Search This Blog

Thursday, July 11, 2019

Hydrogen storage

From Wikipedia, the free encyclopedia
 
Utility scale underground liquid hydrogen storage
 
Methods of hydrogen storage for subsequent use span many approaches including high pressures, cryogenics, and chemical compounds that reversibly release H2 upon heating. Underground hydrogen storage is useful to provide grid energy storage for intermittent energy sources, like wind power, as well as providing fuel for transportation, particularly for ships and airplanes.

Most research into hydrogen storage is focused on storing hydrogen as a lightweight, compact energy carrier for mobile applications.

Liquid hydrogen or slush hydrogen may be used, as in the Space Shuttle. However liquid hydrogen requires cryogenic storage and boils around 20.268 K (−252.882 °C or −423.188 °F). Hence, its liquefaction imposes a large energy loss (as energy is needed to cool it down to that temperature). The tanks must also be well insulated to prevent boil off but adding insulation increases cost. Liquid hydrogen has less energy density by volume than hydrocarbon fuels such as gasoline by approximately a factor of four. This highlights the density problem for pure hydrogen: there is actually about 64% more hydrogen in a liter of gasoline (116 grams hydrogen) than there is in a liter of pure liquid hydrogen (71 grams hydrogen). The carbon in the gasoline also contributes to the energy of combustion. 

Compressed hydrogen, by comparison, is stored quite differently. Hydrogen gas has good energy density by weight, but poor energy density by volume versus hydrocarbons, hence it requires a larger tank to store. A large hydrogen tank will be heavier than the small hydrocarbon tank used to store the same amount of energy, all other factors remaining equal. Increasing gas pressure would improve the energy density by volume, making for smaller, but not lighter container tanks. Compressed hydrogen is estimated to cost about 2.1% of the energy content to power the compressor for a large scale underground facility such as an underground cavern or aquifer from 1 to 200 bar. Higher compression without energy recovery will mean more energy lost to the compression step. Compressed hydrogen storage can exhibit very low permeation.

Established technologies

Net storage density of hydrogen

Compressed hydrogen

Compressed hydrogen is a storage form where hydrogen gas is kept under pressures to increase the storage density. Compressed hydrogen in hydrogen tanks at 350 bar (5,000 psi) and 700 bar (10,000 psi) is used for hydrogen tank systems in vehicles, based on type IV carbon-composite technology. Car manufacturers have been developing this solution, such as Honda or Nissan.

Liquid hydrogen

BMW has been working on liquid hydrogen tanks for cars, producing for example the BMW Hydrogen 7. Japan have liquid hydrogen (LH2) storage at a tanker port in Kobe, and are anticipated to receive the first shipment of liquid hydrogen via LH2 carrier in 2020. Hydrogen is liquified by reducing its temperature to -253°C, similar to liquified natural gas (LNG) which is stored at -162°C. A potential efficiency loss of 12.79% can be achieved, or 4.26kWh/kg out of 33.3kWh/kg.

Proposals and research

Hydrogen storage technologies can be divided into physical storage, where hydrogen molecules are stored (including pure hydrogen storage via compression and liquefaction), and chemical storage, where hydrides are stored.

Chemical storage

Chemical storage could offer high storage performance due to the strong binding of hydrogen and the high storage densities. However, the regeneration of storage material is still an issue. A large number of chemical storage systems are under investigation, which involve hydrolysis reactions, hydrogenation/dehydrogenation reactions, ammonia borane and other boron hydrides, ammonia, and alane etc. Storage in hydrocarbons may also be successful in overcoming the issue with low density. For example, supercritical hydrogen at 30 °C and 500 bar only has a density of 15.0 mol/L while methanol has a density of 49.5 mol H2/L methanol and saturated dimethyl ether at 30 °C and 7 bar has a density of 42.1 mol H2/L dimethyl ether. These liquids would use much smaller, cheaper, safer storage tanks. The most promising chemical approach is electrochemical hydrogen storage, as the release of hydrogen can be controlled by the applied electricity. Most of the materials listed below can be directly used for electrochemical hydrogen storage.

Metal hydrides

Metal hydride hydrogen storage
 
Metal hydrides, such as MgH2, NaAlH4, LiAlH4, LiH, LaNi5H6, TiFeH2 and palladium hydride, with varying degrees of efficiency, can be used as a storage medium for hydrogen, often reversibly. Some are easy-to-fuel liquids at ambient temperature and pressure, whereas others are solids which could be turned into pellets. These materials have good energy density, although their specific energy is often worse than the leading hydrocarbon fuels.

Most metal hydrides bind with hydrogen very strongly. As a result, high temperatures around 120 °C (248 °F) – 200 °C (392 °F) are required to release their hydrogen content. This energy cost can be reduced by using alloys which consists of a strong hydride former and a weak one such as in LiNH2, LiBH4 and NaBH4. These are able to form weaker bonds, thereby requiring less input to release stored hydrogen. However, if the interaction is too weak, the pressure needed for rehydriding is high, thereby eliminating any energy savings. The target for onboard hydrogen fuel systems is roughly <100 and="" bar="" for="" h="" kj="" mol="" nbsp="" recharge="" release="" sub="">2
).

An alternative method for reducing dissociation temperatures is doping with activators. This has been successfully used for aluminium hydride but its complex synthesis makes it undesirable for most applications as it is not easily recharged with hydrogen.

Currently the only hydrides which are capable of achieving the 9 wt% gravimetric goal for 2015 (see chart above) are limited to lithium, boron and aluminium based compounds; at least one of the second-row elements or Al must be added. Research is being done to determine new compounds which can be used to meet these requirements. 

Proposed hydrides for use in a hydrogen economy include simple hydrides of magnesium or transition metals and complex metal hydrides, typically containing sodium, lithium, or calcium and aluminium or boron. Hydrides chosen for storage applications provide low reactivity (high safety) and high hydrogen storage densities. Leading candidates are lithium hydride, sodium borohydride, lithium aluminium hydride and ammonia borane. A French company McPhy Energy is developing the first industrial product, based on magnesium hydride, already sold to some major clients such as Iwatani and ENEL. 

New Scientist reported that Arizona State University is investigating using a borohydride solution to store hydrogen, which is released when the solution flows over a catalyst made of ruthenium. Researchers at University of Pittsburgh and Georgia Tech performed extensive benchmarking simulations on mixtures of several light metal hydrides to predict possible reaction thermodynamics for hydrogen storage.

