Search This Blog

Sunday, September 22, 2019

USA.gov

From Wikipedia, the free encyclopedia
 
USA.gov logo as of 2017.png
Type of site
E-government
Available inEnglish
Spanish at USA.gov/espanol
Websitewww.usa.gov
Alexa rankPositive decrease 6,252 (April 2014)
CommercialNo
LaunchedSeptember 22, 2000; 19 years ago
Current statusOnline
Content license
Public domain

USA.gov is the official web portal of the United States federal government. It is designed to improve the public's interaction with the US government by quickly directing website visitors to the services or information they are seeking, and by inviting the public to share ideas to improve government. USA.gov links to every federal agency and to state, local, and tribal governments, and is the most comprehensive site in—and about—the US government. While the primary target audience of USA.gov is the American public, about 25 percent of USA.gov’s visitors come from outside the United States. 

USA.gov is part of the Technology and Transformation Services in the General Services Administration (GSA), and includes the Spanish-language web portal to US government services, USAGOV en Español (formerly GobiernoUSA.gov).

History

USA.gov began in 2000 when Internet entrepreneur Eric Brewer, whose early research in parallel computing was funded by the United States Department of Defense, offered to donate a powerful search engine to the government. That donation helped accelerate the government's earlier work to create a government-wide portal. In June 2000, President Clinton announced the gift from the Federal Search Foundation, a nonprofit organization co-founded by Brewer and fellow entrepreneur David Binetti, and instructed that the portal be launched in 90 days.

FirstGov.gov was launched 87 days later on September 22, 2000, during the first-ever webcast originating from the White House Oval Office. GSA and 22 Federal agencies funded the initiative in 2001 and 2002. Since 2002, USA.gov has received an annual appropriation from the U.S. Congress.

The name FirstGov.gov was changed in 2007 to USA.gov, in response to user suggestions and telephone surveys. 

On July 2, 2010, USA.gov revamped the website to improve user access to citizen services through new mobile applications for on-the-go instant access; public engagement platforms; and the fastest, most comprehensive search function for government information.

Structure

USA.gov helps visitors find federal information in several ways, detailed below. Additionally, USA.gov invites the public to share feedback on apps they would find useful by using government information available on Data.gov and USAspending.gov, and to share ideas to improve government through public dialogues and government contests.

E-mail alerts

Visitors to USA.gov can sign up for free e-mail alerts in both English and Spanish, to learn about popular government topics and important services and benefits. The pages' subjects range from benefits, scams, and fraud, and contacting elected officials to hurricane recovery, travel, and jobs.

USAGov Contact Center

For more than 30 years, the contact center has been a source for answers to questions about consumer problems and government services. 

If visitors cannot find the government information they are looking for online, they can call 1-844-USAGOV1, or get help through a live web chat service.

USA.gov content

USA.gov links to diverse, useful, and timely citizen-centered government information and services that can help website visitors apply for a government job, register to vote, file their taxes, find government benefits, reserve a campsite at a national park, prepare for disasters, shop at government auctions, learn about visiting the United States, or report an unsafe product, among many other activities. 

The site's policy is to link to websites of the federal government, quasi-government agencies, and those created by public sector/private sector partnerships; state and local governments; and recognized Indian tribes. In rare instances, the sites link to websites that are not government-owned or government-sponsored if these websites provide government information and/or services in a way that is not available on an official government website.

Live chat

USA.gov offers live chat in English and Spanish, where service representatives can answer website visitors' questions about federal agencies, programs, benefits, or services.

RSS feeds

USA.gov and USAGov en Español offer RSS feeds to help the public stay up to date on useful government information. Website visitors can sign up for USA.gov RSS feeds, and the USAGov en Español.

Search.USA.gov

USA.gov's search engine supports transparency of government information by providing access to government web pages from U.S. federal, state, local, tribal, and territorial governments. The portal features state-of-the-art navigation aids and high-interest, agency-produced databases such as frequently asked questions, government forms, recalls, and government images. Search.USA.gov is also available on its mobile service. In addition, any U.S. government agency can apply through the USA Services Affiliate Program to install the Search.gov search capability on its own pages, thus allowing agencies at all levels to provide website searching for their own users.

