributes that emerge from the complex, heterogeneous, unique, long-lived, and non-manipulatable nature of the Earth system.

Peter Godfrey-Smith was awarded the Lakatos Award[77] for his 2009 book, Darwinian Populations and Natural Selection which discusses the philosophical foundations of the theory of evolution.[78][79]

Philosophy of biology

Philosophy of biology deals with epistemological, metaphysical, and ethical issues in the biological and biomedical sciences. Although philosophers of science and philosophers generally have long been interested in biology (e.g., Aristotle, Descartes, Leibniz and even Kant), philosophy of biology only emerged as an independent field of philosophy in the 1960s and 1970s.[80] Philosophers of science began to pay increasing attention to developments in biology, from the rise of the modern synthesis in the 1930s and 1940s to the discovery of the structure of deoxyribonucleic acid (DNA) in 1953 to more recent advances in genetic engineering. Other key ideas such as the reduction of all life processes to biochemical reactions as well as the incorporation of psychology into a broader neuroscience are also addressed. Research in current philosophy of biology includes investigation of the foundations of evolutionary theory (such as Peter Godfrey-Smith's work),[81] and the role of viruses as persistent symbionts in host genomes. As a consequence the evolution of genetic content order is seen as the result of competent genome editors in contrast to former narratives in which error replication events (mutations) dominated.[82]

A fragment of the Hippocratic Oath from the third century.

Philosophy of medicine

Beyond medical ethics and bioethics, the philosophy of medicine is a branch of philosophy that includes the epistemology and ontology/metaphysics of medicine. Within the epistemology of medicine, evidence-based medicine (EBM) (or evidence-based practice (EBP)) has attracted attention, most notably the roles of randomisation,[83][84][85] blinding and placebo controls. Related to these areas of investigation, ontologies of specific interest to the philosophy of medicine include Cartesian dualism, the monogenetic conception of disease[86] and the conceptualization of 'placebos' and 'placebo effects'.[87][88][89][90] There is also a growing interest in the metaphysics of medicine,[91] particularly the idea of causation. Philosophers of medicine might not only be interested in how medical knowledge is generated, but also in the nature of such phenomena. Causation is of interest because the purpose of much medical research is to establish causal relationships, e.g. what causes disease, or what causes people to get better.[92]

Philosophy of psychology

Wilhelm Wundt (seated) with colleagues in his psychological laboratory, the first of its kind.

Philosophy of psychology refers to issues at the theoretical foundations of modern psychology. Some of these issues are epistemological concerns about the methodology of psychological investigation. For example, is the best method for studying psychology to focus only on the response of behavior to external stimuli or should psychologists focus on mental perception and thought processes?[93] If the latter, an important question is how the internal experiences of others can be measured. Self-reports of feelings and beliefs may not be reliable because, even in cases in which there is no apparent incentive for subjects to intentionally deceive in their answers, self-deception or selective memory may affect their responses. Then even in the case of accurate self-reports, how can responses be compared across individuals? Even if two individuals respond with the same answer on a Likert scale, they may be experiencing very different things.

Other issues in philosophy of psychology are philosophical questions about the nature of mind, brain, and cognition, and are perhaps more commonly thought of as part of cognitive science, or philosophy of mind. For example, are humans rational creatures?[93] Is there any sense in which they have free will, and how does that relate to the experience of making choices? Philosophy of psychology also closely monitors contemporary work conducted in cognitive neuroscience, evolutionary psychology, and artificial intelligence, questioning what they can and cannot explain in psychology.

Philosophy of psychology is a relatively young field, because psychology only became a discipline of its own in the late 1800s. In particular, neurophilosophy has just recently become its own field with the works of Paul Churchland and Patricia Churchland.[72] Philosophy of mind, by contrast, has been a well-established discipline since before psychology was a field of study at all. It is concerned with questions about the very nature of mind, the qualities of experience, and particular issues like the debate between dualism and monism. Another related field is philosophy of language.