Nanostructured metal hydrides

Metal hydrides have proven to be a good alternative for hydrogen storage systems because of their favorable properties such as high volumetric and gravimetric density. However, more research is necessary to satisfy the United States Department of Energy’s requirements for storage capacity, kinetics, cyclability, cost, and release temperature. Nano-metal hydrides possess a number of properties that make them even better candidates for future hydrogen storage systems compared to their bulk equivalents. At the nanoscale, structural and chemical properties (such as particle size and sorption site density) show a significant improvement in properties such as sorption kinetics, hydrogen diffusion or hydrogen release temperature. However, the downsides of nanoscale materials include poor heat transfer and total sorption capacity. The Key Laboratory of Advanced Materials Technology of Liaoning, China, studied the difference in the reaction kinetics between bulk MgH2 and nanoparticles of this compound. They observed that the amount of hydrogen released by the 30 nm particle was 5wt%, 10 times greater than the bulk material (0.5wt%) over the same period of time (1 hour) and at the same temperature (300ºC). However, a 5 wt% capacity is still not sufficient for large scale applications. Palladium (Pd) proved to be an effective alternative with favorable kinetics, but its high cost suggests favorability in using more affordable metals such as vanadium (V). A MgH2-5 wt% V showed fast adsorption kinetics in much larger quantities than Pd. A mixture of titanium and iron was also successfully used, despite these two metals being ineffective if used separately. The addition of LiBH4 has also been studied for the enhancement of sorption kinetics.

Thermodynamics of nanometal hydrides

As shown before, nanomaterials have proven to be superior for hydrogen storage systems. Nanomaterials offer an alternative that overcomes the two major barriers of bulk materials, rate of sorption and release temperature. 

The rate of hydrogen sorption improves at the nanoscale due to the short diffusion distance in comparison to bulk materials. This, combined with the notably greater surface-area-to-volume ratio of nanoparticles, accounts for the significant advantage over bulk metals used for hydrogen storage. The release temperature of a material is defined as the temperature at which the desorption process begins. It is paramount to achieve the lowest release temperature possible to reduce the cost of the heating process required to liberate the gas. To describe the improvement over bulk materials regarding this parameter, researchers base their studies on a modified van ’t Hoff equation, shown below, that relates temperature and partial pressure of hydrogen during the desorption process. The modifications to the standard equation are related to size effects at the nanoscale.



Where pH2 is the partial pressure of hydrogen, ΔH is the enthalpy of the sorption process (exothermic), ΔS is the change in entropy, R is the ideal gas constant, T is the temperature in Kelvin, Vm is the molar volume of the metal, r is the radius of the nanoparticle and γ is the surface free energy of the particle. 

From the above relation we see that the enthalpy and entropy change of desorption processes depend on the radius of the nanoparticle. Moreover, a new term is included that takes into account the specific surface area of the particle and it can be mathematically proven that a decrease in particle radius leads to a decrease in the release temperature for a given partial pressure.

Non-metal hydrides

The Italian catalyst manufacturer Acta has proposed using hydrazine as an alternative to hydrogen in fuel cells. As the hydrazine fuel is liquid at room temperature, it can be handled and stored more easily than hydrogen. By storing it in a tank full of a double-bonded carbon-oxygen carbonyl, it reacts and forms a safe solid called hydrazone. By then flushing the tank with warm water, the liquid hydrazine hydrate is released. Hydrazine breaks down in the cell to form nitrogen and hydrogen which bonds with oxygen, releasing water. Silicon hydrides and germanium hydrides are also candidates of hydrogen storage materials, as they can subject to energetically favored reaction to form covalently bonded dimers with loss of a hydrogen molecule.

Carbohydrates

Carbohydrates (polymeric C6H10O5) releases H2 in a bioreformer mediated by the enzyme cocktail—cell-free synthetic pathway biotransformation. Carbohydrate provides high hydrogen storage densities as a liquid with mild pressurization and cryogenic constraints: It can also be stored as a solid powder. Carbohydrate is the most abundant renewable bioresource in the world.

In May 2007 biochemical engineers from the Virginia Polytechnic Institute and State University and biologists and chemists from the Oak Ridge National Laboratory announced a method of producing high-yield pure hydrogen from starch and water. In 2009, they demonstrated to produce nearly 12 moles of hydrogen per glucose unit from cellulosic materials and water. Thanks to complete conversion and modest reaction conditions, they propose to use carbohydrate as a high energy density hydrogen carrier with a density of 14.8 wt%.

Synthesized hydrocarbons

An alternative to hydrides is to use regular hydrocarbon fuels as the hydrogen carrier. Then a small hydrogen reformer would extract the hydrogen as needed by the fuel cell. However, these reformers are slow to react to changes in demand and add a large incremental cost to the vehicle powertrain. 

Direct methanol fuel cells do not require a reformer, but provide a lower energy density compared to conventional fuel cells, although this could be counterbalanced with the much better energy densities of ethanol and methanol over hydrogen. Alcohol fuel is a renewable resource.

Solid-oxide fuel cells can operate on light hydrocarbons such as propane and methane without a reformer, or can run on higher hydrocarbons with only partial reforming, but the high temperature and slow startup time of these fuel cells are problematic for automotive applications.
Aluminum
Aluminum has been proposed as an energy storage method by a number of researchers. Hydrogen can be extracted from aluminum by reacting it with water. To react with water, however, aluminum must be stripped of its natural oxide layer, a process which requires pulverization, chemical reactions with caustic substances, or alloys. The byproduct of the reaction to create hydrogen is aluminum oxide, which can be recycled back into aluminum with the Hall–Héroult process, making the reaction theoretically renewable.

Liquid organic hydrogen carriers (LOHC)

Reversible hydrogenation of N-ethylcarbazole
 
Unsaturated organic compounds can store huge amounts of hydrogen. These Liquid Organic Hydrogen Carriers (LOHC) are hydrogenated for storage and dehydrogenated again when the energy/hydrogen is needed. Research on LOHC was concentrated on cycloalkanes at an early stage, with its relatively high hydrogen capacity (6-8 wt %) and production of COx-free hydrogen. Heterocyclic aromatic compounds (or N-Heterocycles) are also appropriate for this task. A compound featuring in LOHC research is N-Ethylcarbazole (NEC) but many others do exist. Dibenzyltoluene, which is already industrially used as a heat transfer fluid in industry, was identified as potential LOHC. With a wide liquid range between -39 °C (melting point) and 390 °C (boiling point) and a hydrogen storage density of 6.2 wt% dibenzyltoluene is ideally suited as LOHC material. Formic acid has been suggested as a promising hydrogen storage material with a 4.4wt% hydrogen capacity.