Social Media

USA.gov uses Facebook, Twitter, and YouTube and Instagram to distribute timely official U.S. government information and emergency information, announce official government events and observances, share official government photos and videos, and gather feedback from the public.

URL shortening

A URL shortening service, go.USA.gov, is available to users that have a .gov email address (only .gov URLs may be submitted for shortening through this service). The service will generate a random URL following go.USA.gov/ which redirects the user to the longer .gov URL stored in the system.

USAGov en Español

US-GSA-GobiernoUSAGov-Logo.svg

A part of USA.gov, USAGov en Español pulls together all of the U.S. government's Spanish-language websites and makes them easily accessible to the public in one central location. The site, which was developed by Spanish speakers, represents an outreach effort to some 43 million Americans who report speaking Spanish at home. 

Although most of the resources shared on USAGov en Español are federal, the site also links to Spanish-language content provided by states, the District of Columbia, the Commonwealth of Puerto Rico, and local government websites. 

Web visitors also can search all federal and state web pages for Spanish content through the site's search engine, call 1-844USAGOV1 for help in Spanish and English or chat with a representative online. Spanish-speaking visitors can sign up for e-mail alerts in Spanish to let them know about important benefits and services. The website also offers information on the same topic in both English and Spanish by simply clicking on a toggle button.

Web best practices

USA.gov actively promotes best practices within the government web manager community to improve the overall quality of U.S. federal websites as well as public access to government information.

Federal Web Managers Council

Interagency Committee on Government Information

USA.gov has a leadership role on the Interagency Committee on Government Information (ICGI), formed to meet requirements of the E-Government Act of 2002 (Public Law 107-347, 44 U.S.C. Ch 36). The ICGI drafts recommendations and shares effective practices for federal government information access, dissemination, and retention.

Crisis response initiatives

USA.gov is a critical destination for information during national disasters. After the September 11, 2001, attack on the United States, USA.gov became a major tool for the U.S. government to provide the most accurate, timely, and comprehensive information, resources, and government services available during that crisis.

Several years later, in the wake of Hurricane Katrina in August 2005, USA.gov participated in efforts led by the Department of Homeland Security and worked with over 20 federal agencies to develop guidance to communicate response information related to the storm and its aftermath. Agencies were encouraged to coordinate web information to avoid duplication and inconsistencies so the public could quickly and easily find critical information.

Categories identified during Katrina matched information people would be looking for in "any" disaster, whether natural or man-made. The federal web community can now re-use a good deal of the content developed in response to the hurricane crisis, to enable them to be even better prepared when the next disaster occurs.

Model to other government websites

USA.gov serves as a model for other government websites and adheres to all requirements and guidelines for federal websites, including those established by the E-Government Act of 2002, the U.S. Office of Management and Budget's (OMB) Policies for Federal Public Websites, and Section 508 of the Rehabilitation Act of 1973 regarding website accessibility. The site also follows requirements of the Privacy Act, the Federal Information Security Management Act, and other privacy and security requirements.

Awards

USA.gov has won numerous awards and media endorsements, including:
  • Listing among the "Best of..." by Money Magazine, "Favorite Places on the Web" by the Chicago Sun Times, "Hot Sites" by USATODAY.com, "Top 100 Classic Sites" by PC Magazine, and Time Magazine's 2007 "Top 25 Sites We Can't Live Without."
  • It also has won "#1 Federal Government Website—Comparing Technology Innovation in the Private and Public Sectors," by the Brookings Institution; "#1 in Global E-Government Readiness" in the United Nations' Global E-Government Readiness Report 2005; "#1 in Overall Federal e-Government" by Brown University's Taubman Center for Public Policy; and the "Innovations in American Government Award" by Harvard University's Kennedy School of Government.
USAGov en Español was named a finalist for the Arroba de oro, ("the golden @"), has won the Web Content Managers' "Best Practices" award, and consistently scores among the highest in government or private sectors in the American Customer Satisfaction Index.

