A Medley of Potpourri

A Medley of Potpourri is just what it says; various thoughts, opinions, ruminations, and contemplations on a variety of subjects.

Search This Blog

Friday, January 27, 2023

DeepMind

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/DeepMind 
 
DeepMind Technologies Limited
DeepMind logo.png
DeepMind headquarters S2 Handyside.jpg
Headquarters in Kings Cross, London
TypeSubsidiary
IndustryArtificial intelligence
Founded23 September 2010
Founders
  • Demis Hassabis
  • Shane Legg
  • Mustafa Suleyman
HeadquartersLondon, UK
Key people
  • Demis Hassabis (CEO)
  • Lila Ibrahim (COO)
ProductsAlphaGo, AlphaStar, AlphaFold, AlphaZero
Number of employees
1,000+ (2022)
Parent
  • Google Inc. (2014–2015)
  • Alphabet Inc. (2015–present)
Websitedeepmind.com

DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research laboratory founded in 2010. DeepMind was acquired by Google in 2014 and became a wholly owned subsidiary of Alphabet Inc., after Google's restructuring in 2015. The company is based in London, with research centres in Canada, France, and the United States.

DeepMind has created a neural network that learns how to play video games in a fashion similar to that of humans, as well as a Neural Turing machine, or a neural network that may be able to access an external memory like a conventional Turing machine, resulting in a computer that mimics the short-term memory of the human brain.

DeepMind made headlines in 2016 after its AlphaGo program beat a human professional Go player Lee Sedol, a world champion, in a five-game match, which was the subject of a documentary film. A more general program, AlphaZero, beat the most powerful programs playing go, chess and shogi (Japanese chess) after a few days of play against itself using reinforcement learning. In 2020, DeepMind made significant advances in the problem of protein folding with AlphaFold. In July 2022, it was announced that over 200 million predicted protein structures, representing virtually all known proteins, would be released on the AlphaFold database.

DeepMind posted a blog post on 28 April 2022 on a single visual language model (VLM) named Flamingo that can accurately describe a picture of something with just a few training images. In July 2022, DeepMind announced the development of DeepNash, a model-free multi-agent reinforcement learning system capable of playing the board game Stratego at the level of a human expert.

History

The start-up was founded by Demis Hassabis, Shane Legg and Mustafa Suleyman in September 2010. Hassabis and Legg first met at the Gatsby Computational Neuroscience Unit at University College London (UCL).

During one of the interviews, Demis Hassabis said that the start-up began working on artificial intelligence technology by teaching it how to play old games from the seventies and eighties, which are relatively primitive compared to the ones that are available today. Some of those games included Breakout, Pong and Space Invaders. AI was introduced to one game at a time, without any prior knowledge of its rules. After spending some time on learning the game, AI would eventually become an expert in it. “The cognitive processes which the AI goes through are said to be very like those of a human who had never seen the game would use to understand and attempt to master it.” The goal of the founders is to create a general-purpose AI that can be useful and effective for almost anything.

Major venture capital firms Horizons Ventures and Founders Fund invested in the company, as well as entrepreneurs Scott Banister, Peter Thiel, and Elon Musk. Jaan Tallinn was an early investor and an adviser to the company. On 26 January 2014, Google announced the company had acquired DeepMind for $500 million, and that it had agreed to take over DeepMind Technologies. The sale to Google took place after Facebook reportedly ended negotiations with DeepMind Technologies in 2013. The company was afterwards renamed Google DeepMind and kept that name for about two years.

In 2014, DeepMind received the "Company of the Year" award from Cambridge Computer Laboratory.

In September 2015, DeepMind and the Royal Free NHS Trust signed their initial Information Sharing Agreement (ISA) to co-develop a clinical task management app, Streams.

After Google's acquisition the company established an artificial intelligence ethics board. The ethics board for AI research remains a mystery, with both Google and DeepMind declining to reveal who sits on the board. DeepMind, together with Amazon, Google, Facebook, IBM and Microsoft, is a founding member of Partnership on AI, an organization devoted to the society-AI interface. DeepMind has opened a new unit called DeepMind Ethics and Society and focused on the ethical and societal questions raised by artificial intelligence featuring prominent philosopher Nick Bostrom as advisor. In October 2017, DeepMind launched a new research team to investigate AI ethics.

In December 2019, co-founder Suleyman announced he would be leaving DeepMind to join Google, working in a policy role.

Products and technologies

According to the company's website, DeepMind Technologies' goal is to combine "the best techniques from machine learning and systems neuroscience to build powerful general-purpose learning algorithms".

Google Research released a paper in 2016 regarding AI safety and avoiding undesirable behaviour during the AI learning process. Deepmind has also released several publications via its website. In 2017 DeepMind released GridWorld, an open-source testbed for evaluating whether an algorithm learns to disable its kill switch or otherwise exhibits certain undesirable behaviours.

In July 2018, researchers from DeepMind trained one of its systems to play the computer game Quake III Arena.

As of 2020, DeepMind has published over a thousand papers, including thirteen papers that were accepted by Nature or Science. DeepMind received media attention during the AlphaGo period; according to a LexisNexis search, 1842 published news stories mentioned DeepMind in 2016, declining to 1363 in 2019.

Deep reinforcement learning

As opposed to other AIs, such as IBM's Deep Blue or Watson, which were developed for a pre-defined purpose and only function within its scope, DeepMind claims that its system is not pre-programmed: it learns from experience, using only raw pixels as data input. Technically it uses deep learning on a convolutional neural network, with a novel form of Q-learning, a form of model-free reinforcement learning. They test the system on video games, notably early arcade games, such as Space Invaders or Breakout. Without altering the code, the AI begins to understand how to play the game, and after some time plays, for a few games (most notably Breakout), a more efficient game than any human ever could.

In 2013, DeepMind published research on an AI system that could surpass human abilities in games such as Pong, Breakout and Enduro, while surpassing state of the art performance on Seaquest, Beamrider, and Q*bert. This work reportedly led to the company's acquisition by Google. DeepMind's AI had been applied to video games made in the 1970s and 1980s; work was ongoing for more complex 3D games such as Quake, which first appeared in the 1990s.

In 2020, DeepMind published Agent57, an AI Agent which surpasses human level performance on all 57 games of the Atari2600 suite.

AlphaGo and successors

Main articles: AlphaGo, AlphaGo Zero, AlphaZero, and MuZero

In 2014, the company published research on computer systems that are able to play Go.

In October 2015, a computer Go program called AlphaGo, developed by DeepMind, beat the European Go champion Fan Hui, a 2 dan (out of 9 dan possible) professional, five to zero. This was the first time an artificial intelligence (AI) defeated a professional Go player. Previously, computers were only known to have played Go at "amateur" level. Go is considered much more difficult for computers to win compared to other games like chess, due to the much larger number of possibilities, making it prohibitively difficult for traditional AI methods such as brute-force.

In March 2016 it beat Lee Sedol—a 9th dan Go player and one of the highest ranked players in the world—with a score of 4–1 in a five-game match.

In the 2017 Future of Go Summit, AlphaGo won a three-game match with Ke Jie, who at the time continuously held the world No. 1 ranking for two years. It used a supervised learning protocol, studying large numbers of games played by humans against each other.

In 2017, an improved version, AlphaGo Zero, defeated AlphaGo 100 games to 0. AlphaGo Zero's strategies were self-taught. AlphaGo Zero was able to beat its predecessor after just three days with less processing power than AlphaGo; in comparison, the original AlphaGo needed months to learn how to play.

Later that year, AlphaZero, a modified version of AlphaGo Zero but for handling any two-player game of perfect information, gained superhuman abilities at chess and shogi. Like AlphaGo Zero, AlphaZero learned solely through self-play.

DeepMind researchers published a new model named MuZero that mastered the domains of Go, chess, shogi, and Atari 2600 games without human data, domain knowledge, or known rules.

Researchers applied MuZero to solve the real world challenge of video compression with a set number of bits with respect to Internet traffic on sites such as YouTube, Twitch, and Google Meet. The goal of MuZero is to optimally compress the video so the quality of the video is maintained with a reduction in data. The final result using MuZero was a 6.28% average reduction in bitrate.

In October 2022, DeepMind unveiled a new version of AlphaZero, called AlphaTensor, in a paper published in Nature. The version discovered a faster way to perform matrix multiplication – one of the most fundamental tasks in computing – using reinforcement learning. For example, AlphaTensor figured out how to multiply two mod-2 4x4 matrices in only 47 multiplications, unexpectedly exceeding the 1969 Strassen algorithm record of 49 multiplications.

Technology

AlphaGo technology was developed based on the deep reinforcement learning approach. This makes AlphaGo different from the rest of AI technologies on the market. With that said, AlphaGo's ‘brain’ was introduced to various moves based on historical tournament data. The number of moves was increased gradually until it eventually processed over 30 million of them. The aim was to have the system mimic the human player and eventually become better. It played against itself and learned not only from its own defeats but wins as well; thus, it learned to improve itself over the time and increased its winning rate as a result.

AlphaGo used two deep neural networks: a policy network to evaluate move probabilities and a value network to assess positions. The policy network trained via supervised learning, and was subsequently refined by policy-gradient reinforcement learning. The value network learned to predict winners of games played by the policy network against itself. After training, these networks employed a lookahead Monte Carlo tree search (MCTS), using the policy network to identify candidate high-probability moves, while the value network (in conjunction with Monte Carlo rollouts using a fast rollout policy) evaluated tree positions.

AlphaGo Zero was trained using reinforcement learning in which the system played millions of games against itself. Its only guide was to increase its win rate. It did so without learning from games played by humans. Its only input features are the black and white stones from the board. It uses a single neural network, rather than separate policy and value networks. Its simplified tree search relies upon this neural network to evaluate positions and sample moves. A new reinforcement learning algorithm incorporates lookahead search inside the training loop. AlphaGo Zero employed around 15 people and millions in computing resources. Ultimately, it needed much less computing power than AlphaGo, running on four specialized AI processors (Google TPUs), instead of AlphaGo's 48.

AlphaFold

Main article: AlphaFold

In 2016, DeepMind turned its artificial intelligence to protein folding, a long-standing problem in molecular biology. In December 2018, DeepMind's AlphaFold won the 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP) by successfully predicting the most accurate structure for 25 out of 43 proteins. “This is a lighthouse project, our first major investment in terms of people and resources into a fundamental, very important, real-world scientific problem,” Hassabis said to The Guardian. In 2020, in the 14th CASP, AlphaFold's predictions achieved an accuracy score regarded as comparable with lab techniques. Dr Andriy Kryshtafovych, one of the panel of scientific adjudicators, described the achievement as "truly remarkable", and said the problem of predicting how proteins fold had been "largely solved".

In July 2021, the open-source RoseTTAFold and AlphaFold2 were released to allow scientists to run their own versions of the tools. A week later OpenMind announced that AlphaFold had completed its prediction of nearly all human proteins as well as the entire proteomes of 20 other widely studied organisms. The structures were released on the AlphaFold Protein Structure Database. In July 2022, it was announced that the predictions of over 200 million proteins, representing virtually all known proteins, would be released on the AlphaFold database.