Using LOHCs relatively high gravimetric storage densities can be reached (about 6 wt-%) and the overall energy efficiency is higher than for other chemical storage options such as producing methane from the hydrogen.
Cycloalkanes
Cycloalkanes reported as LOHC include cyclohexane, methyl-cyclohexane and decalin. The dehydrogenation of cycloalkanes is highly endothermic (63-69 kJ/mol H2), which means this process requires high temperature. Dehydrogenation of decalin is the most thermodynamically favored among the three cycloalkanes, and methyl-cyclohexane is second because of the presence of the methyl group. Research on catalyst development for dehydrogenation of cycloalkanes has been carried out for decades. Nickel (Ni), Molybdenum (Mo) and Platinum (Pt) based catalysts are highly investigated for dehydrogenation. However, coking is still a big challenge for catalyst's long-term stability.
N-Heterocycles
Both hydrogenation and dehydrogenation of LOHCs requires catalysts. It was demonstrated that replacing hydrocarbons by hetero-atoms, like N, O etc. improves reversible de/hydrogenation properties. The temperature required for hydrogenation and dehydrogenation drops significantly with increasing numbers of heteroatoms. Among all the N-heterocycles, the saturated-unsaturated pair of dodecahydro-N-ethylcarbazole (12H-NEC) and NEC has been considered as a promising candidate for hydrogen storage with a fairly large hydrogen content (5.8wt%). The figure on the top right shows dehydrogenation and hydrogenation of the 12H-NEC and NEC pair. The standard catalyst for NEC to 12H-NEC is Ru and Rh based. The selectivity of hydrogenation can reach 97% at 7 MPa and 130 °C-150 °C. Although N-Heterocyles can optimize the unfavorable thermodynamic properties of cycloalkanes, a lot of issues remain unsolved, such as high cost, high toxicity and kinetic barriers etc.
Formic acid
In 2006, Swiss researchers at EPFL reported the use of formic acid as a hydrogen storage material. Carbon monoxide free hydrogen has been generated in a very wide pressure range (1–600 bar). A homogeneous catalytic system based on water-soluble ruthenium catalysts selectively decompose HCOOH into H2 and CO2 in aqueous solution. This catalytic system overcomes the limitations of other catalysts (e.g. poor stability, limited catalytic lifetimes, formation of CO) for the decomposition of formic acid making it a viable hydrogen storage material. And the co-product of this decomposition, carbon dioxide, can be used as hydrogen vector by hydrogenating it back to formic acid in a second step. The catalytic hydrogenation of CO2 has long been studied and efficient procedures have been developed. Formic acid contains 53 g L−1 hydrogen at room temperature and atmospheric pressure. By weight, pure formic acid stores 4.3 wt% hydrogen. Pure formic acid is a liquid with a flash point 69 °C (cf. gasoline −40 °C, ethanol 13 °C). 85% formic acid is not flammable.

Ammonia

Ammonia (NH3) releases H2 in an appropriate catalytic reformer. Ammonia provides high hydrogen storage densities as a liquid with mild pressurization and cryogenic constraints: It can also be stored as a liquid at room temperature and pressure when mixed with water. Ammonia is the second most commonly produced chemical in the world and a large infrastructure for making, transporting, and distributing ammonia exists. Ammonia can be reformed to produce hydrogen with no harmful waste, or can mix with existing fuels and under the right conditions burn efficiently. Since there is no carbon in ammonia, no carbon by-products are produced; thereby making this possibility a "carbon neutral" option for the future. Pure ammonia burns poorly at the atmospheric pressures found in natural gas fired water heaters and stoves. Under compression in an automobile engine it is a suitable fuel for slightly modified gasoline engines. Ammonia is the suitable alternative fuel because it has 18.6 MJ/kg energy density at NTP and carbon-free combustion byproducts. However, ammonia is a toxic gas at normal temperature and pressure and has a potent odor.

In 2018, researchers at CSIRO in Australia powered a Toyota Mirai and Hyundai Nexo with hydrogen separated from ammonia using a membrane technology. 

In September 2005 chemists from the Technical University of Denmark announced a method of storing hydrogen in the form of ammonia saturated into a salt tablet. They claim it will be an inexpensive and safe storage method.

Amine borane complexes

Prior to 1980, several compounds were investigated for hydrogen storage including complex borohydrides, or aluminohydrides, and ammonium salts. These hydrides have an upper theoretical hydrogen yield limited to about 8.5% by weight. Amongst the compounds that contain only B, N, and H (both positive and negative ions), representative examples include: amine boranes, boron hydride ammoniates, hydrazine-borane complexes, and ammonium octahydrotriborates or tetrahydroborates. Of these, amine boranes (and especially ammonia borane) have been extensively investigated as hydrogen carriers. During the 1970s and 1980s, the U.S. Army and Navy funded efforts aimed at developing hydrogen/deuterium gas-generating compounds for use in the HF/DF and HCl chemical lasers, and gas dynamic lasers. Earlier hydrogen gas-generating formulations used amine boranes and their derivatives. Ignition of the amine borane(s) forms boron nitride (BN) and hydrogen gas. In addition to ammonia borane (H3BNH3), other gas-generators include diborane diammoniate, H2B(NH3)2BH4.

Nano borohydrides and nanocatalyst doping

Enhancement of sorption kinetics and storage capacity can be improved through nanomaterial-based catalyst doping, as shown in the work of the Clean Energy Research Center in the University of South Florida. This research group studied LiBH4 doped with nickel nanoparticles and analyzed the weight loss and release temperature of the different species. They observed that an increasing amount of nanocatalyst lowers the release temperature by approximately 20ºC and increases the weight loss of the material by 2-3%. The optimum amount of Ni particles was found to be 3 mol%, for which the temperature was within the limits established (around 100ºC) and the weight loss was notably greater than the undoped species.

Imidazolium ionic liquids

In 2007 Dupont and others reported hydrogen-storage materials based on imidazolium ionic liquids. Simple alkyl(aryl)-3-methylimidazolium N-bis(trifluoromethanesulfonyl)imidate salts that possess very low vapour pressure, high density, and thermal stability and are not inflammable can add reversibly 6–12 hydrogen atoms in the presence of classical Pd/C or Ir0 nanoparticle catalysts and can be used as alternative materials for on-board hydrogen-storage devices. These salts can hold up to 30 g L−1 of hydrogen at atmospheric pressure.

Phosphonium borate

In 2006 researchers of University of Windsor reported on reversible hydrogen storage in a non-metal phosphonium borate frustrated Lewis pair:

Phosphino borane hydrogenstorage

The phosphino-borane on the left accepts one equivalent of hydrogen at one atmosphere and 25 °C and expels it again by heating to 100 °C. The storage capacity is 0.25 wt% still rather below the 6 to 9 wt% required for practical use.

Carbonite substances

Research has proven that graphene can store hydrogen efficiently. After taking up hydrogen, the substance becomes graphane. After tests, conducted by dr André Geim at the University of Manchester, it was shown that not only can graphene store hydrogen easily, it can also release the hydrogen again, after heating to 450 °C.