Equal Employment Opportunity Commission

From Wikipedia, the free encyclopedia
 
Equal Employment Opportunity Commission
Seal of the United States Equal Employment Opportunity Commission.svg
Agency overview
FormedJuly 2, 1965; 54 years ago
HeadquartersWashington, D.C., U.S.
Employees1,968 (FY18)
Annual budget$379,500,000 (FY18)
Agency executives
Websitewww.eeoc.gov

The U.S. Equal Employment Opportunity Commission (EEOC) is a federal agency that administers and enforces civil rights laws against workplace discrimination. The EEOC investigates discrimination complaints based on an individual's race, children, national origin, religion, sex, age, disability, sexual orientation, gender identity, genetic information, and retaliation for reporting, participating in, and/or opposing a discriminatory practice.

History

On March 6, 1961, President John F. Kennedy signed Executive Order 10925, which required government contractors to "take affirmative action to ensure that applicants are employed and that employees are treated during employment without regard to their race, creed, color, or national origin." It established the President's Committee on Equal Employment Opportunity, which then Vice President Lyndon Johnson was appointed to head. This was the forerunner of the EEOC. 

The EEOC was established on July 2, 1965; its mandate is specified under Title VII of the Civil Rights Act of 1964, the Age Discrimination in Employment Act of 1967 (ADEA), the Rehabilitation Act of 1973, the Americans with Disabilities Act (ADA) of 1990, and the ADA Amendments Act of 2008. The EEOC's first complainants were female flight attendants. However, the EEOC at first ignored sex discrimination complaints, and the prohibition against sex discrimination in employment went unenforced for the next few years. One EEOC director called the prohibition "a fluke... conceived out of wedlock."

All Commission seats and the post of general counsel to the commission are filled by the US President, subject to confirmation by the Senate. Stuart J. Ishimaru, a Commissioner who was confirmed in 2003 and 2006, served as Acting Chair of the Commission from January 20, 2009 until December 22, 2010, when the Senate confirmed Jacqueline Berrien to be the chairwoman. She had been nominated as chairwoman by President Barack Obama in July 2009. In September 2009, Obama chose Chai Feldblum to fill another vacant seat.

On March 27, 2010, President Obama made recess appointments of three Commission posts: Berrien, Feldblum, and Victoria Lipnic. With the appointments, the Commission had its full five Commissioners: Ishimaru, Berrien, Feldblum, Lipnic, and Constance Barker, who was confirmed by the Senate in 2008 to be a Commissioner. President Obama also made a recess appointment of P. David Lopez to be the EEOC's General Counsel.

On December 22, 2010, the Senate gave full confirmation to Berrien, Feldblum, Lipnic, and Lopez. In 2014, President Obama renominated Lopez and he was reconfirmed by the Senate the same year.

In 2011, the Commission included "sex-stereotyping" of lesbian, gay, and bisexual individuals, as a form of sex discrimination illegal under Title VII of the Civil Rights Act of 1964. In 2012, the Commission expanded protection provided by Title VII to transgender status and gender identity.

After the departure of Ishimaru, the commission returned to its full five commissioners on April 25, 2013, with the Senate confirmation of Jenny Yang.

In 2015, it concluded that for Title VII, sex discrimination includes discrimination based on sexual orientation.

However, the rulings, while persuasive, are not binding on courts and would need to be addressed by the Supreme Court for a final decision. The Commission also mediates and settles thousands of discrimination complaints each year prior to their investigation. The EEOC is also empowered to file civil discrimination suits against employers on behalf of alleged victims and to adjudicate claims of discrimination brought against federal agencies.

Staffing, workload, and backlog

In 1975, when the backlog reached more than 100,000 charges to be investigated, President Gerald Ford's full requested budget of $62 million was approved. A "Backlog Unit" was created in Philadelphia in 1978 to resolve the thousands of federal equal employment complaints inherited from the Civil Service Commission. In 1980, Eleanor Holmes Norton began re-characterizing the backlog cases as "workload" in her reports to Congress, thus fulfilling her promise to eliminate the backlog.