WaveNet and WaveRNN

Main article: WaveNet

In 2016, DeepMind introduced WaveNet, a text-to-speech system. It was originally too computationally intensive for use in consumer products, but in late 2017 it became ready for use in consumer applications such as Google Assistant. In 2018 Google launched a commercial text-to-speech product, Cloud Text-to-Speech, based on WaveNet.

In 2018, DeepMind introduced a more efficient model called WaveRNN co-developed with Google AI. In 2020 WaveNetEQ, a packet loss concealment method based on a WaveRNN architecture, was presented. In 2019, Google started to roll WaveRNN with WavenetEQ out to Google Duo users.

AlphaStar

Main article: AlphaStar (software)

In 2016, Hassabis discussed the game StarCraft as a future challenge, since it requires strategic thinking and handling imperfect information.

In January 2019, DeepMind introduced AlphaStar, a program playing the real-time strategy game StarCraft II. AlphaStar used reinforcement learning based on replays from human players, and then played against itself to enhance its skills. At the time of the presentation, AlphaStar had knowledge equivalent to 200 years of playing time. It won 10 consecutive matches against two professional players, although it had the unfair advantage of being able to see the entire field, unlike a human player who has to move the camera manually. A preliminary version in which that advantage was fixed lost a subsequent match.

In July 2019, AlphaStar began playing against random humans on the public 1v1 European multiplayer ladder. Unlike the first iteration of AlphaStar, which played only Protoss v. Protoss, this one played as all of the game's races, and had earlier unfair advantages fixed. By October 2019, AlphaStar reached Grandmaster level on the StarCraft II ladder on all three StarCraft races, becoming the first AI to reach the top league of a widely popular esport without any game restrictions.

AlphaCode

In 2022, DeepMind unveiled AlphaCode, an AI-powered coding engine that creates computer programs at a rate comparable to that of an average programmer, with the company testing the system against coding challenges created by Codeforces utilized in human competitive programming competitions. AlphaCode earned a rank equivalent to 54% of the median score on Codeforces after being trained on GitHub data and Codeforce problems and solutions. The program was required to come up with a unique solution and stopped from duplicating answers.

Gato

Main article: Gato (DeepMind)

Gato is a "generalist agent" that learns multiple tasks simultaneously.

Miscellaneous contributions to Google

Google has stated that DeepMind algorithms have greatly increased the efficiency of cooling its data centers. In addition, DeepMind (alongside other Alphabet AI researchers) assists Google Play's personalized app recommendations. DeepMind has also collaborated with the Android team at Google for the creation of two new features which were made available to people with devices running Android Pie, the ninth installment of Google's mobile operating system. These features, Adaptive Battery and Adaptive Brightness, use machine learning to conserve energy and make devices running the operating system easier to use. It is the first time DeepMind has used these techniques on such a small scale, with typical machine learning applications requiring orders of magnitude more computing power.

Sports

DeepMind researchers have applied machine learning models to the sport of football, often referred to as soccer in North America, to modelling the behaviour of football players, including the goalkeeper, defenders, and strikers during different scenarios such as penalty kicks. The researchers used heat maps and cluster analysis to organize players based on their tendency to behave a certain way during the game when confronted with a decision on how to score or prevent the other team from scoring. The researchers mention that machine learning models could be used to democratize the football industry by automatically selecting interesting video clips of the game that serve as highlights. This can be done by searching videos for certain events, which is possible because video analysis is an established field of machine learning. This is also possible because of extensive sports analytics based on data including annotated passes or shots, sensors that capture data about the players movements many times over the course of a game, and game theory models.

Archaeology

Google has unveiled a new archaeology document program named Ithaca after the home island of mythical hero Odysseys. The deep neural network helps researchers restore the empty text of damaged documents, identify the place they originated from, and give them a definite accurate date. The work builds on another text analysis network named Pythia. The model Ithaca achieves 62% accuracy in restoring damaged texts, 71% location accuracy, and has a dating precision of 30 years. The tool has already been used by historians and ancient Greek archaeologists to make new discoveries in ancient Greek history. The team is working on extending the model to other ancient languages, including Demotic, Akkadian, Hebrew, and Mayan.

Sparrow

Sparrow is an artificial intelligence-powered chatbot developed by DeepMind to build safer machine learning systems by using a mix of human feedback and Google search suggestions.

Chinchilla AI

Chinchilla AI is a language model developed by DeepMind.

DeepMind Health

In July 2016, a collaboration between DeepMind and Moorfields Eye Hospital was announced to develop AI applications for healthcare. DeepMind would be applied to the analysis of anonymised eye scans, searching for early signs of diseases leading to blindness.

In August 2016, a research programme with University College London Hospital was announced with the aim of developing an algorithm that can automatically differentiate between healthy and cancerous tissues in head and neck areas.

There are also projects with the Royal Free London NHS Foundation Trust and Imperial College Healthcare NHS Trust to develop new clinical mobile apps linked to electronic patient records. Staff at the Royal Free Hospital were reported as saying in December 2017 that access to patient data through the app had saved a ‘huge amount of time’ and made a ‘phenomenal’ difference to the management of patients with acute kidney injury. Test result data is sent to staff's mobile phones and alerts them to changes in the patient's condition. It also enables staff to see if someone else has responded, and to show patients their results in visual form.

In November 2017, DeepMind announced a research partnership with the Cancer Research UK Centre at Imperial College London with the goal of improving breast cancer detection by applying machine learning to mammography. Additionally, in February 2018, DeepMind announced it was working with the U.S. Department of Veterans Affairs in an attempt to use machine learning to predict the onset of acute kidney injury in patients, and also more broadly the general deterioration of patients during a hospital stay so that doctors and nurses can more quickly treat patients in need.

DeepMind developed an app called Streams, which sends alerts to doctors about patients at risk of acute kidney injury. On 13 November 2018, DeepMind announced that its health division and the Streams app would be absorbed into Google Health. Privacy advocates said the announcement betrayed patient trust and appeared to contradict previous statements by DeepMind that patient data would not be connected to Google accounts or services. A spokesman for DeepMind said that patient data would still be kept separate from Google services or projects.

NHS data-sharing controversy

In April 2016, New Scientist obtained a copy of a data sharing agreement between DeepMind and the Royal Free London NHS Foundation Trust. The latter operates three London hospitals where an estimated 1.6 million patients are treated annually. The agreement shows DeepMind Health had access to admissions, discharge and transfer data, accident and emergency, pathology and radiology, and critical care at these hospitals. This included personal details such as whether patients had been diagnosed with HIV, suffered from depression or had ever undergone an abortion in order to conduct research to seek better outcomes in various health conditions.

A complaint was filed to the Information Commissioner's Office (ICO), arguing that the data should be pseudonymised and encrypted. In May 2016, New Scientist published a further article claiming that the project had failed to secure approval from the Confidentiality Advisory Group of the Medicines and Healthcare products Regulatory Agency.

In 2017, the ICO concluded a year-long investigation that focused on how the Royal Free NHS Foundation Trust tested the app, Streams, in late 2015 and 2016. The ICO found that the Royal Free failed to comply with the Data Protection Act when it provided patient details to DeepMind, and found several shortcomings in how the data was handled, including that patients were not adequately informed that their data would be used as part of the test. DeepMind published its thoughts on the investigation in July 2017, saying “we need to do better” and highlighting several activities and initiatives they had initiated for transparency, oversight and engagement. This included developing a patient and public involvement strategy and being transparent in its partnerships.

In May 2017, Sky News published a leaked letter from the National Data Guardian, Dame Fiona Caldicott, revealing that in her "considered opinion" the data-sharing agreement between DeepMind and the Royal Free took place on an "inappropriate legal basis". The Information Commissioner's Office ruled in July 2017 that the Royal Free hospital failed to comply with the Data Protection Act when it handed over personal data of 1.6 million patients to DeepMind.

DeepMind Ethics and Society

In October 2017, DeepMind announced a new research unit, DeepMind Ethics & Society. Their goal is to fund external research of the following themes: privacy, transparency, and fairness; economic impacts; governance and accountability; managing AI risk; AI morality and values; and how AI can address the world's challenges. As a result, the team hopes to further understand the ethical implications of AI and aid society to seeing AI can be beneficial.

This new subdivision of DeepMind is a completely separate unit from the partnership of leading companies using AI, academia, civil society organizations and nonprofits of the name Partnership on Artificial Intelligence to Benefit People and Society of which DeepMind is also a part. The DeepMind Ethics and Society board is also distinct from the mooted AI Ethics Board that Google originally agreed to form when acquiring DeepMind.

DeepMind Professors of machine learning

DeepMind sponsors three chairs of machine learning:

  1. At the University of Cambridge, held by Neil Lawrence, in the Department of Computer Science and Technology,
  2. At the University of Oxford, held by Michael Bronstein, in the Department of Computer Science, and
  3. At the University College London, held by Marc Deisenroth, in the Department of Computer Science.
at January 27, 2023
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

Medical image computing

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Medical_image_computing

Medical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care.

The main goal of MIC is to extract clinically relevant information or knowledge from medical images. While closely related to the field of medical imaging, MIC focuses on the computational analysis of the images, not their acquisition. The methods can be grouped into several broad categories: image segmentation, image registration, image-based physiological modeling, and others.

Data forms

Medical image computing typically operates on uniformly sampled data with regular x-y-z spatial spacing (images in 2D and volumes in 3D, generically referred to as images). At each sample point, data is commonly represented in integral form such as signed and unsigned short (16-bit), although forms from unsigned char (8-bit) to 32-bit float are not uncommon. The particular meaning of the data at the sample point depends on modality: for example a CT acquisition collects radiodensity values, while an MRI acquisition may collect T1 or T2-weighted images. Longitudinal, time-varying acquisitions may or may not acquire images with regular time steps. Fan-like images due to modalities such as curved-array ultrasound are also common and require different representational and algorithmic techniques to process. Other data forms include sheared images due to gantry tilt during acquisition; and unstructured meshes, such as hexahedral and tetrahedral forms, which are used in advanced biomechanical analysis (e.g., tissue deformation, vascular transport, bone implants).

Segmentation

A T1 weighted MR image of the brain of a patient with a meningioma after injection of an MRI contrast agent (top left), and the same image with the result of an interactive segmentation overlaid in green (3D model of the segmentation on the top right, axial and coronal views at the bottom).

Segmentation is the process of partitioning an image into different meaningful segments. In medical imaging, these segments often correspond to different tissue classes, organs, pathologies, or other biologically relevant structures. Medical image segmentation is made difficult by low contrast, noise, and other imaging ambiguities. Although there are many computer vision techniques for image segmentation, some have been adapted specifically for medical image computing. Below is a sampling of techniques within this field; the implementation relies on the expertise that clinicians can provide.