Metal-organic frameworks

Metal-organic frameworks represent another class of synthetic porous materials that store hydrogen and energy at the molecular level. MOFs are highly crystalline inorganic-organic hybrid structures that contain metal clusters or ions (secondary building units) as nodes and organic ligands as linkers. When guest molecules (solvent) occupying the pores are removed during solvent exchange and heating under vacuum, porous structure of MOFs can be achieved without destabilizing the frame and hydrogen molecules will be adsorbed onto the surface of the pores by physisorption. Compared to traditional zeolites and porous carbon materials, MOFs have very high number of pores and surface area which allow higher hydrogen uptake in a given volume. Thus, research interests on hydrogen storage in MOFs have been growing since 2003 when the first MOF-based hydrogen storage was introduced. Since there are infinite geometric and chemical variations of MOFs based on different combinations of SBUs and linkers, many researches explore what combination will provide the maximum hydrogen uptake by varying materials of metal ions and linkers.

In 2006, chemists at UCLA and the University of Michigan have achieved hydrogen storage concentrations of up to 7.5 wt% in MOF-74 at a low temperature of 77 K. In 2009, researchers at University of Nottingham reached 10 wt% at 77 bar (1,117 psi) and 77 K with MOF NOTT-112. Most articles about hydrogen storage in MOFs report hydrogen uptake capacity at a temperature of 77K and a pressure of 1 bar because these conditions are commonly available and the binding energy between hydrogen and the MOF at this temperature is large compared to the thermal vibration energy. Varying several factors such as surface area, pore size, catenation, ligand structure, and sample purity can result in different amounts of hydrogen uptake in MOFs.

Encapsulation

Cella Energy technology is based around the encapsulation of hydrogen gas and nano-structuring of chemical hydrides in small plastic balls, at room temperature and pressure.

Physical storage

In this case hydrogen remains in physical forms, i.e., as gas, supercritical fluid, adsorbate, or molecular inclusions. Theoretical limitations and experimental results are considered  concerning the volumetric and gravimetric capacity of glass microvessels, microporous, and nanoporous media, as well as safety and refilling-time demands.

Activated carbons

Activated carbons are highly porous amorphous carbon materials with high apparent surface area. Hydrogen physisorption can be increased in these materials by increasing the apparent surface area and optimizing pore diameter to around 7 Å. These materials are of particular interest due to the fact that they can be made from waste materials, such as cigarette butts which have shown great potential as precursor materials for high-capacity hydrogen storage materials.

Cryo-compressed

Cryo-compressed storage of hydrogen is the only technology that meets 2015 DOE targets for volumetric and gravimetric efficiency (see "CcH2" on slide 6 in ).

Furthermore, another study has shown that cryo-compressed exhibits interesting cost advantages: ownership cost (price per mile) and storage system cost (price per vehicle) are actually the lowest when compared to any other technology. For example, a cryo-compressed hydrogen system would cost $0.12 per mile (including cost of fuel and every associated other cost), while conventional gasoline vehicles cost between $0.05 and $0.07 per mile. 

Like liquid storage, cryo-compressed uses cold hydrogen (20.3 K and slightly above) in order to reach a high energy density. However, the main difference is that, when the hydrogen would warm-up due to heat transfer with the environment ("boil off"), the tank is allowed to go to pressures much higher (up to 350 bars versus a couple of bars for liquid storage). As a consequence, it takes more time before the hydrogen has to vent, and in most driving situations, enough hydrogen is used by the car to keep the pressure well below the venting limit. 

Consequently, it has been demonstrated that a high driving range could be achieved with a cryo-compressed tank : more than 650 miles (1,050 km) were driven with a full tank mounted on an hydrogen-fueled engine of Toyota Prius. Research is still on its way in order to study and demonstrate the full potential of the technology.

As of 2010, the BMW Group has started a thorough component and system level validation of cryo-compressed vehicle storage on its way to a commercial product.

Carbon nanotubes

Carbon nanotubes
 
Hydrogen carriers based on nanostructured carbon (such as carbon buckyballs and nanotubes) have been proposed. However, since Hydrogen usually amounts up to ~3.0-7.0 wt% at 77K which is far from the value set by US department of Energy (6 wt% at nearly ambient conditions), it makes carbon materials poor candidates for hydrogen storage. 

To realize carbon materials as effective hydrogen storage technologies, the Clean Energy Research Center has doped carbon nanotubes (CNTs) with MgH2. The metal hydride has proven to have a theoretical storage capacity (7.6 wt%) that fulfills the United States Department of Energy requirement of 6 wt%, but has limited practical applications due to its high release temperature. The proposed mechanism involves the creation of fast diffusion channels by CNTs within the MgH2 lattice. Fullerene is other carbonaceous nanomaterials that has been tested for hydrogen storage in this center. Fullerene molecules are composed of a C60 close-caged structure, that allows for hydrogenation of the double bonded carbons leading to a theoretical C60H60 isomer with a hydrogen content of 7.7 wt%. However, the release temperature in these systems is too high (600oC) for practical applications.

Clathrate hydrates

H2 caged in a clathrate hydrate was first reported in 2002, but requires very high pressures to be stable. In 2004, researchers from Delft University of Technology and Colorado School of Mines showed solid H2-containing hydrates could be formed at ambient temperature and 10s of bar by adding small amounts of promoting substances such as THF. These clathrates have a theoretical maximum hydrogen densities of around 5 wt% and 40 kg/m3.

Glass capillary arrays

A team of Russian, Israeli and German scientists have collaboratively developed an innovative technology based on glass capillary arrays for the safe infusion, storage and controlled release of hydrogen in mobile applications. The C.En technology has achieved the United States Department of Energy (DOE) 2010 targets for on-board hydrogen storage systems. DOE 2015 targets can be achieved using flexible glass capillaries and cryo-compressed method of hydrogen storage.

Glass microspheres

Hollow glass microspheres (HGM) can be utilized for controlled storage and release of hydrogen.

Stationary hydrogen storage

Unlike mobile applications, hydrogen density is not a huge problem for stationary applications. As for mobile applications, stationary applications can use established technology:

Underground hydrogen storage

'Available storage technologies, their capacity and discharge time.'