In June 2006, civil rights and labor union advocates publicly complained that the effectiveness of the EEOC was being undermined by budget and staff cuts and the outsourcing of complaint screening to a private contractor whose workers were poorly trained. In 2006, a partial budget freeze prevented the agency from filling vacant jobs, and its staff had shrunk by nearly 20 percent from 2001. A Bush administration official stated that the cuts had been made because it was necessary to direct more money to defense and homeland security. By 2008, the EEOC had lost 25 percent of its staff over the previous eight years, including investigators and lawyers who handle the cases. The number of complaints to investigate grew to 95,400 in fiscal 2008, up 26 percent from 2006.

Although full-time staffing of the EEOC was cut between 2002 and 2006, Congress increased the commission's budget during that period, as it has almost every year since 1980. The budget was $303 million in fiscal year 2001 to $327 million in fiscal year 2006.

The outsourcing to Pearson Government Solutions in Kansas cost the agency $4.9 million and was called a "huge waste of money" by the president of the EEOC employees' union in 2006.

The EEOC uses monetary fines as the primary form of deterrence and, as the fines have not adjusted for inflation, the backlog of EEOC cases illustrates a decline in its effectiveness.

Race and ethnicity

The EEOC requires employers to report various information about their employees, in particular their racial/ethnic categories, to prevent discrimination based on race/ethnicity. The definitions used in the report have been different at different times.

In 1997, the Office of Management and Budget gave a Federal Register Notice, the "Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity," which defined new racial and ethnic definitions. As of September 30, 2007, the EEOC's EEO-1 report must use the new racial and ethnic definitions in establishing grounds for racial or ethnic discrimination. If an employee identifies their ethnicity as "Hispanic or Latino" as well as a race, the race is not reported in EEO-1, but it is kept as part of the employment record. 

A person's skin color or physical appearance can also be grounds for a case of racial discrimination. Discrimination based on national origin can be grounds for a case on discrimination as well.

Investigative compliance policy

EEOC applies an investigative compliance policy when respondents are uncooperative in providing information during an investigation of a charge. If a respondent fails to turn over requested information, field offices are to subpoena the information, file a direct suit on the merits of a charge, or use the legal principle of adverse inference, which assumes the withheld information is against the respondent.

Increase in disability-based charges

In 2008, disability-based charges handled by the EEOC rose to a record 19,543, up 10.2 percent from the prior year and the highest level since 1995.

That may again be showing that because the EEOC has not adjusted many of their initial 1991 fines for inflation, the backlog of EEOC cases illustrates erosion of deterrence.

Home Depot disability discrimination suit

In September 2012, Home Depot agreed to pay $100,000 and furnish other relief to settle a disability discrimination lawsuit filed by the EEOC for the alleged failure to provide reasonable accommodation for a cashier with cancer at its Towson, Maryland, store and for later purportedly firing her because of her condition.

2012 profile

The U.S. Equal Employment Opportunity Commission (EEOC) announced that it received 99,412 private sector workplace discrimination charges during fiscal year 2012, down slightly from the previous year. The year-end data also show that retaliation (37,836), race (33,512), and sex discrimination (30,356), which includes allegations of sexual harassment and pregnancy were the most frequently filed charges.

Additionally, the EEOC achieved a second consecutive year of a significant reduction in the charge inventory, something not seen since fiscal year 2002. Due to a concerted effort, the EEOC reduced the pending inventory of private sector charges by 10 percent from fiscal year 2011, bringing the inventory level to 70,312. This inventory reduction is the second consecutive decrease of almost ten percent in charge inventory. Also this fiscal year, the agency obtained the largest amount of monetary recovery from private sector and state and local government employers through its administrative process — $365.4 million.

In fiscal year 2012, the EEOC filed 122 lawsuits, including 86 individual suits, 26 multiple-victim suits, with fewer than 20 victims, and 10 systemic suits. The EEOC's legal staff resolved 254 lawsuits for a total monetary recovery of $44.2 million. 

EEOC also continued its emphasis on eliminating alleged systemic patterns of discrimination in the workplace. In fiscal year 2012, EEOC completed 240 systemic investigations which in part resulted in 46 settlements or conciliation agreements. These settlements, achieved without litigation, secured 36.2 million dollars for the victims of unlawful discrimination. In addition, the agency filed 12 systemic lawsuits in fiscal year 2012. 