  • Atlas-Based Segmentation: For many applications, a clinical expert can manually label several images; segmenting unseen images is a matter of extrapolating from these manually labeled training images. Methods of this style are typically referred to as atlas-based segmentation methods. Parametric atlas methods typically combine these training images into a single atlas image, while nonparametric atlas methods typically use all of the training images separately. Atlas-based methods usually require the use of image registration in order to align the atlas image or images to a new, unseen image.
  • Shape-Based Segmentation: Many methods parametrize a template shape for a given structure, often relying on control points along the boundary. The entire shape is then deformed to match a new image. Two of the most common shape-based techniques are Active Shape Models and Active Appearance Models. These methods have been very influential, and have given rise to similar models.
  • Image-Based segmentation: Some methods initiate a template and refine its shape according to the image data while minimizing integral error measures, like the Active contour model and its variations.
  • Interactive Segmentation: Interactive methods are useful when clinicians can provide some information, such as a seed region or rough outline of the region to segment. An algorithm can then iteratively refine such a segmentation, with or without guidance from the clinician. Manual segmentation, using tools such as a paint brush to explicitly define the tissue class of each pixel, remains the gold standard for many imaging applications. Recently, principles from feedback control theory have been incorporated into segmentation, which give the user much greater flexibility and allow for the automatic correction of errors.
  • Subjective surface Segmentation: This method is based on the idea of evolution of segmentation function which is governed by an advection-diffusion model. To segment an object, a segmentation seed is needed (that is the starting point that determines the approximate position of the object in the image). Consequently, an initial segmentation function is constructed. The idea behind the subjective surface method is that the position of the seed is the main factor determining the form of this segmentation function.

However, there are some other classification of image segmentation methods which are similar to above categories. Moreover, we can classify another group as "Hybrid" which is based on combination of methods.

Registration

CT image (left), PET image (center) and overlay of both (right) after correct registration.

Image registration is a process that searches for the correct alignment of images. In the simplest case, two images are aligned. Typically, one image is treated as the target image and the other is treated as a source image; the source image is transformed to match the target image. The optimization procedure updates the transformation of the source image based on a similarity value that evaluates the current quality of the alignment. This iterative procedure is repeated until a (local) optimum is found. An example is the registration of CT and PET images to combine structural and metabolic information (see figure).

Image registration is used in a variety of medical applications:

  • Studying temporal changes. Longitudinal studies acquire images over several months or years to study long-term processes, such as disease progression. Time series correspond to images acquired within the same session (seconds or minutes). They can be used to study cognitive processes, heart deformations and respiration.
  • Combining complementary information from different imaging modalities. An example is the fusion of anatomical and functional information. Since the size and shape of structures vary across modalities, it is more challenging to evaluate the alignment quality. This has led to the use of similarity measures such as mutual information.
  • Characterizing a population of subjects. In contrast to intra-subject registration, a one-to-one mapping may not exist between subjects, depending on the structural variability of the organ of interest. Inter-subject registration is required for atlas construction in computational anatomy. Here, the objective is to statistically model the anatomy of organs across subjects.
  • Computer-assisted surgery. In computer-assisted surgery pre-operative images such as CT or MRI are registered to intra-operative images or tracking systems to facilitate image guidance or navigation.

There are several important considerations when performing image registration:

  • The transformation model. Common choices are rigid, affine, and deformable transformation models. B-spline and thin plate spline models are commonly used for parameterized transformation fields. Non-parametric or dense deformation fields carry a displacement vector at every grid location; this necessitates additional regularization constraints. A specific class of deformation fields are diffeomorphisms, which are invertible transformations with a smooth inverse.
  • The similarity metric. A distance or similarity function is used to quantify the registration quality. This similarity can be calculated either on the original images or on features extracted from the images. Common similarity measures are sum of squared distances (SSD), correlation coefficient, and mutual information. The choice of similarity measure depends on whether the images are from the same modality; the acquisition noise can also play a role in this decision. For example, SSD is the optimal similarity measure for images of the same modality with Gaussian noise. However, the image statistics in ultrasound are significantly different from Gaussian noise, leading to the introduction of ultrasound specific similarity measures. Multi-modal registration requires a more sophisticated similarity measure; alternatively, a different image representation can be used, such as structural representations or registering adjacent anatomy. A recent study employed contrastive coding to learn shared, dense image representations, referred to as CoMIRs (Contrastive Multi-modal Image Representations) which enabled the registration of multi-modal images where existing registration methods often fail due to a lack of sufficiently similar image structures. It reduced the multi-modal registration problem to a mono-modal one, in which general intensity based, as well as feature-based, registration algorithms can be applied.
  • The optimization procedure. Either continuous or discrete optimization is performed. For continuous optimization, gradient-based optimization techniques are applied to improve the convergence speed.

Visualization

Volume rendering (left), axial cross-section (right top), and sagittal cross-section (right bottom) of a CT image of a subject with multiple nodular lesions (white line) in the lung.

Visualization plays several key roles in Medical Image Computing. Methods from scientific visualization are used to understand and communicate about medical images, which are inherently spatial-temporal. Data visualization and data analysis are used on unstructured data forms, for example when evaluating statistical measures derived during algorithmic processing. Direct interaction with data, a key feature of the visualization process, is used to perform visual queries about data, annotate images, guide segmentation and registration processes, and control the visual representation of data (by controlling lighting rendering properties and viewing parameters). Visualization is used both for initial exploration and for conveying intermediate and final results of analyses.

The figure "Visualization of Medical Imaging" illustrates several types of visualization: 1. the display of cross-sections as gray scale images; 2. reformatted views of gray scale images (the sagittal view in this example has a different orientation than the original direction of the image acquisition; and 3. A 3D volume rendering of the same data. The nodular lesion is clearly visible in the different presentations and has been annotated with a white line.

Atlases

Medical images can vary significantly across individuals due to people having organs of different shapes and sizes. Therefore, representing medical images to account for this variability is crucial. A popular approach to represent medical images is through the use of one or more atlases. Here, an atlas refers to a specific model for a population of images with parameters that are learned from a training dataset.

The simplest example of an atlas is a mean intensity image, commonly referred to as a template. However, an atlas can also include richer information, such as local image statistics and the probability that a particular spatial location has a certain label. New medical images, which are not used during training, can be mapped to an atlas, which has been tailored to the specific application, such as segmentation and group analysis. Mapping an image to an atlas usually involves registering the image and the atlas. This deformation can be used to address variability in medical images.

Single template

The simplest approach is to model medical images as deformed versions of a single template image. For example, anatomical MRI brain scans are often mapped to the MNI template as to represent all the brain scans in common coordinates. The main drawback of a single-template approach is that if there are significant differences between the template and a given test image, then there may not be a good way to map one onto the other. For example, an anatomical MRI brain scan of a patient with severe brain abnormalities (i.e., a tumor or surgical procedure), may not easily map to the MNI template.

Multiple templates

Rather than relying on a single template, multiple templates can be used. The idea is to represent an image as a deformed version of one of the templates. For example, there could be one template for a healthy population and one template for a diseased population. However, in many applications, it is not clear how many templates are needed. A simple albeit computationally expensive way to deal with this is to have every image in a training dataset be a template image and thus every new image encountered is compared against every image in the training dataset. A more recent approach automatically finds the number of templates needed.

Statistical analysis

Statistical methods combine the medical imaging field with modern Computer Vision, Machine Learning and Pattern Recognition. Over the last decade, several large datasets have been made publicly available (see for example ADNI, 1000 functional Connectomes Project), in part due to collaboration between various institutes and research centers. This increase in data size calls for new algorithms that can mine and detect subtle changes in the images to address clinical questions. Such clinical questions are very diverse and include group analysis, imaging biomarkers, disease phenotyping and longitudinal studies.

Group analysis

In the Group Analysis, the objective is to detect and quantize abnormalities induced by a disease by comparing the images of two or more cohorts. Usually one of these cohorts consist of normal (control) subjects, and the other one consists of abnormal patients. Variation caused by the disease can manifest itself as abnormal deformation of anatomy (see Voxel-based morphometry). For example, shrinkage of sub-cortical tissues such as the Hippocampus in brain may be linked to Alzheimer's disease. Additionally, changes in biochemical (functional) activity can be observed using imaging modalities such as Positron Emission Tomography.

The comparison between groups is usually conducted on the voxel level. Hence, the most popular pre-processing pipeline, particularly in neuroimaging, transforms all of the images in a dataset to a common coordinate frame via (Medical Image Registration) in order to maintain correspondence between voxels. Given this voxel-wise correspondence, the most common Frequentist method is to extract a statistic for each voxel (for example, the mean voxel intensity for each group) and perform statistical hypothesis testing to evaluate whether a null hypothesis is or is not supported. The null hypothesis typically assumes that the two cohorts are drawn from the same distribution, and hence, should have the same statistical properties (for example, the mean values of two groups are equal for a particular voxel). Since medical images contain large numbers of voxels, the issue of multiple comparison needs to be addressed. There are also Bayesian approaches to tackle group analysis problem.

Classification

Although group analysis can quantify the general effects of a pathology on an anatomy and function, it does not provide subject level measures, and hence cannot be used as biomarkers for diagnosis (see Imaging Biomarkers). Clinicians, on the other hand, are often interested in early diagnosis of the pathology (i.e. classification) and in learning the progression of a disease (i.e. regression). From methodological point of view, current techniques varies from applying standard machine learning algorithms to medical imaging datasets (e.g. Support Vector Machine), to developing new approaches adapted for the needs of the field. The main difficulties are as follows:

  • Small sample size (Curse of Dimensionality): a large medical imaging dataset contains hundreds to thousands of images, whereas the number of voxels in a typical volumetric image can easily go beyond millions. A remedy to this problem is to reduce the number of features in an informative sense (see dimensionality reduction). Several unsupervised and semi-/supervised, approaches have been proposed to address this issue.
  • Interpretability: A good generalization accuracy is not always the primary objective, as clinicians would like to understand which parts of anatomy are affected by the disease. Therefore, interpretability of the results is very important; methods that ignore the image structure are not favored. Alternative methods based on feature selection have been proposed.

Clustering

Image-based pattern classification methods typically assume that the neurological effects of a disease are distinct and well defined. This may not always be the case. For a number of medical conditions, the patient populations are highly heterogeneous, and further categorization into sub-conditions has not been established. Additionally, some diseases (e.g., autism spectrum disorder (ASD), schizophrenia, mild cognitive impairment (MCI)) can be characterized by a continuous or nearly-continuous spectra from mild cognitive impairment to very pronounced pathological changes. To facilitate image-based analysis of heterogeneous disorders, methodological alternatives to pattern classification have been developed. These techniques borrow ideas from high-dimensional clustering  and high-dimensional pattern-regression to cluster a given population into homogeneous sub-populations. The goal is to provide a better quantitative understanding of the disease within each sub-population.

Shape analysis

Shape Analysis is the field of Medical Image Computing that studies geometrical properties of structures obtained from different imaging modalities. Shape analysis recently become of increasing interest to the medical community due to its potential to precisely locate morphological changes between different populations of structures, i.e. healthy vs pathological, female vs male, young vs elderly. Shape Analysis includes two main steps: shape correspondence and statistical analysis.

  • Shape correspondence is the methodology that computes correspondent locations between geometric shapes represented by triangle meshes, contours, point sets or volumetric images. Obviously definition of correspondence will influence directly the analysis. Among the different options for correspondence frameworks we can find: Anatomical correspondence, manual landmarks, functional correspondence (i.e. in brain morphometry locus responsible for same neuronal functionality), geometry correspondence, (for image volumes) intensity similarity, etc. Some approaches, e.g. spectral shape analysis, do not require correspondence but compare shape descriptors directly.
  • Statistical analysis will provide measurements of structural change at correspondent locations.