Underground hydrogen storage is the practice of hydrogen storage in underground caverns, salt domes and depleted oil and gas fields. Large quantities of gaseous hydrogen have been stored in underground caverns by ICI for many years without any difficulties. The storage of large quantities of liquid hydrogen underground can function as grid energy storage. The round-trip efficiency is approximately 40% (vs. 75-80% for pumped-hydro (PHES)), and the cost is slightly higher than pumped hydro, if only a limited number of hours of storage is required. Another study referenced by a European staff working paper found that for large scale storage, the cheapest option is hydrogen at €140/MWh for 2,000 hours of storage using an electrolyser, salt cavern storage and combined-cycle power plant. The European project Hyunder indicated in 2013 that for the storage of wind and solar energy an additional 85 caverns are required as it cannot be covered by PHES and CAES systems. A German case study on storage of hydrogen in salt caverns found that if the German power surplus (7% of total variable renewable generation by 2025 and 20% by 2050) would be converted to hydrogen and stored underground, these quantities would require some 15 caverns of 500,000 cubic metres each by 2025 and some 60 caverns by 2050 – corresponding to approximately one third of the number of underground gas caverns currently operated in Germany. In the US, Sandia Labs are conducting research into the storage of hydrogen in depleted oil and gas fields, which could easily absorb large amounts of renewably produced hydrogen as there are some 2.7 million depleted wells in existence.

Power to gas

Power to gas is a technology which converts electrical power to a gas fuel. There are two methods: the first is to use the electricity for water splitting and inject the resulting hydrogen into the natural gas grid; the second, less efficient method is used to convert carbon dioxide and hydrogen to methane, (see natural gas) using electrolysis and the Sabatier reaction. A third option is to combine the hydrogen via electrolysis with a source of carbon (either carbon dioxide or carbon monoxide from biogas, from industrial processes or via direct air-captured carbon dioxide) via biomethanation, where biomethanogens (archaea) consume carbon dioxide and hydrogen and produce methane within an anaerobic environment. This process is highly efficient, as the archaea are self-replicating and only require low-grade (60°C) heat to perform the reaction.

Another process has also been achieved by SoCalGas to convert the carbon dioxide in raw biogas to methane in a single electrochemical step, representing a simpler method of converting excess renewable electricity into storable natural gas.

The UK has completed surveys and is preparing to start injecting hydrogen into the gas grid as the grid previously carried 'town gas' which is a 50% hydrogen-methane gas formed from coal. Auditors KPMG found that converting the UK to hydrogen gas could be £150bn to £200bn cheaper than rewiring British homes to use electric heating powered by lower-carbon sources.

Excess power or off peak power generated by wind generators or solar arrays can then be used for load balancing in the energy grid. Using the existing natural gas system for hydrogen, Fuel cell maker Hydrogenics and natural gas distributor Enbridge have teamed up to develop such a power to gas system in Canada.

Pipeline storage of hydrogen where a natural gas network is used for the storage of hydrogen. Before switching to natural gas, the German gas networks were operated using towngas, which for the most part (60-65%) consisted of hydrogen. The storage capacity of the German natural gas network is more than 200,000 GW·h which is enough for several months of energy requirement. By comparison, the capacity of all German pumped storage power plants amounts to only about 40 GW·h. The transport of energy through a gas network is done with much less loss (<0 .1="" a="" existing="" href="https://en.wikipedia.org/wiki/List_of_natural_gas_pipelines" in="" network="" of="" power="" than="" the="" title="List of natural gas pipelines" use="">natural gas pipelines
for hydrogen was studied by NaturalHy

Automotive Onboard hydrogen storage

Targets for on-board hydrogen storage assuming storage of 5 kg of hydrogen.
 
Targets were set by the FreedomCAR Partnership in January 2002 between the United States Council for Automotive Research (USCAR) and U.S. DOE (Targets assume a 5-kg H2 storage system). The 2005 targets were not reached in 2005. The targets were revised in 2009 to reflect new data on system efficiencies obtained from fleets of test cars. The ultimate goal for volumetric storage is still above the theoretical density of liquid hydrogen.

It is important to note that these targets are for the hydrogen storage system, not the hydrogen storage material. System densities are often around half those of the working material, thus while a material may store 6 wt% H2, a working system using that material may only achieve 3 wt% when the weight of tanks, temperature and pressure control equipment, etc., is considered. 

In 2010, only two storage technologies were identified as having the potential to meet DOE targets: MOF-177 exceeds 2010 target for volumetric capacity, while cryo-compressed H2 exceeds more restrictive 2015 targets for both gravimetric and volumetric capacity. 

The existing options for hydrogen storage require large storage volumes which makes them impractical for stationary and portable applications. Portability is one of the biggest challenges in the automotive industry, where high density storage systems are problematic due to safety concerns. 

Fuel cell powered vehicles are required to provide a driving range over 300 miles—this cannot be achieved with traditional storage methods. A long term goal set by the Fuel Cell Technology Office involves the usage of nanomaterials to improve maximum range.

U.S. Department of Energy's requirements

The Department of Energy has set the targets for onboard hydrogen storage for light vehicles. The list of requirements include parameters related to gravimetric and volumetric capacity, operability, durability and cost. These targets have been set as the goal for a multiyear research plan expected to offer an alternative to fossil fuels.

Fuel cells and storage

Due to its clean-burning characteristics, hydrogen is one of the most promising fuel alternatives in the automotive industry. Hydrogen based fuel could significantly reduce the emissions of greenhouse gases such as CO2, SO2 and NOx. The three limiting factor for the use of hydrogen fuel cells (HFC) include efficiency, size, and safe onboard storage of the gas. Other major disadvantages of this emerging technology involve cost, operability and durability issues, that are still to be improved from the existing systems. To address these challenges, the use of nanomaterials has been proposed as an alternative option to the traditional hydrogen storage systems. The use of nanomaterials could provide a higher density system that is expected to increase the driving range limit set by the DOE at 300 miles. Carbonaceous materials such as CNTs and metal hydrides are the main focus of researchers. Carbonaceous materials are currently being considered for onboard storage systems due to their versatility, multifunctionality, mechanical properties and low cost with respect to other alternatives.

Other advantages of nanomaterials in fuel cells

The introduction of nanomaterials in onboard hydrogen storage systems can be a major turning point in the automotive industry. However, storing is not the only practical aspect of the fuel cell to which nanomaterials may contribute. Different studies have shown that the transport and catalytic properties of Nafion membranes used in HFCs can be enhanced with TiO2/SnO2 nanoparticles. The increased performance is caused by an improvement in hydrogen splitting kinetics due to catalytic activity of the nanoparticles. Furthermore, this system exhibits faster transport of protons across the cell which makes HFCs with nanoparticle composite membranes a promising alternative.

Another application of nanomaterials in water splitting has been introduced by a research group at Manchester Metropolitan University in the UK using screen-printed electrodes consisting of a graphene-like material. Similar systems have been developed using photoelectrochemical techniques.