Overall, the agency secured both monetary and non-monetary benefits for more than 23,446 people through administrative enforcement activities – mediation, settlements, conciliations, and withdrawals with benefits. The number of charges resolved through successful conciliation, the last step in the EEOC administrative process prior to litigation, increased by 18 percent over 2011.

Successes

On May 1, 2013, a Davenport, Iowa jury awarded the U.S. Equal Employment Opportunity Commissission damages totaling $240 million — the largest verdict in the federal agency's history — for disability discrimination and severe abuse.

The jury agreed with the EEOC that Hill County Farms, doing business as Henry's Turkey Service subjected a group of 32 men with intellectual disabilities to severe abuse and discrimination for a period between 2007 and 2009, after 20 years of similar mistreatment. This victory received international attention and was profiled in the New York Times.

On June 1, 2015, the U.S. Supreme Court held in an 8-1 decision written by Justice Antonin Scalia that an employer may not refuse to hire an applicant if the employer was motivated by avoiding the need to accommodate a religious practice. Such behavior violates the prohibition on religious discrimination contained in Title VII of the Civil Rights Act of 1964.

EEOC General Counsel David Lopez hailed the decision. "At its root, this case is about defending the quintessentially American principles of religious freedom and tolerance," Lopez said. "This decision is a victory for our increasingly diverse society and we applaud Samantha Elauf's courage and tenacity in pursuing this matter.”

Criticism

Some employment-law professionals criticized the agency after it issued advice that requiring a high school diploma from job applicants could violate the Americans with Disabilities Act. The advice letter stated that the longtime lowest common denominator of employee screening must be "job-related for the position in question and consistent with business necessity." A Ballard Spahr lawyer suggested, "There will be less incentive for the general public to obtain a high school diploma if many employers eliminate that requirement for job applicants in their workplace."

The EEOC has been criticized for alleged heavy-handed tactics in their 1980 lawsuit against retailer Sears, Roebuck & Co. Based on a statistical analysis of personnel and promotions, EEOC argued that Sears both was systematically excluding women from high-earning positions in commission sales and was paying female management lower wages than male management. Sears, represented by lawyer Charles Morgan, Jr., counter-argued that the company had encouraged female applicants for sales and management, but women preferred lower-paying positions with more stable daytime working hours, as compared to commission sales, which demanded evening and weekend shifts and featured drastically-varying paychecks, depending on the numbers of sales in a given pay period. In 1986, the court ruled in favor of Sears on all counts and noted that the EEOC had neither produced a single witness who alleged discrimination nor identified any Sears policy that discriminated against women.

In a 2011 ruling against the EEOC, Judge Loretta A. Preska declared that It relied too heavily on anecdotal claims rather than on hard data, in a lawsuit against Bloomberg, L.P. that alleged discrimination against pregnant employees. In a ruling described in the New York Times as "strongly worded," Preska wrote, "the law does not mandate 'work-life balance' and added that while Bloomberg had expected high levels of dedication from employees, the company did not treat women who took pregnancy leave differently from those who took leave for other reasons.

Mining engineering

From Wikipedia, the free encyclopedia

Surface coal mine with haul truck in foreground
 
Mining engineering is an engineering discipline that applies science and technology to the extraction of minerals from the earth. Mining engineering is associated with many other disciplines, such as mineral processing, Exploration, Excavation, geology, and metallurgy, geotechnical engineering and surveying. A mining engineer may manage any phase of mining operations – from exploration and discovery of the mineral resource, through feasibility study, mine design, development of plans, production and operations to mine closure

With the process of Mineral extraction, some amount of waste and uneconomic material are generated which are the primary source of pollution in the vicinity of mines. Mining activities by their nature cause a disturbance of the natural environment in and around which the minerals are located. Mining engineers must therefore be concerned not only with the production and processing of mineral commodities, but also with the mitigation of damage to the environment both during and after mining as a result of the change in the mining area. Such Industries go through stringent laws to control the pollution and damage caused to the environment and are periodically governed by the concerned departments.