A notable recent development in Philosophy of Psychology is Functional Contextualism or Contextual Behavioural Science (CBS). Functional Contextualism is a modern philosophy of science rooted in philosophical pragmatism and contextualism. It is most actively developed in behavioral science in general, the field of behavior analysis, and contextual behavioral science in particular (see the entry for the Association for Contextual Behavioral Science). Functional contextualism serves as the basis of a theory of language known as relational frame theory[1] and its most prominent application, acceptance and commitment therapy (ACT).[2] It is an extension and contextualistic interpretation of B.F. Skinner's radical behaviorism first delineated by Steven C. Hayes which emphasizes the importance of predicting and influencing psychological events (including thoughts, feelings, and behaviors) with precision, scope, and depth, by focusing on manipulable variables in their context.

Philosophy of psychiatry

Philosophy of psychiatry explores philosophical questions relating to psychiatry and mental illness. The philosopher of science and medicine Dominic Murphy identifies three areas of exploration in the philosophy of psychiatry. The first concerns the examination of psychiatry as a science, using the tools of the philosophy of science more broadly. The second entails the examination of the concepts employed in discussion of mental illness, including the experience of mental illness, and the normative questions it raises. The third area concerns the links and discontinuities between the philosophy of mind and psychopathology.[94]

Amartya Sen was awarded the Nobel Prize in Economics for "combining tools from economics and philosophy."[95]

Philosophy of economics

Philosophy of economics is the branch of philosophy which studies philosophical issues relating to economics. It can also be defined as the branch of economics which studies its own foundations and morality. It can be categorized into three central topics.[96] The first concerns the definition and scope of economics and by what methods it should be studied and whether these methods rise to the level of epistemic reliability associated with the other special sciences. For example, is it possible to research economics in such a way that it is value-free, establishing facts that are independent of the normative views of the researcher? The second topic is the meaning and implications of rationality. For example, can buying lottery tickets (increasing the riskiness of your income) at the same time as buying insurance (decreasing the riskiness of your income) be rational? The third topic is the normative evaluation of economic policies and outcomes. What criteria should be used to determine whether a given public policy is beneficial for society?

Philosophy of social science

The philosophy of social science is the study of the logic and method of the social sciences, such as sociology, anthropology, and political science.[97] Philosophers of social science are concerned with the differences and similarities between the social and the natural sciences, causal relationships between social phenomena, the possible existence of social laws, and the ontological significance of structure and agency.
The French philosopher, Auguste Comte (1798–1857), established the epistemological perspective of positivism in The Course in Positivist Philosophy, a series of texts published between 1830 and 1842. The first three volumes of the Course dealt chiefly with the physical sciences already in existence (mathematics, astronomy, physics, chemistry, biology), whereas the latter two emphasised the inevitable coming of social science: "sociologie".[98] For Comte, the physical sciences had necessarily to arrive first, before humanity could adequately channel its efforts into the most challenging and complex "Queen science" of human society itself. Comte offers an evolutionary system proposing that society undergoes three phases in its quest for the truth according to a general 'law of three stages'. These are (1) the theological, (2) the metaphysical, and (3) the positive.[99]

Comte's positivism established the initial philosophical foundations for formal sociology and social research. Durkheim, Marx, and Weber are more typically cited as the fathers of contemporary social science. In psychology, a positivistic approach has historically been favoured in behaviourism. Positivism has also been espoused by 'technocrats' who believe in the inevitability of social progress through science and technology.[100]

The positivist perspective has been associated with 'scientism'; the view that the methods of the natural sciences may be applied to all areas of investigation, be it philosophical, social scientific, or otherwise. Among most social scientists and historians, orthodox positivism has long since lost popular support. Today, practitioners of both social and physical sciences instead take into account the distorting effect of observer bias and structural limitations. This scepticism has been facilitated by a general weakening of deductivist accounts of science by philosophers such as Thomas Kuhn, and new philosophical movements such as critical realism and neopragmatism. The philosopher-sociologist Jürgen Habermas has critiqued pure instrumental rationality as meaning that scientific-thinking becomes something akin to ideology itself.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...