Hydrogenation

From Wikipedia, the free encyclopedia
 
Steps in the hydrogenation of a C=C double bond at a catalyst surface, for example Ni or Pt :

(1) The reactants are adsorbed on the catalyst surface and H2 dissociates.
(2) An H atom bonds to one C atom. The other C atom is still attached to the surface.
(3) A second C atom bonds to an H atom. The molecule leaves the surface.
 
Catalysed hydrogenation
Process typeChemical
Industrial sector(s)Food industry, petrochemical industry, pharmaceutical industry, agricultural industry
Main technologies or sub-processesVarious transition metal catalysts, high-pressure technology
FeedstockUnsaturated substrates and hydrogen or hydrogen donors
Product(s)Saturated hydrocarbons and derivatives
InventorPaul Sabatier
Year of invention1897

Hydrogenation – meaning, to treat with hydrogen – is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures. Hydrogenation reduces double and triple bonds in hydrocarbons.

Process

It has three components, the unsaturated substrate, the hydrogen (or hydrogen source) and, invariably, a catalyst. The reduction reaction is carried out at different temperatures and pressures depending upon the substrate and the activity of the catalyst.

Related or competing reactions

The same catalysts and conditions that are used for hydrogenation reactions can also lead to isomerization of the alkenes from cis to trans. This process is of great interest because hydrogenation technology generates most of the trans fat in foods. A reaction where bonds are broken while hydrogen is added is called hydrogenolysis, a reaction that may occur to carbon-carbon and carbon-heteroatom (oxygen, nitrogen or halogen) bonds. Some hydrogenations of polar bonds are accompanied by hydrogenolysis.

Hydrogen sources

For hydrogenation, the obvious source of hydrogen is H2 gas itself, which is typically available commercially within the storage medium of a pressurized cylinder. The hydrogenation process often uses greater than 1 atmosphere of H2, usually conveyed from the cylinders and sometimes augmented by "booster pumps". Gaseous hydrogen is produced industrially from hydrocarbons by the process known as steam reforming. For many applications, hydrogen is transferred from donor molecules such as formic acid, isopropanol, and dihydroanthracene. These hydrogen donors undergo dehydrogenation to, respectively, carbon dioxide, acetone, and anthracene. These processes are called transfer hydrogenations.

Substrates

An important characteristic of alkene and alkyne hydrogenations, both the homogeneously and heterogeneously catalyzed versions, is that hydrogen addition occurs with "syn addition", with hydrogen entering from the least hindered side. This reaction can be performed on a variety of different functional groups

Substrates for and products of hydrogenation
Substrate Product Comments Heat of hydrogenation
(kJ/mol)
R2C=CR'2
(alkene)
R2CHCHR'2
(alkane)
large application is production of margarine −90 to −130
RC≡CR'
(alkyne)
RCH2CH2R'
(alkane)
semihydrogenation gives cis-RHC=CHR'
−300
(for full hydrogenation)
RCHO
(aldehyde)
RCH2OH
(primary alcohol)
often employs transfer hydrogenation −60 to −65
R2CO
(ketone)
R2CHOH
(secondary alcohol)
often employs transfer hydrogenation −60 to −65
RCO2R'
(ester)
RCH2OH + R'OH
(two alcohols)
often applies to production of fatty alcohols −25 to −105
RCO2H
(carboxylic acid)
RCH2OH
(primary alcohol)
applicable to fatty alcohols −25 to −75
RNO2
(nitro)
RNH2
(amine)
major application is aniline −550

Catalysts

With rare exceptions, H2 is unreactive toward organic compounds in the absence of metal catalysts. The unsaturated substrate is chemisorbed onto the catalyst, with most sites covered by the substrate. In heterogeneous catalysts, hydrogen forms surface hydrides (M-H) from which hydrogens can be transferred to the chemisorbed substrate. Platinum, palladium, rhodium, and ruthenium form highly active catalysts, which operate at lower temperatures and lower pressures of H2. Non-precious metal catalysts, especially those based on nickel (such as Raney nickel and Urushibara nickel) have also been developed as economical alternatives, but they are often slower or require higher temperatures. The trade-off is activity (speed of reaction) vs. cost of the catalyst and cost of the apparatus required for use of high pressures. Notice that the Raney-nickel catalysed hydrogenations require high pressures.

Catalysts are usually classified into two broad classes: homogeneous catalysts and heterogeneous catalysts. Homogeneous catalysts dissolve in the solvent that contains the unsaturated substrate. Heterogeneous catalysts are solids that are suspended in the same solvent with the substrate or are treated with gaseous substrate.

Homogeneous catalysts

Some well known homogeneous catalysts are indicated below. These are coordination complexes that activate both the unsaturated substrate and the H2. Most typically, these complexes contain platinum group metals, especially Rh and Ir.
hydrogenation of propylene with Wilkinson's catalyst
 
Homogeneous catalysts are also used in asymmetric synthesis by the hydrogenation of prochiral substrates. An early demonstration of this approach was the Rh-catalyzed hydrogenation of enamides as precursors to the drug L-DOPA. To achieve asymmetric reduction, these catalyst are made chiral by use of chiral diphosphine ligands. Rhodium catalyzed hydrogenation has also been used in the herbicide production of S-metolachlor, which uses a Josiphos type ligand (called Xyliphos). In principle asymmetric hydrogenation can be catalyzed by chiral heterogeneous catalysts, but this approach remains more of a curiosity than a useful technology.

Heterogeneous catalysts

Heterogeneous catalysts for hydrogenation are more common industrially. In industry, precious metal hydrogenation catalysts are deposited from solution as a fine powder on the support, which is a cheap, bulky, porous, usually granular material, such as activated carbon, alumina, calcium carbonate or barium sulfate. For example, platinum on carbon is produced by reduction of chloroplatinic acid in situ in carbon. Examples of these catalysts are 5% ruthenium on activated carbon, or 1% platinum on alumina. Base metal catalysts, such as Raney nickel, are typically much cheaper and do not need a support. Also, in the laboratory, unsupported (massive) precious metal catalysts such as platinum black are still used, despite the cost. 

As in homogeneous catalysts, the activity is adjusted through changes in the environment around the metal, i.e. the coordination sphere. Different faces of a crystalline heterogeneous catalyst display distinct activities, for example. This can be modified by mixing metals or using different preparation techniques. Similarly, heterogeneous catalysts are affected by their supports. 

In many cases, highly empirical modifications involve selective "poisons". Thus, a carefully chosen catalyst can be used to hydrogenate some functional groups without affecting others, such as the hydrogenation of alkenes without touching aromatic rings, or the selective hydrogenation of alkynes to alkenes using Lindlar's catalyst. For example, when the catalyst palladium is placed on barium sulfate and then treated with quinoline, the resulting catalyst reduces alkynes only as far as alkenes. The Lindlar catalyst has been applied to the conversion of phenylacetylene to styrene.