History of mining engineering

From prehistoric times to the present, mining has played a significant role in the existence of the human race. Since the beginning of civilization people have used stone and ceramics and, later, metals found on or close to the Earth's surface. These were used to manufacture early tools and weapons. For example, high quality flint found in northern France and southern England were used to set fire and break rock. Flint mines have been found in chalk areas where seams of the stone were followed underground by shafts and galleries. The oldest known mine on archaeological record is the "Lion Cave" in Swaziland. At this site, which radiocarbon dating indicates to be about 43,000 years old, paleolithic humans mined mineral hematite, which contained iron and was ground to produce the red pigment ochre.

The ancient Romans were innovators of mining engineering. They developed large scale mining methods, such as the use of large volumes of water brought to the minehead by numerous aqueducts for hydraulic mining. The exposed rock was then attacked by fire-setting where fires were used to heat the rock, which would be quenched with a stream of water. The thermal shock cracked the rock, enabling it to be removed. In some mines the Romans utilized water-powered machinery such as reverse overshot water-wheels. These were used extensively in the copper mines at Rio Tinto in Spain, where one sequence comprised 16 such wheels arranged in pairs, lifting water about 80 feet (24 m).

Black powder was first used in mining in Banská Štiavnica, Kingdom of Hungary (present-day Slovakia) in 1627. This allowed blasting of rock and earth to loosen and reveal ore veins, which was much faster than fire-setting. The Industrial Revolution saw further advances in mining technologies, including improved explosives and steam-powered pumps, lifts, and drills as long as they remained safe.

Education

Colorado School of Mines
 
There are many ways to become a Mining Engineer but all include a university or college degree. Primarily, training includes a Bachelor of Engineering (B.Eng. or B.E.), Bachelor of Science (B.Sc. or B.S.), Bachelor of Technology (B.Tech.) or Bachelor of Applied Science (B.A.Sc.) in Mining Engineering. Depending on the country and jurisdiction, to be licensed as a mining engineer a Master's degree; Master of Engineering (M.Eng.), Master of Science (M.Sc or M.S.) or Master of Applied Science (M.A.Sc.) maybe required. There are also mining engineers who have come from other disciplines e.g. from engineering fields like Mechanical Engineering, Civil Engineering, Electrical Engineering, Geomatics Engineering, Environmental Engineering or from science fields like Geology, Geophysics, Physics, Geomatics, Earth Science, Mathematics, However, this path requires taking a graduate degree such as M.Eng, M.S., M.Sc. or M.A.Sc. in Mining Engineering after graduating from a different quantitative undergraduate program in order to be qualified as a mining engineer. 

The fundamental subjects of mining engineering study usually include:
In the United States, about 14 universities offer B.S. degree in mining and/or mineral engineering. The top rated universities include Colorado School of Mines, Pennsylvania State University, Virginia Tech, the University of Kentucky, the University of Arizona, South Dakota School of Mines and Technology etc. A complete list can be accessed from smenet.org. Most of these universities offer M.S. and Ph.D. degrees too. 

In Canada, McGill University offers both undergraduate (B.Sc. or B.Eng.) and graduate (M.Sc. or M.S.) degrees in Mining Engineering. and the University of British Columbia in Vancouver offers a Bachelor of Applied Science (B.A.Sc.) in Mining Engineering and also graduate degrees (M.A.Sc. or M.Eng and Ph.D.) in Mining Engineering.

In Europe most programs are integrated (B.S. plus M.S. into one) after the Bologna Process and take 5 years to complete. In Portugal, the University of Porto offers a M.Eng. in Mining and Geo-Environmental Engineering and in Spain the Technical University of Madrid offers degrees in Mining Engineering with tracks in Mining Technology, Mining Operations, Fuels and Explosives, Metallurgy.

In South Africa, leading institutions include the University of Pretoria, offering a 4-year Bachelor of Engineering (B.Eng in Mining Engineering) as well as post-graduate studies in various specialty fields such as rock engineering and numerical modelling, explosives engineering, ventilation engineering, underground mining methods and mine design; and the University of the Witwatersrand offering a 4-year Bachelor of Science in Engineering (B.Sc.(Eng.)) in Mining Engineering as well as graduate programs (M.Sc.(Eng.) and Ph.D.) in Mining Engineering.

Some Mining Engineers go on to pursue Doctorate degree programs such as Doctor of Philosophy (Ph.D., DPhil), Doctor of Engineering (D.Eng., Eng.D.) these programs involve a very significant original research component and are usually seen as entry points into Academia.