Longitudinal studies

In longitudinal studies the same person is imaged repeatedly. This information can be incorporated both into the image analysis, as well as into the statistical modeling.

  • In longitudinal image processing, segmentation and analysis methods of individual time points are informed and regularized with common information usually from a within-subject template. This regularization is designed to reduce measurement noise and thus helps increase sensitivity and statistical power. At the same time over-regularization needs to be avoided, so that effect sizes remain stable. Intense regularization, for example, can lead to excellent test-retest reliability, but limits the ability to detect any true changes and differences across groups. Often a trade-off needs to be aimed for, that optimizes noise reduction at the cost of limited effect size loss. Another common challenge in longitudinal image processing is the, often unintentional, introduction of processing bias. When, for example, follow-up images get registered and resampled to the baseline image, interpolation artifacts get introduced to only the follow-up images and not the baseline. These artifact can cause spurious effects (usually a bias towards overestimating longitudinal change and thus underestimating required sample size). It is therefore essential that all-time points get treated exactly the same to avoid any processing bias.
  • Post-processing and statistical analysis of longitudinal data usually requires dedicated statistical tools such as repeated measure ANOVA or the more powerful linear mixed effects models. Additionally, it is advantageous to consider the spatial distribution of the signal. For example, cortical thickness measurements will show a correlation within-subject across time and also within a neighborhood on the cortical surface - a fact that can be used to increase statistical power. Furthermore, time-to-event (aka survival) analysis is frequently employed to analyze longitudinal data and determine significant predictors.

Image-based physiological modelling

Traditionally, medical image computing has seen to address the quantification and fusion of structural or functional information available at the point and time of image acquisition. In this regard, it can be seen as quantitative sensing of the underlying anatomical, physical or physiological processes. However, over the last few years, there has been a growing interest in the predictive assessment of disease or therapy course. Image-based modelling, be it of biomechanical or physiological nature, can therefore extend the possibilities of image computing from a descriptive to a predictive angle.

According to the STEP research roadmap, the Virtual Physiological Human (VPH) is a methodological and technological framework that, once established, will enable the investigation of the human body as a single complex system. Underlying the VPH concept, the International Union for Physiological Sciences (IUPS) has been sponsoring the IUPS Physiome Project for more than a decade. This is a worldwide public domain effort to provide a computational framework for understanding human physiology. It aims at developing integrative models at all levels of biological organization, from genes to the whole organisms via gene regulatory networks, protein pathways, integrative cell functions, and tissue and whole organ structure/function relations. Such an approach aims at transforming current practice in medicine and underpins a new era of computational medicine.

In this context, medical imaging and image computing play an increasingly important role as they provide systems and methods to image, quantify and fuse both structural and functional information about the human being in vivo. These two broad research areas include the transformation of generic computational models to represent specific subjects, thus paving the way for personalized computational models. Individualization of generic computational models through imaging can be realized in three complementary directions:

  • definition of the subject-specific computational domain (anatomy) and related subdomains (tissue types);
  • definition of boundary and initial conditions from (dynamic and/or functional) imaging; and
  • characterization of structural and functional tissue properties.

In addition, imaging also plays a pivotal role in the evaluation and validation of such models both in humans and in animal models, and in the translation of models to the clinical setting with both diagnostic and therapeutic applications. In this specific context, molecular, biological, and pre-clinical imaging render additional data and understanding of basic structure and function in molecules, cells, tissues and animal models that may be transferred to human physiology where appropriate.

The applications of image-based VPH/Physiome models in basic and clinical domains are vast. Broadly speaking, they promise to become new virtual imaging techniques. Effectively more, often non-observable, parameters will be imaged in silico based on the integration of observable but sometimes sparse and inconsistent multimodal images and physiological measurements. Computational models will serve to engender interpretation of the measurements in a way compliant with the underlying biophysical, biochemical or biological laws of the physiological or pathophysiological processes under investigation. Ultimately, such investigative tools and systems will help our understanding of disease processes, the natural history of disease evolution, and the influence on the course of a disease of pharmacological and/or interventional therapeutic procedures.

Cross-fertilization between imaging and modelling goes beyond interpretation of measurements in a way consistent with physiology. Image-based patient-specific modelling, combined with models of medical devices and pharmacological therapies, opens the way to predictive imaging whereby one will be able to understand, plan and optimize such interventions in silico.

Mathematical methods in medical imaging

A number of sophisticated mathematical methods have entered medical imaging, and have already been implemented in various software packages. These include approaches based on partial differential equations (PDEs) and curvature driven flows for enhancement, segmentation, and registration. Since they employ PDEs, the methods are amenable to parallelization and implementation on GPGPUs. A number of these techniques have been inspired from ideas in optimal control. Accordingly, very recently ideas from control have recently made their way into interactive methods, especially segmentation. Moreover, because of noise and the need for statistical estimation techniques for more dynamically changing imagery, the Kalman filter and particle filter have come into use. A survey of these methods with an extensive list of references may be found in.

Modality specific computing

Some imaging modalities provide very specialized information. The resulting images cannot be treated as regular scalar images and give rise to new sub-areas of Medical Image Computing. Examples include diffusion MRI, functional MRI and others.

Diffusion MRI

A mid-axial slice of the ICBM diffusion tensor image template. Each voxel's value is a tensor represented here by an ellipsoid. Color denotes principal orientation: red = left-right, blue=inferior-superior, green = posterior-anterior

Diffusion MRI is a structural magnetic resonance imaging modality that allows measurement of the diffusion process of molecules. Diffusion is measured by applying a gradient pulse to a magnetic field along a particular direction. In a typical acquisition, a set of uniformly distributed gradient directions is used to create a set of diffusion weighted volumes. In addition, an unweighted volume is acquired under the same magnetic field without application of a gradient pulse. As each acquisition is associated with multiple volumes, diffusion MRI has created a variety of unique challenges in medical image computing.

In medicine, there are two major computational goals in diffusion MRI:

  • Estimation of local tissue properties, such as diffusivity;
  • Estimation of local directions and global pathways of diffusion.

The diffusion tensor, a 3 × 3 symmetric positive-definite matrix, offers a straightforward solution to both of these goals. It is proportional to the covariance matrix of a Normally distributed local diffusion profile and, thus, the dominant eigenvector of this matrix is the principal direction of local diffusion. Due to the simplicity of this model, a maximum likelihood estimate of the diffusion tensor can be found by simply solving a system of linear equations at each location independently. However, as the volume is assumed to contain contiguous tissue fibers, it may be preferable to estimate the volume of diffusion tensors in its entirety by imposing regularity conditions on the underlying field of tensors. Scalar values can be extracted from the diffusion tensor, such as the fractional anisotropy, mean, axial and radial diffusivities, which indirectly measure tissue properties such as the dysmyelination of axonal fibers or the presence of edema. Standard scalar image computing methods, such as registration and segmentation, can be applied directly to volumes of such scalar values. However, to fully exploit the information in the diffusion tensor, these methods have been adapted to account for tensor valued volumes when performing registration and segmentation.

Given the principal direction of diffusion at each location in the volume, it is possible to estimate the global pathways of diffusion through a process known as tractography. However, due to the relatively low resolution of diffusion MRI, many of these pathways may cross, kiss or fan at a single location. In this situation, the single principal direction of the diffusion tensor is not an appropriate model for the local diffusion distribution. The most common solution to this problem is to estimate multiple directions of local diffusion using more complex models. These include mixtures of diffusion tensors, Q-ball imaging, diffusion spectrum imaging and fiber orientation distribution functions, which typically require HARDI acquisition with a large number of gradient directions. As with the diffusion tensor, volumes valued with these complex models require special treatment when applying image computing methods, such as registration and segmentation.

Functional MRI

Functional magnetic resonance imaging (fMRI) is a medical imaging modality that indirectly measures neural activity by observing the local hemodynamics, or blood oxygen level dependent signal (BOLD). fMRI data offers a range of insights, and can be roughly divided into two categories:

  • Task related fMRI is acquired as the subject is performing a sequence of timed experimental conditions. In block-design experiments, the conditions are present for short periods of time (e.g., 10 seconds) and are alternated with periods of rest. Event-related experiments rely on a random sequence of stimuli and use a single time point to denote each condition. The standard approach to analyze task related fMRI is the general linear model (GLM) 
  • Resting state fMRI is acquired in the absence of any experimental task. Typically, the objective is to study the intrinsic network structure of the brain. Observations made during rest have also been linked to specific cognitive processes such as encoding or reflection. Most studies of resting state fMRI focus on low frequency fluctuations of the fMRI signal (LF-BOLD). Seminal discoveries include the default network, a comprehensive cortical parcellation, and the linking of network characteristics to behavioral parameters.

There is a rich set of methodology used to analyze functional neuroimaging data, and there is often no consensus regarding the best method. Instead, researchers approach each problem independently and select a suitable model/algorithm. In this context there is a relatively active exchange among neuroscience, computational biology, statistics, and machine learning communities. Prominent approaches include

  • Massive univariate approaches that probe individual voxels in the imaging data for a relationship to the experiment condition. The prime approach is the general linear model (GLM) 
  • Multivariate- and classifier based approaches, often referred to as multi voxel pattern analysis or multi-variate pattern analysis probe the data for global and potentially distributed responses to an experimental condition. Early approaches used support vector machines (SVM) to study responses to visual stimuli. Recently, alternative pattern recognition algorithms have been explored, such as random forest based gini contrast or sparse regression and dictionary learning 
  • Functional connectivity analysis studies the intrinsic network structure of the brain, including the interactions between regions. The majority of such studies focus on resting state data to parcelate the brain  or to find correlates to behavioral measures. Task specific data can be used to study causal relationships among brain regions (e.g., dynamic causal mapping (DCM)).

When working with large cohorts of subjects, the normalization (registration) of individual subjects into a common reference frame is crucial. A body of work and tools exist to perform normalization based on anatomy (FSL, FreeSurfer, SPM). Alignment taking spatial variability across subjects into account is a more recent line of work. Examples are the alignment of the cortex based on fMRI signal correlation, the alignment based on the global functional connectivity structure both in task-, or resting state data, and the alignment based on stimulus specific activation profiles of individual voxels.

Software

Software for medical image computing is a complex combination of systems providing IO, visualization and interaction, user interface, data management and computation. Typically system architectures are layered to serve algorithm developers, application developers, and users. The bottom layers are often libraries and/or toolkits which provide base computational capabilities; while the top layers are specialized applications which address specific medical problems, diseases, or body systems.

Additional notes

Medical Image Computing is also related to the field of Computer Vision. An international society, The MICCAI Society represents the field and organizes an annual conference and associated workshops. Proceedings for this conference are published by Springer in the Lecture Notes in Computer Science series. In 2000, N. Ayache and J. Duncan reviewed the state of the field.

at January 27, 2023
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

Medical algorithm

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Medical_algorithm 
A medical algorithm for assessment and treatment of overweight and obesity.