Transfer hydrogenation

The transition state of two transfer-hydrogenation reactions from ruthenium-hydride complexes onto carbonyls
 
Transfer hydrogenation uses other hydrogen donor molecules in place of H2 itself. These reactants, which can also serve as solvents for the reaction, include hydrazine, dihydronaphthalene, dihydroanthracene, isopropanol, and formic acid. The reaction involves an outer-sphere mechanism. 

In organic synthesis, transfer hydrogenation is useful for the asymmetric reduction of polar unsaturated substrates, such as ketones, aldehydes, and imines. The hydrogenation of polar substrates such as ketones and aldehydes typically requires transfer hydrogenation, at least reactions that use homogeneous catalysts. These catalysts are readily generated in chiral forms, which is the basis of asymmetric hydrogenation of ketones.

Electrolytic hydrogenation

Polar substrates such as nitriles can be hydrogenated electrochemically, using protic solvents and reducing equivalents as the source of hydrogen.

Thermodynamics and mechanism

The addition of hydrogen to double or triple bonds in hydrocarbons is a type of redox reaction that can be thermodynamically favorable. For example, the addition of hydrogen to an alkene has a Gibbs free energy change of -101 kJ·mol−1. However, the reaction rate for most hydrogenation reactions is negligible in the absence of catalysts. Hydrogenation is a strongly exothermic reaction. In the hydrogenation of vegetable oils and fatty acids, for example, the heat released is about 25 kcal per mole (105 kJ/mol), sufficient to raise the temperature of the oil by 1.6–1.7 °C per iodine number drop. The mechanism of metal-catalyzed hydrogenation of alkenes and alkynes has been extensively studied. First of all isotope labeling using deuterium confirms the regiochemistry of the addition:
RCH=CH2 + D2 → RCHDCH2D

Heterogeneous catalysis

On solids, the accepted mechanism is the Horiuti-Polanyi mechanism:
  1. Binding of the unsaturated bond, and hydrogen dissociation into atomic hydrogen onto the catalyst
  2. Addition of one atom of hydrogen; this step is reversible
  3. Addition of the second atom; effectively irreversible under hydrogenating conditions.
In the second step, the metallointermediate formed is a saturated compound that can rotate and then break down, again detaching the alkene from the catalyst. Consequently, contact with a hydrogenation catalyst necessarily causes cis-trans-isomerization, because the isomerization is thermodynamically favorable. This is a problem in partial hydrogenation, while in complete hydrogenation the produced trans-alkene is eventually hydrogenated.

For aromatic substrates, the first bond is hardest to hydrogenate because of the free energy penalty for breaking the aromatic system. The product of this is a cyclohexadiene, which is extremely active and cannot be isolated; in conditions reducing enough to break the aromatization, it is immediately reduced to a cyclohexene. The cyclohexene is ordinarily reduced immediately to a fully saturated cyclohexane, but special modifications to the catalysts (such as the use of the anti-solvent water on ruthenium) can preserve some of the cyclohexene, if that is a desired product.

Homogeneous catalysis

In many homogeneous hydrogenation processes, the metal binds to both components to give an intermediate alkene-metal(H)2 complex. The general sequence of reactions is assumed to be as follows or a related sequence of steps:
LnM + H2 → LnMH2
  • binding of alkene:
LnM(η2H2) + CH2=CHR → Ln-1MH2(CH2=CHR) + L
  • transfer of one hydrogen atom from the metal to carbon (migratory insertion)
Ln-1MH2(CH2=CHR) → Ln-1M(H)(CH2-CH2R)
  • transfer of the second hydrogen atom from the metal to the alkyl group with simultaneous dissociation of the alkane ("reductive elimination")
Ln-1M(H)(CH2-CH2R) → Ln-1M + CH3-CH2R

Inorganic substrates

The hydrogenation of nitrogen to give ammonia is conducted on a vast scale by the Haber–Bosch process, consuming an estimated 1% of the world's energy supply.
Oxygen can be partially hydrogenated to give hydrogen peroxide, although this process has not been commercialized. One difficulty is preventing the catalysts from triggering decomposition of the hydrogen peroxide to form water.

Industrial applications

Catalytic hydrogenation has diverse industrial uses. Most frequently, industrial hydrogenation relies on heterogeneous catalysts.

Food industry

The largest scale application of hydrogenation is for the processing of vegetable oils. Typical vegetable oils are derived from polyunsaturated fatty acids (containing more than one carbon-carbon double bond). Their partial hydrogenation reduces most, but not all, of these carbon-carbon double bonds. The degree of hydrogenation is controlled by restricting the amount of hydrogen, reaction temperature and time, and the catalyst.
Partial hydrogenation of a typical plant oil to a typical component of margarine. Most of the C=C double bonds are removed in this process, which elevates the melting point of the product.
Hydrogenation converts liquid vegetable oils into solid or semi-solid fats, such as those present in margarine. Changing the degree of saturation of the fat changes some important physical properties, such as the melting range, which is why liquid oils become semi-solid. Solid or semi-solid fats are preferred for baking because the way the fat mixes with flour produces a more desirable texture in the baked product. Because partially hydrogenated vegetable oils are cheaper than animal fats, are available in a wide range of consistencies, and have other desirable characteristics (such as increased oxidative stability and longer shelf life), they are the predominant fats used as shortening in most commercial baked goods. 

A side effect of incomplete hydrogenation having implications for human health is the isomerization of some of the remaining unsaturated carbon bonds to their trans isomers. Trans fats (resulting from partial hydrogenation) have been implicated in circulatory diseases including heart disease. The conversion from cis to trans bonds is chemically favored because the trans configuration has lower energy than the natural cis one. At equilibrium, the trans/cis isomer ratio is about 2:1. Many countries and regions have introduced mandatory labeling of trans fats on food products and appealed to the industry for voluntary reductions. The food industry has moved away from partially hydrogenated fats (i.e. trans fats) and towards fully hydrogenated fats and interesterified fats in response to bad publicity about trans fats, labeling requirements, and removal of trans fats from the FDA list of foods Generally Recognized as Safe.

Petrochemical industry

In petrochemical processes, hydrogenation is used to convert alkenes and aromatics into saturated alkanes (paraffins) and cycloalkanes (naphthenes), which are less toxic and less reactive. Relevant to liquid fuels that are stored sometimes for long periods in air, saturated hydrocarbons exhibit superior storage properties. On the other hand, alkene tend to form hydroperoxides, which can form gums that interfere with fuel handing equipment. For example, mineral turpentine is usually hydrogenated. Hydrocracking of heavy residues into diesel is another application. In isomerization and catalytic reforming processes, some hydrogen pressure is maintained to hydrogenolyze coke formed on the catalyst and prevent its accumulation.