Salary and statistics

Mining salaries are usually determined by the level of skill required, where the position is, and what kind of organization the engineer is working for. When comparing salaries from one region to another, cost of living and other factors need to be taken into consideration. 

Mining engineers in India earn relatively high salaries in comparison to many other professions, with an average salary of $15,250. However, in comparison to mining engineer salaries in other regions, such as Canada, the United States, Australia and the United Kingdom, Indian salaries are low. In the United States, there are an estimated 6,150 employed mining engineers, with a mean yearly salary of U.S. $103,710.

Pre-mining

The Prospector by N. C. Wyeth, 1906
 
Mineral exploration is the process of finding ores (commercially viable concentrations of minerals) to mine. Mineral exploration is a much more intensive, organized and professional form of mineral prospecting and, though it frequently uses the services of prospecting, the process of mineral exploration on the whole is much more involved. 

The foremost stage of mining starts with the process of finding and exploration of the mineral deposit. In the initial process of mineral exploration, however, the role of geologists and surveyors is prominent in the pre-feasibility study of the future mining operation. Mineral exploration and estimation of reserve through various prospecting methods are done to determine the method and type of mining in addition to profitability condition.

Mineral discovery

Once a mineral discovery has been made, and has been determined to be of sufficient economic quality to mine, mining engineers will then work on developing a plan to mine this effectively and efficiently.

The discovery can be made from research of mineral maps, academic geological reports or local, state, and national geological reports. Other sources of information include property assays, and local word of mouth. Mineral research usually include the sampling and analysis of sediments, soil and drill-core. Soil sampling and analysis is one of the most popular mineral exploration tools. Common tools include satellite and airborne photographs or aiborne geophysics, including magnetometric and gamma-spectrometric maps. Unless the mineral exploration is done on public property, the owners of the property may play a significant role in the exploration process, and may be the original discoverer of the mineral deposit.

Mineral determination

After a prospective mineral is located, the mining geologist and/or mining engineer then determines the ore properties. This may involve chemical analysis of the ore to determine the composition of the sample. Once the mineral properties are identified, the next step is determining the quantity of the ore. This involves determining the extent of the deposit as well as the purity of the ore. The geologist drills additional core samples to find the limits of the deposit or seam and calculates the quantity of valuable material present in the deposit.

Feasibility study

Once the mineral identification and reserve amount is reasonably determined, the next step is to determine the feasibility of recovering the mineral deposit. A preliminary study shortly after the discovery of the deposit examines the market conditions such as the supply and demand of the mineral, the amount of ore needed to be moved to recover a certain quantity of that mineral as well as analysis of the cost associated with the operation. This pre-feasibility study determines whether the mining project is likely to be profitable; if it is then a more in-depth analysis of the deposit is undertaken. After the full extent of the ore body is known and has been examined by engineers, the feasibility study examines the cost of initial capital investment, methods of extraction, the cost of operation, an estimated length of time to payback, the gross revenue and net profit margin, any possible resale price of the land, the total life of the reserve, the total value of the reserve, investment in future projects, and the property owner or owners' contract. In addition, environmental impact, reclamation, possible legal ramifications and all government permitting are considered. These steps of analysis determine whether the mine company should proceed with the extraction of the minerals or whether the project should be abandoned. The mining company may decide to sell the rights to the reserve to a third party rather than develop it themselves, or the decision to proceed with extraction may be postponed indefinitely until market conditions become favorable.

Mining operation

Mining engineers working in an established mine may work as an engineer for operations improvement, further mineral exploration, and operation capitalization by determining where in the mine to add equipment and personnel. The engineer may also work in supervision and management, or as an equipment and mineral salesperson. In addition to engineering and operations, the mining engineer may work as an environmental, health and safety manager or design engineer.

The act of mining required different methods of extraction depending on the mineralogy, geology, and location of the resources. Characteristics such as mineral hardness, the mineral stratification, and access to that mineral will determine the method of extraction.

Generally, mining is either done from the surface or underground. Mining can also occur with both surface and underground operations taking place on the same reserve. Mining activity varies as to what method is employed to remove the mineral.