A medical algorithm is any computation, formula, statistical survey, nomogram, or look-up table, useful in healthcare. Medical algorithms include decision tree approaches to healthcare treatment (e.g., if symptoms A, B, and C are evident, then use treatment X) and also less clear-cut tools aimed at reducing or defining uncertainty. A medical prescription is also a type of medical algorithm.

Scope

Medical algorithms are part of a broader field which is usually fit under the aims of medical informatics and medical decision-making. Medical decisions occur in several areas of medical activity including medical test selection, diagnosis, therapy and prognosis, and automatic control of medical equipment.

In relation to logic-based and artificial neural network-based clinical decision support systems, which are also computer applications used in the medical decision-making field, algorithms are less complex in architecture, data structure and user interface. Medical algorithms are not necessarily implemented using digital computers. In fact, many of them can be represented on paper, in the form of diagrams, nomographs, etc.

Examples

A wealth of medical information exists in the form of published medical algorithms. These algorithms range from simple calculations to complex outcome predictions. Most clinicians use only a small subset routinely.

Examples of medical algorithms are:

  • Calculators, e.g. an on-line or stand-alone calculator for body mass index (BMI) when stature and body weight are given;
  • Flowcharts and drakon-charts, e.g. a binary decision tree for deciding what is the etiology of chest pain
  • Look-up tables, e.g. for looking up food energy and nutritional contents of foodstuffs
  • Nomograms, e.g. a moving circular slide to calculate body surface area or drug dosages.

A common class of algorithms are embedded in guidelines on the choice of treatments produced by many national, state, financial and local healthcare organisations and provided as knowledge resources for day to day use and for induction of new physicians. A field which has gained particular attention is the choice of medications for psychiatric conditions. In the United Kingdom, guidelines or algorithms for this have been produced by most of the circa 500 primary care trusts, substantially all of the circa 100 secondary care psychiatric units and many of the circa 10 000 general practices. In the US, there is a national (federal) initiative to provide them for all states, and by 2005 six states were adapting the approach of the Texas Medication Algorithm Project or otherwise working on their production.

A grammar—the Arden syntax—exists for describing algorithms in terms of medical logic modules. An approach such as this should allow exchange of MLMs between doctors and establishments, and enrichment of the common stock of tools.

Purpose

The intended purpose of medical algorithms is to improve and standardize decisions made in the delivery of medical care. Medical algorithms assist in standardizing selection and application of treatment regimens, with algorithm automation intended to reduce potential introduction of errors. Some attempt to predict the outcome, for example critical care scoring systems.

Computerized health diagnostics algorithms can provide timely clinical decision support, improve adherence to evidence-based guidelines, and be a resource for education and research.

Medical algorithms based on best practice can assist everyone involved in delivery of standardized treatment via a wide range of clinical care providers. Many are presented as protocols and it is a key task in training to ensure people step outside the protocol when necessary. In our present state of knowledge, generating hints and producing guidelines may be less satisfying to the authors, but more appropriate.

Cautions

In common with most science and medicine, algorithms whose contents are not wholly available for scrutiny and open to improvement should be regarded with suspicion.

Computations obtained from medical algorithms should be compared with, and tempered by, clinical knowledge and physician judgment.

at January 27, 2023
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Newer Posts Older Posts Home
Subscribe to: Posts (Atom)

Open educational resources

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Open_educational_resources UN...

  • Islamic State and the Levant
    From Wikipedia, the free encyclopedia Islamic State of Iraq and the Levant الدولة الإسلامية في العراق والشام   ( ...
  • Heart Sutra
    From Wikipedia, the free encyclopedia A reproduction of the palm -leaf manuscript in Siddham script ...
  • Wiki
    From Wikipedia, the free encyclopedia Ward Cunningham , inventor of the wiki   A wiki is a website on whi...