Organic chemistry

Hydrogenation is a useful means for converting unsaturated compounds into saturated derivatives. Substrates include not only alkenes and alkynes, but also aldehydes, imines, and nitriles, which are converted into the corresponding saturated compounds, i.e. alcohols and amines. Thus, alkyl aldehydes, which can be synthesized with the oxo process from carbon monoxide and an alkene, can be converted to alcohols. E.g. 1-propanol is produced from propionaldehyde, produced from ethene and carbon monoxide. Xylitol, a polyol, is produced by hydrogenation of the sugar xylose, an aldehyde. Primary amines can be synthesized by hydrogenation of nitriles, while nitriles are readily synthesized from cyanide and a suitable electrophile. For example, isophorone diamine, a precursor to the polyurethane monomer isophorone diisocyanate, is produced from isophorone nitrile by a tandem nitrile hydrogenation/reductive amination by ammonia, wherein hydrogenation converts both the nitrile into an amine and the imine formed from the aldehyde and ammonia into another amine.

History

Heterogeneous catalytic hydrogenation

The earliest hydrogenation is that of platinum catalyzed addition of hydrogen to oxygen in the Döbereiner's lamp, a device commercialized as early as 1823. The French chemist Paul Sabatier is considered the father of the hydrogenation process. In 1897, building on the earlier work of James Boyce, an American chemist working in the manufacture of soap products, he discovered that traces of nickel catalyzed the addition of hydrogen to molecules of gaseous hydrocarbons in what is now known as the Sabatier process. For this work, Sabatier shared the 1912 Nobel Prize in Chemistry. Wilhelm Normann was awarded a patent in Germany in 1902 and in Britain in 1903 for the hydrogenation of liquid oils, which was the beginning of what is now a worldwide industry. The commercially important Haber–Bosch process, first described in 1905, involves hydrogenation of nitrogen. In the Fischer–Tropsch process, reported in 1922 carbon monoxide, which is easily derived from coal, is hydrogenated to liquid fuels. 

In 1922, Voorhees and Adams described an apparatus for performing hydrogenation under pressures above one atmosphere. The Parr shaker, the first product to allow hydrogenation using elevated pressures and temperatures, was commercialized in 1926 based on Voorhees and Adams' research and remains in widespread use. In 1924 Murray Raney developed a finely powdered form of nickel, which is widely used to catalyze hydrogenation reactions such as conversion of nitriles to amines or the production of margarine.

Homogeneous catalytic hydrogenation

In the 1930s, Calvin discovered that copper(II) complexes oxidized H2. The 1960s witnessed the development of well defined homogeneous catalysts using transition metal complexes, e.g., Wilkinson's catalyst (RhCl(PPh3)3). Soon thereafter cationic Rh and Ir were found catalyze the hydrogenation of alkenes and carbonyls. In the 1970s, asymmetric hydrogenation was demonstrated in the synthesis of L-DOPA, and the 1990s saw the invention of Noyori asymmetric hydrogenation. The development of homogeneous hydrogenation was influenced by work started in the 1930s and 1940s on the oxo process and Ziegler–Natta polymerization.

Metal-free hydrogenation

For most practical purposes, hydrogenation requires a metal catalyst. Hydrogenation can, however, proceed from some hydrogen donors without catalysts, illustrative hydrogen donors being diimide and aluminium isopropoxide, the latter illustrated by the Meerwein–Ponndorf–Verley reduction. Some metal-free catalytic systems have been investigated in academic research. One such system for reduction of ketones consists of tert-butanol and potassium tert-butoxide and very high temperatures. The reaction depicted below describes the hydrogenation of benzophenone:
Base-catalyzed hydrogenation of ketones.
A chemical kinetics study found this reaction is first-order in all three reactants suggesting a cyclic 6-membered transition state.

Another system for metal-free hydrogenation is based on the phosphine-borane, compound 1, which has been called a frustrated Lewis pair. It reversibly accepts dihydrogen at relatively low temperatures to form the phosphonium borate 2 which can reduce simple hindered imines.
Metal free hydrogenation Phosphine Borane
The reduction of nitrobenzene to aniline has been reported to be catalysed by fullerene, its mono-anion, atmospheric hydrogen and UV light.[40]

Equipment used for hydrogenation

Today's bench chemist has three main choices of hydrogenation equipment:
  • Batch hydrogenation under atmospheric conditions
  • Batch hydrogenation at elevated temperature and/or pressure
  • Flow hydrogenation

Batch hydrogenation under atmospheric conditions

The original and still a commonly practised form of hydrogenation in teaching laboratories, this process is usually effected by adding solid catalyst to a round bottom flask of dissolved reactant which has been evacuated using nitrogen or argon gas and sealing the mixture with a penetrable rubber seal. Hydrogen gas is then supplied from a H2-filled balloon. The resulting three phase mixture is agitated to promote mixing. Hydrogen uptake can be monitored, which can be useful for monitoring progress of a hydrogenation. This is achieved by either using a graduated tube containing a coloured liquid, usually aqueous copper sulfate or with gauges for each reaction vessel.

Batch hydrogenation at elevated temperature and/or pressure

Since many hydrogenation reactions such as hydrogenolysis of protecting groups and the reduction of aromatic systems proceed extremely sluggishly at atmospheric temperature and pressure, pressurised systems are popular. In these cases, catalyst is added to a solution of reactant under an inert atmosphere in a pressure vessel. Hydrogen is added directly from a cylinder or built in laboratory hydrogen source, and the pressurized slurry is mechanically rocked to provide agitation, or a spinning basket is used. Heat may also be used, as the pressure compensates for the associated reduction in gas solubility.

Flow hydrogenation

Flow hydrogenation has become a popular technique at the bench and increasingly the process scale. This technique involves continuously flowing a dilute stream of dissolved reactant over a fixed bed catalyst in the presence of hydrogen. Using established HPLC technology, this technique allows the application of pressures from atmospheric to 1,450 psi (100 bar). Elevated temperatures may also be used. At the bench scale, systems use a range of pre-packed catalysts which eliminates the need for weighing and filtering pyrophoric catalysts.

Industrial reactors

Catalytic hydrogenation is done in a tubular plug-flow reactor (PFR) packed with a supported catalyst. The pressures and temperatures are typically high, although this depends on the catalyst. Catalyst loading is typically much lower than in laboratory batch hydrogenation, and various promoters are added to the metal, or mixed metals are used, to improve activity, selectivity and catalyst stability. The use of nickel is common despite its low activity, due to its low cost compared to precious metals. 

Gas Liquid Induction Reactors (Hydrogenator) are also used for carrying out catalytic hydrogenation.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...