Surface mining

Surface mining comprises 90% of the world's mineral tonnage output. Also called open pit mining, surface mining is removing minerals in formations that are at or near the surface. Ore retrieval is done by material removal from the land in its natural state. Surface mining often alters the land characteristics, shape, topography, and geological make-up.

Surface mining involves quarrying which is excavating minerals by means of machinery such as cutting, cleaving, and breaking. Explosives are usually used to facilitate breakage. Hard rocks such as limestone, sand, gravel, and slate are generally quarried into a series of benches.

Strip mining is done on softer minerals such as clays and phosphate are removed through use of mechanical shovels, track dozers, and front end loaders. Softer Coal seams can also be extracted this way. 

With placer mining, minerals can also be removed from the bottoms of lakes, rivers, streams, and even the ocean by dredge mining. In addition, in-situ mining can be done from the surface using dissolving agents on the ore body and retrieving the ore via pumping. The pumped material is then set to leach for further processing. Hydraulic mining is utilized in forms of water jets to wash away either overburden or the ore itself.

Mining process

Blasting:
 
Explosives are used to break up a rock formation and aid in the collection of ore in a process called blasting. Blasting utilizes the heat and immense pressure of the detonated explosives to shatter and fracture a rock mass. The type of explosives used in mining are high explosives which vary in composition and performance properties. The mining engineer is responsible for the selection and proper placement of these explosives, in order to maximize efficiency and safety. Blasting occurs in many phases of the mining process, such as development of infrastructure as well as production of the ore. 

Leaching:
 
Leaching is the loss or extraction of certain materials from a carrier into a liquid (usually, but not always a solvent). Mostly used in rare-earth metals extraction.

Flotation:
 
Flotation (also spelled floatation) involves phenomena related to the relative buoyancy of minerals. It is the most widely used metal separate method. 

Electrostatic separation:
 
Separating minerals by electro-characteristic differences.

Gravity separation:
 
Gravity separation is an industrial method of separating two components, either a suspension, or dry granular mixture where separating the components with gravity is sufficiently practical.

Magnetic separation:
 
Magnetic separation is a process in which magnetically susceptible material is extracted from a mixture using a magnetic force.

Hydraulic separation:
 
Hydraulic separation is a process that using the density difference to separate minerals. Before hydraulic separation, minerals were crushed into uniform size; because minerals have uniform size and different density will have different settling velocities in water, and that can be used to separate target minerals.

Mining health and safety

Legal attention to Mining Health and Safety began in the late 19th century and in the subsequent 20th century progressed to a comprehensive and stringent codification of enforcement and mandatory health and safety regulation. A mining engineer in whatever role they occupy must follow all federal, state, and local mine safety laws.

United States

The United States Congress, through the passage of the Federal Mine Safety and Health Act of 1977, known as the Miner's Act, created the Mine Safety and Health Administration (MSHA) under the US Department of Labor.

This comprehensive Act provides miners with rights against retaliation for reporting violations, consolidated regulation of coal mines with metallic and nonmetallic mines, and created the independent Federal Mine Safety and Health Review Commission to review MSHA's reported violations.

The Act as codified in Code of Federal Regulations § 30 (CFR § 30) covers all miners at an active mine. When a mining engineer works at an active mine he or she is subject to the same rights, violations, mandatory health and safety regulations, and mandatory training as any other worker at the mine. The mining engineer can be legally identified as a "miner."

The Act establishes the rights of miners. The miner may report at any time a hazardous condition and request an inspection. The miners may elect a miners' representative to participate during an inspection, pre-inspection meeting, and post-inspection conference. The miners and miners' representative shall be paid for their time during all inspections and investigations.

Mining and the environment

United States

Land reclamation is regulated for surface and underground mines according to the Surface Mining Control and Reclamation Act of 1977. The law creates as a part of the Department of Interior, the Bureau of Surface Mining (OSM). OSM states on their website, “OSM is charged with balancing the nation’s need for continued domestic coal production with protection of the environment.” 

The law requires that states set up their own Reclamation Departments and legislate laws related to reclamation for coal mining operations. The states may impose additional regulations and regulate other minerals in addition to coal for land reclamation.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...