Search This Blog

  • Home

About Me

My photo
David J Strumfels
View my complete profile

Blog Archive

  • ►  2025 (1017)
    • ►  June (99)
      • ►  Jun 18 (8)
      • ►  Jun 17 (2)
      • ►  Jun 16 (3)
      • ►  Jun 15 (12)
      • ►  Jun 14 (3)
      • ►  Jun 13 (4)
      • ►  Jun 12 (3)
      • ►  Jun 11 (6)
      • ►  Jun 10 (5)
      • ►  Jun 09 (5)
      • ►  Jun 08 (5)
      • ►  Jun 07 (4)
      • ►  Jun 06 (7)
      • ►  Jun 05 (7)
      • ►  Jun 04 (6)
      • ►  Jun 03 (6)
      • ►  Jun 02 (10)
      • ►  Jun 01 (3)
    • ►  May (165)
      • ►  May 31 (10)
      • ►  May 30 (6)
      • ►  May 29 (8)
      • ►  May 28 (4)
      • ►  May 27 (10)
      • ►  May 25 (4)
      • ►  May 24 (7)
      • ►  May 22 (3)
      • ►  May 21 (2)
      • ►  May 20 (2)
      • ►  May 19 (5)
      • ►  May 18 (6)
      • ►  May 17 (7)
      • ►  May 16 (1)
      • ►  May 15 (5)
      • ►  May 14 (6)
      • ►  May 13 (12)
      • ►  May 12 (4)
      • ►  May 11 (2)
      • ►  May 10 (5)
      • ►  May 09 (3)
      • ►  May 08 (7)
      • ►  May 07 (3)
      • ►  May 06 (8)
      • ►  May 05 (9)
      • ►  May 04 (5)
      • ►  May 03 (6)
      • ►  May 02 (5)
      • ►  May 01 (10)
    • ►  April (193)
      • ►  Apr 30 (8)
      • ►  Apr 29 (6)
      • ►  Apr 28 (5)
      • ►  Apr 27 (10)
      • ►  Apr 26 (9)
      • ►  Apr 25 (4)
      • ►  Apr 24 (11)
      • ►  Apr 23 (3)
      • ►  Apr 22 (8)
      • ►  Apr 21 (10)
      • ►  Apr 20 (14)
      • ►  Apr 19 (6)
      • ►  Apr 18 (13)
      • ►  Apr 17 (10)
      • ►  Apr 16 (8)
      • ►  Apr 15 (4)
      • ►  Apr 14 (6)
      • ►  Apr 13 (7)
      • ►  Apr 12 (7)
      • ►  Apr 11 (9)
      • ►  Apr 10 (1)
      • ►  Apr 09 (5)
      • ►  Apr 08 (4)
      • ►  Apr 07 (5)
      • ►  Apr 06 (4)
      • ►  Apr 05 (4)
      • ►  Apr 04 (2)
      • ►  Apr 03 (2)
      • ►  Apr 02 (2)
      • ►  Apr 01 (6)
    • ►  March (182)
      • ►  Mar 31 (5)
      • ►  Mar 30 (10)
      • ►  Mar 29 (12)
      • ►  Mar 28 (5)
      • ►  Mar 27 (7)
      • ►  Mar 26 (5)
      • ►  Mar 25 (7)
      • ►  Mar 24 (8)
      • ►  Mar 23 (6)
      • ►  Mar 22 (5)
      • ►  Mar 21 (5)
      • ►  Mar 20 (5)
      • ►  Mar 19 (6)
      • ►  Mar 18 (4)
      • ►  Mar 17 (7)
      • ►  Mar 16 (5)
      • ►  Mar 15 (7)
      • ►  Mar 14 (5)
      • ►  Mar 13 (2)
      • ►  Mar 12 (1)
      • ►  Mar 11 (1)
      • ►  Mar 10 (6)
      • ►  Mar 09 (8)
      • ►  Mar 08 (7)
      • ►  Mar 07 (6)
      • ►  Mar 06 (11)
      • ►  Mar 05 (6)
      • ►  Mar 04 (8)
      • ►  Mar 03 (4)
      • ►  Mar 02 (5)
      • ►  Mar 01 (3)
    • ►  February (115)
      • ►  Feb 28 (5)
      • ►  Feb 27 (5)
      • ►  Feb 26 (1)
      • ►  Feb 25 (2)
      • ►  Feb 24 (5)
      • ►  Feb 22 (2)
      • ►  Feb 21 (2)
      • ►  Feb 20 (3)
      • ►  Feb 19 (4)
      • ►  Feb 18 (4)
      • ►  Feb 17 (6)
      • ►  Feb 16 (2)
      • ►  Feb 15 (4)
      • ►  Feb 14 (4)
      • ►  Feb 13 (1)
      • ►  Feb 12 (3)
      • ►  Feb 11 (2)
      • ►  Feb 10 (7)
      • ►  Feb 09 (5)
      • ►  Feb 08 (4)
      • ►  Feb 07 (4)
      • ►  Feb 06 (5)
      • ►  Feb 05 (7)
      • ►  Feb 04 (6)
      • ►  Feb 03 (7)
      • ►  Feb 02 (7)
      • ►  Feb 01 (8)
    • ►  January (263)
      • ►  Jan 31 (7)
      • ►  Jan 30 (8)
      • ►  Jan 29 (8)
      • ►  Jan 28 (6)
      • ►  Jan 27 (7)
      • ►  Jan 26 (15)
      • ►  Jan 25 (11)
      • ►  Jan 24 (18)
      • ►  Jan 23 (10)
      • ►  Jan 22 (13)
      • ►  Jan 21 (5)
      • ►  Jan 20 (9)
      • ►  Jan 19 (2)
      • ►  Jan 18 (6)
      • ►  Jan 17 (4)
      • ►  Jan 16 (5)
      • ►  Jan 15 (7)
      • ►  Jan 14 (7)
      • ►  Jan 13 (11)
      • ►  Jan 12 (4)
      • ►  Jan 11 (16)
      • ►  Jan 10 (11)
      • ►  Jan 09 (6)
      • ►  Jan 08 (5)
      • ►  Jan 07 (9)
      • ►  Jan 06 (6)
      • ►  Jan 05 (10)
      • ►  Jan 04 (14)
      • ►  Jan 03 (4)
      • ►  Jan 02 (14)
      • ►  Jan 01 (5)
  • ►  2024 (3069)
    • ►  December (227)
      • ►  Dec 31 (6)
      • ►  Dec 30 (4)
      • ►  Dec 29 (5)
      • ►  Dec 28 (4)
      • ►  Dec 27 (4)
      • ►  Dec 26 (5)
      • ►  Dec 25 (3)
      • ►  Dec 24 (5)
      • ►  Dec 23 (6)
      • ►  Dec 22 (8)
      • ►  Dec 21 (9)
      • ►  Dec 20 (15)
      • ►  Dec 19 (4)
      • ►  Dec 18 (13)
      • ►  Dec 17 (9)
      • ►  Dec 16 (14)
      • ►  Dec 15 (14)
      • ►  Dec 14 (12)
      • ►  Dec 13 (6)
      • ►  Dec 12 (10)
      • ►  Dec 11 (11)
      • ►  Dec 10 (7)
      • ►  Dec 09 (7)
      • ►  Dec 08 (6)
      • ►  Dec 07 (13)
      • ►  Dec 06 (4)
      • ►  Dec 05 (8)
      • ►  Dec 04 (3)
      • ►  Dec 03 (2)
      • ►  Dec 02 (6)
      • ►  Dec 01 (4)
    • ►  November (223)
      • ►  Nov 30 (6)
      • ►  Nov 29 (6)
      • ►  Nov 28 (6)
      • ►  Nov 27 (4)
      • ►  Nov 26 (5)
      • ►  Nov 25 (12)
      • ►  Nov 24 (9)
      • ►  Nov 23 (9)
      • ►  Nov 22 (7)
      • ►  Nov 21 (8)
      • ►  Nov 20 (6)
      • ►  Nov 19 (5)
      • ►  Nov 18 (8)
      • ►  Nov 17 (7)
      • ►  Nov 16 (7)
      • ►  Nov 15 (8)
      • ►  Nov 14 (8)
      • ►  Nov 13 (5)
      • ►  Nov 12 (3)
      • ►  Nov 11 (7)
      • ►  Nov 10 (12)
      • ►  Nov 09 (6)
      • ►  Nov 08 (10)
      • ►  Nov 07 (8)
      • ►  Nov 06 (4)
      • ►  Nov 05 (2)
      • ►  Nov 04 (7)
      • ►  Nov 03 (19)
      • ►  Nov 02 (7)
      • ►  Nov 01 (12)
    • ►  October (231)
      • ►  Oct 31 (5)
      • ►  Oct 30 (9)
      • ►  Oct 29 (13)
      • ►  Oct 28 (11)
      • ►  Oct 27 (13)
      • ►  Oct 26 (11)
      • ►  Oct 25 (11)
      • ►  Oct 24 (8)
      • ►  Oct 23 (8)
      • ►  Oct 22 (1)
      • ►  Oct 21 (8)
      • ►  Oct 20 (2)
      • ►  Oct 17 (5)
      • ►  Oct 16 (8)
      • ►  Oct 15 (14)
      • ►  Oct 14 (15)
      • ►  Oct 13 (11)
      • ►  Oct 12 (7)
      • ►  Oct 11 (8)
      • ►  Oct 10 (4)
      • ►  Oct 09 (11)
      • ►  Oct 08 (3)
      • ►  Oct 07 (6)
      • ►  Oct 06 (3)
      • ►  Oct 05 (2)
      • ►  Oct 04 (5)
      • ►  Oct 03 (9)
      • ►  Oct 02 (8)
      • ►  Oct 01 (12)
    • ►  September (257)
      • ►  Sep 30 (3)
      • ►  Sep 29 (12)
      • ►  Sep 28 (16)
      • ►  Sep 27 (6)
      • ►  Sep 26 (2)
      • ►  Sep 25 (1)
      • ►  Sep 24 (3)
      • ►  Sep 23 (2)
      • ►  Sep 22 (6)
      • ►  Sep 21 (18)
      • ►  Sep 20 (5)
      • ►  Sep 19 (5)
      • ►  Sep 18 (2)
      • ►  Sep 17 (1)
      • ►  Sep 16 (4)
      • ►  Sep 15 (12)
      • ►  Sep 14 (4)
      • ►  Sep 13 (12)
      • ►  Sep 12 (6)
      • ►  Sep 11 (5)
      • ►  Sep 10 (4)
      • ►  Sep 09 (9)
      • ►  Sep 08 (12)
      • ►  Sep 07 (17)
      • ►  Sep 06 (13)
      • ►  Sep 05 (10)
      • ►  Sep 04 (10)
      • ►  Sep 03 (18)
      • ►  Sep 02 (20)
      • ►  Sep 01 (19)
    • ►  August (338)
      • ►  Aug 31 (16)
      • ►  Aug 30 (17)
      • ►  Aug 29 (11)
      • ►  Aug 28 (15)
      • ►  Aug 27 (16)
      • ►  Aug 26 (7)
      • ►  Aug 25 (7)
      • ►  Aug 24 (11)
      • ►  Aug 23 (9)
      • ►  Aug 22 (11)
      • ►  Aug 21 (8)
      • ►  Aug 20 (14)
      • ►  Aug 19 (9)
      • ►  Aug 18 (7)
      • ►  Aug 17 (3)
      • ►  Aug 16 (13)
      • ►  Aug 15 (7)
      • ►  Aug 14 (12)
      • ►  Aug 13 (12)
      • ►  Aug 12 (15)
      • ►  Aug 11 (13)
      • ►  Aug 10 (12)
      • ►  Aug 09 (17)
      • ►  Aug 08 (13)
      • ►  Aug 07 (8)
      • ►  Aug 06 (8)
      • ►  Aug 05 (17)
      • ►  Aug 04 (4)
      • ►  Aug 03 (7)
      • ►  Aug 02 (13)
      • ►  Aug 01 (6)
    • ►  July (305)
      • ►  Jul 31 (7)
      • ►  Jul 30 (14)
      • ►  Jul 29 (11)
      • ►  Jul 28 (17)
      • ►  Jul 27 (12)
      • ►  Jul 26 (13)
      • ►  Jul 25 (12)
      • ►  Jul 24 (4)
      • ►  Jul 23 (15)
      • ►  Jul 22 (8)
      • ►  Jul 21 (8)
      • ►  Jul 20 (11)
      • ►  Jul 19 (13)
      • ►  Jul 18 (5)
      • ►  Jul 17 (4)
      • ►  Jul 16 (7)
      • ►  Jul 15 (12)
      • ►  Jul 14 (12)
      • ►  Jul 13 (4)
      • ►  Jul 12 (11)
      • ►  Jul 11 (14)
      • ►  Jul 10 (10)
      • ►  Jul 09 (14)
      • ►  Jul 08 (10)
      • ►  Jul 07 (3)
      • ►  Jul 06 (9)
      • ►  Jul 05 (13)
      • ►  Jul 04 (9)
      • ►  Jul 03 (8)
      • ►  Jul 02 (8)
      • ►  Jul 01 (7)
    • ►  June (217)
      • ►  Jun 30 (5)
      • ►  Jun 29 (7)
      • ►  Jun 28 (6)
      • ►  Jun 27 (4)
      • ►  Jun 26 (4)
      • ►  Jun 25 (8)
      • ►  Jun 24 (9)
      • ►  Jun 23 (5)
      • ►  Jun 22 (5)
      • ►  Jun 21 (4)
      • ►  Jun 20 (4)
      • ►  Jun 19 (7)
      • ►  Jun 18 (10)
      • ►  Jun 17 (4)
      • ►  Jun 16 (10)
      • ►  Jun 15 (10)
      • ►  Jun 14 (11)
      • ►  Jun 13 (14)
      • ►  Jun 12 (9)
      • ►  Jun 11 (8)
      • ►  Jun 10 (6)
      • ►  Jun 09 (9)
      • ►  Jun 08 (14)
      • ►  Jun 07 (2)
      • ►  Jun 06 (1)
      • ►  Jun 05 (2)
      • ►  Jun 04 (11)
      • ►  Jun 03 (3)
      • ►  Jun 02 (15)
      • ►  Jun 01 (10)
    • ►  May (166)
      • ►  May 31 (3)
      • ►  May 30 (2)
      • ►  May 29 (6)
      • ►  May 28 (5)
      • ►  May 27 (9)
      • ►  May 26 (6)
      • ►  May 25 (3)
      • ►  May 24 (6)
      • ►  May 23 (6)
      • ►  May 22 (6)
      • ►  May 21 (8)
      • ►  May 20 (2)
      • ►  May 19 (5)
      • ►  May 18 (5)
      • ►  May 17 (3)
      • ►  May 16 (5)
      • ►  May 15 (6)
      • ►  May 14 (4)
      • ►  May 13 (4)
      • ►  May 12 (9)
      • ►  May 11 (12)
      • ►  May 10 (4)
      • ►  May 09 (7)
      • ►  May 08 (5)
      • ►  May 07 (8)
      • ►  May 06 (10)
      • ►  May 05 (2)
      • ►  May 04 (4)
      • ►  May 03 (2)
      • ►  May 02 (6)
      • ►  May 01 (3)
    • ►  April (275)
      • ►  Apr 29 (2)
      • ►  Apr 28 (8)
      • ►  Apr 27 (10)
      • ►  Apr 26 (11)
      • ►  Apr 25 (9)
      • ►  Apr 24 (7)
      • ►  Apr 23 (5)
      • ►  Apr 22 (8)
      • ►  Apr 21 (9)
      • ►  Apr 20 (8)
      • ►  Apr 19 (4)
      • ►  Apr 18 (9)
      • ►  Apr 17 (11)
      • ►  Apr 16 (15)
      • ►  Apr 15 (12)
      • ►  Apr 14 (15)
      • ►  Apr 13 (14)
      • ►  Apr 12 (15)
      • ►  Apr 11 (12)
      • ►  Apr 10 (14)
      • ►  Apr 09 (6)
      • ►  Apr 08 (16)
      • ►  Apr 07 (4)
      • ►  Apr 06 (9)
      • ►  Apr 05 (13)
      • ►  Apr 04 (8)
      • ►  Apr 03 (12)
      • ►  Apr 02 (5)
      • ►  Apr 01 (4)
    • ►  March (200)
      • ►  Mar 31 (6)
      • ►  Mar 30 (12)
      • ►  Mar 29 (9)
      • ►  Mar 28 (11)
      • ►  Mar 27 (13)
      • ►  Mar 26 (8)
      • ►  Mar 25 (9)
      • ►  Mar 24 (3)
      • ►  Mar 23 (7)
      • ►  Mar 22 (3)
      • ►  Mar 21 (16)
      • ►  Mar 20 (2)
      • ►  Mar 19 (7)
      • ►  Mar 18 (6)
      • ►  Mar 17 (12)
      • ►  Mar 16 (9)
      • ►  Mar 15 (10)
      • ►  Mar 14 (2)
      • ►  Mar 13 (8)
      • ►  Mar 12 (1)
      • ►  Mar 10 (4)
      • ►  Mar 09 (2)
      • ►  Mar 08 (1)
      • ►  Mar 07 (4)
      • ►  Mar 06 (6)
      • ►  Mar 05 (11)
      • ►  Mar 04 (9)
      • ►  Mar 02 (8)
      • ►  Mar 01 (1)
    • ►  February (220)
      • ►  Feb 29 (6)
      • ►  Feb 28 (1)
      • ►  Feb 27 (4)
      • ►  Feb 26 (6)
      • ►  Feb 25 (7)
      • ►  Feb 24 (4)
      • ►  Feb 23 (5)
      • ►  Feb 22 (7)
      • ►  Feb 20 (15)
      • ►  Feb 19 (4)
      • ►  Feb 18 (13)
      • ►  Feb 17 (4)
      • ►  Feb 16 (5)
      • ►  Feb 15 (10)
      • ►  Feb 14 (9)
      • ►  Feb 13 (17)
      • ►  Feb 12 (9)
      • ►  Feb 11 (10)
      • ►  Feb 10 (18)
      • ►  Feb 09 (5)
      • ►  Feb 08 (9)
      • ►  Feb 07 (11)
      • ►  Feb 06 (6)
      • ►  Feb 05 (10)
      • ►  Feb 04 (4)
      • ►  Feb 03 (5)
      • ►  Feb 02 (8)
      • ►  Feb 01 (8)
    • ►  January (410)
      • ►  Jan 31 (13)
      • ►  Jan 30 (11)
      • ►  Jan 29 (14)
      • ►  Jan 28 (11)
      • ►  Jan 27 (20)
      • ►  Jan 26 (22)
      • ►  Jan 25 (16)
      • ►  Jan 24 (14)
      • ►  Jan 23 (18)
      • ►  Jan 22 (15)
      • ►  Jan 21 (11)
      • ►  Jan 20 (16)
      • ►  Jan 19 (5)
      • ►  Jan 18 (11)
      • ►  Jan 17 (11)
      • ►  Jan 16 (8)
      • ►  Jan 15 (27)
      • ►  Jan 14 (12)
      • ►  Jan 13 (16)
      • ►  Jan 12 (4)
      • ►  Jan 11 (8)
      • ►  Jan 10 (7)
      • ►  Jan 09 (9)
      • ►  Jan 08 (10)
      • ►  Jan 07 (10)
      • ►  Jan 06 (13)
      • ►  Jan 05 (18)
      • ►  Jan 04 (9)
      • ►  Jan 03 (20)
      • ►  Jan 02 (14)
      • ►  Jan 01 (17)
  • ▼  2023 (4333)
    • ►  December (314)
      • ►  Dec 31 (10)
      • ►  Dec 30 (18)
      • ►  Dec 29 (17)
      • ►  Dec 28 (8)
      • ►  Dec 27 (1)
      • ►  Dec 26 (14)
      • ►  Dec 25 (19)
      • ►  Dec 24 (20)
      • ►  Dec 23 (12)
      • ►  Dec 22 (12)
      • ►  Dec 21 (4)
      • ►  Dec 20 (18)
      • ►  Dec 19 (9)
      • ►  Dec 18 (5)
      • ►  Dec 17 (6)
      • ►  Dec 16 (17)
      • ►  Dec 15 (5)
      • ►  Dec 14 (16)
      • ►  Dec 13 (10)
      • ►  Dec 12 (7)
      • ►  Dec 11 (2)
      • ►  Dec 10 (7)
      • ►  Dec 09 (3)
      • ►  Dec 08 (5)
      • ►  Dec 07 (5)
      • ►  Dec 06 (16)
      • ►  Dec 05 (13)
      • ►  Dec 04 (11)
      • ►  Dec 03 (8)
      • ►  Dec 02 (7)
      • ►  Dec 01 (9)
    • ►  November (353)
      • ►  Nov 30 (10)
      • ►  Nov 29 (8)
      • ►  Nov 28 (7)
      • ►  Nov 27 (13)
      • ►  Nov 26 (7)
      • ►  Nov 25 (4)
      • ►  Nov 23 (11)
      • ►  Nov 22 (6)
      • ►  Nov 21 (7)
      • ►  Nov 20 (6)
      • ►  Nov 19 (5)
      • ►  Nov 18 (13)
      • ►  Nov 17 (10)
      • ►  Nov 16 (2)
      • ►  Nov 15 (16)
      • ►  Nov 14 (21)
      • ►  Nov 13 (14)
      • ►  Nov 12 (12)
      • ►  Nov 11 (19)
      • ►  Nov 10 (11)
      • ►  Nov 09 (24)
      • ►  Nov 08 (8)
      • ►  Nov 07 (11)
      • ►  Nov 06 (13)
      • ►  Nov 05 (18)
      • ►  Nov 04 (9)
      • ►  Nov 03 (21)
      • ►  Nov 02 (25)
      • ►  Nov 01 (22)
    • ►  October (549)
      • ►  Oct 31 (23)
      • ►  Oct 30 (19)
      • ►  Oct 29 (22)
      • ►  Oct 28 (30)
      • ►  Oct 27 (24)
      • ►  Oct 26 (28)
      • ►  Oct 25 (24)
      • ►  Oct 24 (20)
      • ►  Oct 23 (4)
      • ►  Oct 22 (24)
      • ►  Oct 21 (20)
      • ►  Oct 20 (17)
      • ►  Oct 19 (14)
      • ►  Oct 18 (14)
      • ►  Oct 17 (19)
      • ►  Oct 16 (12)
      • ►  Oct 15 (4)
      • ►  Oct 14 (23)
      • ►  Oct 13 (21)
      • ►  Oct 12 (22)
      • ►  Oct 11 (22)
      • ►  Oct 10 (11)
      • ►  Oct 09 (12)
      • ►  Oct 08 (19)
      • ►  Oct 07 (16)
      • ►  Oct 06 (19)
      • ►  Oct 05 (20)
      • ►  Oct 04 (11)
      • ►  Oct 03 (15)
      • ►  Oct 02 (11)
      • ►  Oct 01 (9)
    • ►  September (478)
      • ►  Sep 30 (25)
      • ►  Sep 29 (19)
      • ►  Sep 28 (28)
      • ►  Sep 27 (17)
      • ►  Sep 26 (21)
      • ►  Sep 25 (21)
      • ►  Sep 24 (6)
      • ►  Sep 23 (13)
      • ►  Sep 22 (6)
      • ►  Sep 21 (11)
      • ►  Sep 20 (9)
      • ►  Sep 19 (4)
      • ►  Sep 18 (6)
      • ►  Sep 17 (4)
      • ►  Sep 16 (11)
      • ►  Sep 15 (13)
      • ►  Sep 14 (22)
      • ►  Sep 13 (9)
      • ►  Sep 12 (11)
      • ►  Sep 11 (13)
      • ►  Sep 10 (25)
      • ►  Sep 09 (26)
      • ►  Sep 08 (23)
      • ►  Sep 07 (20)
      • ►  Sep 06 (27)
      • ►  Sep 05 (20)
      • ►  Sep 04 (18)
      • ►  Sep 03 (11)
      • ►  Sep 02 (24)
      • ►  Sep 01 (15)
    • ►  August (464)
      • ►  Aug 31 (20)
      • ►  Aug 30 (24)
      • ►  Aug 29 (10)
      • ►  Aug 28 (17)
      • ►  Aug 27 (15)
      • ►  Aug 26 (20)
      • ►  Aug 25 (12)
      • ►  Aug 24 (8)
      • ►  Aug 23 (16)
      • ►  Aug 22 (12)
      • ►  Aug 21 (21)
      • ►  Aug 20 (18)
      • ►  Aug 19 (10)
      • ►  Aug 18 (19)
      • ►  Aug 17 (14)
      • ►  Aug 16 (15)
      • ►  Aug 15 (22)
      • ►  Aug 14 (22)
      • ►  Aug 13 (11)
      • ►  Aug 12 (18)
      • ►  Aug 11 (15)
      • ►  Aug 10 (15)
      • ►  Aug 09 (22)
      • ►  Aug 08 (19)
      • ►  Aug 07 (24)
      • ►  Aug 06 (17)
      • ►  Aug 05 (3)
      • ►  Aug 04 (7)
      • ►  Aug 03 (2)
      • ►  Aug 02 (6)
      • ►  Aug 01 (10)
    • ►  July (359)
      • ►  Jul 31 (21)
      • ►  Jul 30 (5)
      • ►  Jul 29 (15)
      • ►  Jul 28 (10)
      • ►  Jul 27 (12)
      • ►  Jul 26 (12)
      • ►  Jul 25 (2)
      • ►  Jul 23 (17)
      • ►  Jul 22 (5)
      • ►  Jul 21 (15)
      • ►  Jul 20 (9)
      • ►  Jul 19 (11)
      • ►  Jul 18 (24)
      • ►  Jul 17 (10)
      • ►  Jul 16 (12)
      • ►  Jul 15 (6)
      • ►  Jul 14 (10)
      • ►  Jul 13 (7)
      • ►  Jul 12 (14)
      • ►  Jul 11 (14)
      • ►  Jul 10 (8)
      • ►  Jul 09 (8)
      • ►  Jul 08 (10)
      • ►  Jul 07 (12)
      • ►  Jul 06 (18)
      • ►  Jul 05 (19)
      • ►  Jul 04 (8)
      • ►  Jul 03 (17)
      • ►  Jul 02 (9)
      • ►  Jul 01 (19)
    • ►  June (397)
      • ►  Jun 30 (17)
      • ►  Jun 29 (15)
      • ►  Jun 28 (6)
      • ►  Jun 27 (8)
      • ►  Jun 26 (15)
      • ►  Jun 25 (18)
      • ►  Jun 24 (11)
      • ►  Jun 23 (23)
      • ►  Jun 22 (30)
      • ►  Jun 21 (20)
      • ►  Jun 20 (18)
      • ►  Jun 19 (18)
      • ►  Jun 18 (20)
      • ►  Jun 17 (16)
      • ►  Jun 16 (13)
      • ►  Jun 15 (8)
      • ►  Jun 14 (11)
      • ►  Jun 13 (7)
      • ►  Jun 12 (5)
      • ►  Jun 11 (4)
      • ►  Jun 10 (4)
      • ►  Jun 09 (4)
      • ►  Jun 08 (5)
      • ►  Jun 07 (3)
      • ►  Jun 06 (3)
      • ►  Jun 05 (21)
      • ►  Jun 04 (24)
      • ►  Jun 03 (12)
      • ►  Jun 02 (18)
      • ►  Jun 01 (20)
    • ►  May (395)
      • ►  May 31 (15)
      • ►  May 30 (25)
      • ►  May 29 (24)
      • ►  May 28 (26)
      • ►  May 27 (21)
      • ►  May 26 (23)
      • ►  May 25 (14)
      • ►  May 24 (7)
      • ►  May 23 (6)
      • ►  May 22 (4)
      • ►  May 21 (6)
      • ►  May 20 (2)
      • ►  May 19 (9)
      • ►  May 18 (8)
      • ►  May 17 (11)
      • ►  May 16 (8)
      • ►  May 15 (14)
      • ►  May 14 (15)
      • ►  May 13 (12)
      • ►  May 12 (10)
      • ►  May 11 (16)
      • ►  May 10 (10)
      • ►  May 09 (15)
      • ►  May 08 (12)
      • ►  May 07 (6)
      • ►  May 06 (8)
      • ►  May 05 (13)
      • ►  May 04 (14)
      • ►  May 03 (17)
      • ►  May 02 (12)
      • ►  May 01 (12)
    • ►  April (292)
      • ►  Apr 30 (13)
      • ►  Apr 29 (12)
      • ►  Apr 28 (19)
      • ►  Apr 27 (15)
      • ►  Apr 26 (18)
      • ►  Apr 25 (14)
      • ►  Apr 24 (24)
      • ►  Apr 23 (7)
      • ►  Apr 22 (21)
      • ►  Apr 21 (14)
      • ►  Apr 20 (10)
      • ►  Apr 19 (10)
      • ►  Apr 18 (12)
      • ►  Apr 17 (7)
      • ►  Apr 16 (8)
      • ►  Apr 15 (11)
      • ►  Apr 14 (9)
      • ►  Apr 13 (11)
      • ►  Apr 12 (12)
      • ►  Apr 11 (10)
      • ►  Apr 10 (13)
      • ►  Apr 09 (7)
      • ►  Apr 08 (10)
      • ►  Apr 07 (2)
      • ►  Apr 02 (1)
      • ►  Apr 01 (2)
    • ►  March (306)
      • ►  Mar 28 (1)
      • ►  Mar 27 (2)
      • ►  Mar 26 (3)
      • ►  Mar 25 (3)
      • ►  Mar 24 (5)
      • ►  Mar 22 (3)
      • ►  Mar 21 (3)
      • ►  Mar 20 (6)
      • ►  Mar 19 (17)
      • ►  Mar 18 (7)
      • ►  Mar 17 (23)
      • ►  Mar 16 (24)
      • ►  Mar 15 (18)
      • ►  Mar 14 (30)
      • ►  Mar 13 (24)
      • ►  Mar 12 (26)
      • ►  Mar 11 (13)
      • ►  Mar 10 (24)
      • ►  Mar 09 (22)
      • ►  Mar 08 (18)
      • ►  Mar 06 (9)
      • ►  Mar 05 (6)
      • ►  Mar 04 (7)
      • ►  Mar 03 (7)
      • ►  Mar 02 (3)
      • ►  Mar 01 (2)
    • ►  February (210)
      • ►  Feb 27 (1)
      • ►  Feb 26 (4)
      • ►  Feb 24 (12)
      • ►  Feb 23 (9)
      • ►  Feb 22 (9)
      • ►  Feb 21 (9)
      • ►  Feb 19 (4)
      • ►  Feb 16 (9)
      • ►  Feb 15 (2)
      • ►  Feb 14 (5)
      • ►  Feb 13 (1)
      • ►  Feb 12 (1)
      • ►  Feb 11 (13)
      • ►  Feb 10 (8)
      • ►  Feb 09 (12)
      • ►  Feb 08 (10)
      • ►  Feb 07 (19)
      • ►  Feb 06 (9)
      • ►  Feb 05 (18)
      • ►  Feb 04 (10)
      • ►  Feb 03 (13)
      • ►  Feb 02 (12)
      • ►  Feb 01 (20)
    • ▼  January (216)
      • ►  Jan 31 (8)
      • ►  Jan 30 (11)
      • ►  Jan 29 (13)
      • ►  Jan 28 (7)
      • ▼  Jan 27 (13)
        • DeepMind
        • Medical image computing
        • Medical algorithm
        • Clinical decision support system
        • Legal expert system
        • Legal informatics
        • Defeasible reasoning
        • Fallibilism
        • Externalism
        • Semiotics
        • Meaning (philosophy)
        • Individualism
        • Big History
      • ►  Jan 26 (13)
      • ►  Jan 25 (4)
      • ►  Jan 24 (2)
      • ►  Jan 23 (6)
      • ►  Jan 22 (7)
      • ►  Jan 21 (4)
      • ►  Jan 20 (5)
      • ►  Jan 19 (1)
      • ►  Jan 18 (3)
      • ►  Jan 17 (2)
      • ►  Jan 15 (1)
      • ►  Jan 14 (2)
      • ►  Jan 13 (13)
      • ►  Jan 12 (25)
      • ►  Jan 11 (13)
      • ►  Jan 10 (18)
      • ►  Jan 09 (18)
      • ►  Jan 07 (9)
      • ►  Jan 06 (2)
      • ►  Jan 05 (11)
      • ►  Jan 04 (3)
      • ►  Jan 03 (2)
  • ►  2022 (2401)
    • ►  December (115)
      • ►  Dec 31 (1)
      • ►  Dec 30 (2)
      • ►  Dec 10 (7)
      • ►  Dec 09 (8)
      • ►  Dec 08 (8)
      • ►  Dec 07 (12)
      • ►  Dec 06 (16)
      • ►  Dec 05 (11)
      • ►  Dec 04 (15)
      • ►  Dec 03 (15)
      • ►  Dec 02 (8)
      • ►  Dec 01 (12)
    • ►  November (498)
      • ►  Nov 30 (2)
      • ►  Nov 29 (11)
      • ►  Nov 28 (13)
      • ►  Nov 27 (1)
      • ►  Nov 26 (9)
      • ►  Nov 25 (13)
      • ►  Nov 24 (16)
      • ►  Nov 23 (8)
      • ►  Nov 22 (16)
      • ►  Nov 21 (21)
      • ►  Nov 20 (13)
      • ►  Nov 19 (24)
      • ►  Nov 18 (23)
      • ►  Nov 17 (28)
      • ►  Nov 16 (15)
      • ►  Nov 15 (22)
      • ►  Nov 14 (32)
      • ►  Nov 13 (20)
      • ►  Nov 12 (22)
      • ►  Nov 11 (30)
      • ►  Nov 10 (4)
      • ►  Nov 09 (21)
      • ►  Nov 08 (21)
      • ►  Nov 07 (21)
      • ►  Nov 06 (14)
      • ►  Nov 05 (19)
      • ►  Nov 04 (17)
      • ►  Nov 03 (14)
      • ►  Nov 02 (12)
      • ►  Nov 01 (16)
    • ►  October (272)
      • ►  Oct 31 (14)
      • ►  Oct 30 (12)
      • ►  Oct 29 (13)
      • ►  Oct 28 (9)
      • ►  Oct 27 (10)
      • ►  Oct 26 (6)
      • ►  Oct 25 (15)
      • ►  Oct 24 (11)
      • ►  Oct 23 (12)
      • ►  Oct 22 (9)
      • ►  Oct 21 (5)
      • ►  Oct 19 (5)
      • ►  Oct 18 (8)
      • ►  Oct 17 (4)
      • ►  Oct 16 (4)
      • ►  Oct 15 (10)
      • ►  Oct 14 (6)
      • ►  Oct 13 (8)
      • ►  Oct 12 (9)
      • ►  Oct 11 (14)
      • ►  Oct 10 (15)
      • ►  Oct 09 (9)
      • ►  Oct 08 (12)
      • ►  Oct 07 (14)
      • ►  Oct 06 (7)
      • ►  Oct 05 (13)
      • ►  Oct 04 (8)
      • ►  Oct 03 (10)
    • ►  September (149)
      • ►  Sep 30 (4)
      • ►  Sep 29 (6)
      • ►  Sep 28 (4)
      • ►  Sep 27 (3)
      • ►  Sep 26 (6)
      • ►  Sep 25 (1)
      • ►  Sep 24 (1)
      • ►  Sep 23 (6)
      • ►  Sep 22 (1)
      • ►  Sep 21 (6)
      • ►  Sep 20 (5)
      • ►  Sep 19 (6)
      • ►  Sep 17 (5)
      • ►  Sep 16 (2)
      • ►  Sep 15 (4)
      • ►  Sep 14 (6)
      • ►  Sep 13 (3)
      • ►  Sep 12 (5)
      • ►  Sep 11 (5)
      • ►  Sep 10 (4)
      • ►  Sep 09 (11)
      • ►  Sep 08 (6)
      • ►  Sep 07 (7)
      • ►  Sep 06 (6)
      • ►  Sep 05 (8)
      • ►  Sep 04 (5)
      • ►  Sep 03 (12)
      • ►  Sep 02 (2)
      • ►  Sep 01 (9)
    • ►  August (231)
      • ►  Aug 31 (7)
      • ►  Aug 30 (9)
      • ►  Aug 29 (8)
      • ►  Aug 28 (10)
      • ►  Aug 27 (6)
      • ►  Aug 26 (10)
      • ►  Aug 25 (9)
      • ►  Aug 24 (8)
      • ►  Aug 23 (12)
      • ►  Aug 22 (6)
      • ►  Aug 21 (4)
      • ►  Aug 20 (10)
      • ►  Aug 19 (12)
      • ►  Aug 18 (7)
      • ►  Aug 17 (10)
      • ►  Aug 16 (9)
      • ►  Aug 15 (10)
      • ►  Aug 14 (7)
      • ►  Aug 13 (9)
      • ►  Aug 12 (7)
      • ►  Aug 11 (8)
      • ►  Aug 10 (5)
      • ►  Aug 09 (7)
      • ►  Aug 08 (8)
      • ►  Aug 07 (9)
      • ►  Aug 06 (10)
      • ►  Aug 05 (10)
      • ►  Aug 04 (4)
    • ►  July (258)
      • ►  Jul 31 (1)
      • ►  Jul 30 (3)
      • ►  Jul 29 (3)
      • ►  Jul 28 (1)
      • ►  Jul 27 (5)
      • ►  Jul 26 (5)
      • ►  Jul 25 (4)
      • ►  Jul 24 (4)
      • ►  Jul 23 (6)
      • ►  Jul 22 (5)
      • ►  Jul 21 (2)
      • ►  Jul 20 (10)
      • ►  Jul 19 (5)
      • ►  Jul 18 (8)
      • ►  Jul 17 (1)
      • ►  Jul 15 (6)
      • ►  Jul 14 (11)
      • ►  Jul 13 (9)
      • ►  Jul 12 (8)
      • ►  Jul 11 (17)
      • ►  Jul 10 (16)
      • ►  Jul 09 (14)
      • ►  Jul 08 (18)
      • ►  Jul 07 (12)
      • ►  Jul 06 (12)
      • ►  Jul 05 (17)
      • ►  Jul 04 (13)
      • ►  Jul 03 (15)
      • ►  Jul 02 (12)
      • ►  Jul 01 (15)
    • ►  June (133)
      • ►  Jun 30 (10)
      • ►  Jun 29 (9)
      • ►  Jun 28 (9)
      • ►  Jun 27 (9)
      • ►  Jun 26 (11)
      • ►  Jun 25 (12)
      • ►  Jun 24 (12)
      • ►  Jun 23 (10)
      • ►  Jun 22 (10)
      • ►  Jun 21 (4)
      • ►  Jun 20 (3)
      • ►  Jun 19 (8)
      • ►  Jun 18 (2)
      • ►  Jun 17 (2)
      • ►  Jun 15 (3)
      • ►  Jun 14 (1)
      • ►  Jun 13 (1)
      • ►  Jun 07 (1)
      • ►  Jun 04 (5)
      • ►  Jun 03 (2)
      • ►  Jun 02 (7)
      • ►  Jun 01 (2)
    • ►  May (168)
      • ►  May 31 (1)
      • ►  May 30 (2)
      • ►  May 29 (1)
      • ►  May 28 (1)
      • ►  May 26 (4)
      • ►  May 24 (1)
      • ►  May 23 (1)
      • ►  May 21 (3)
      • ►  May 20 (3)
      • ►  May 19 (2)
      • ►  May 18 (5)
      • ►  May 17 (3)
      • ►  May 16 (5)
      • ►  May 15 (11)
      • ►  May 14 (7)
      • ►  May 13 (8)
      • ►  May 12 (8)
      • ►  May 11 (7)
      • ►  May 10 (10)
      • ►  May 09 (11)
      • ►  May 08 (14)
      • ►  May 07 (7)
      • ►  May 06 (9)
      • ►  May 05 (6)
      • ►  May 04 (12)
      • ►  May 03 (10)
      • ►  May 02 (7)
      • ►  May 01 (9)
    • ►  April (59)
      • ►  Apr 30 (8)
      • ►  Apr 29 (11)
      • ►  Apr 28 (3)
      • ►  Apr 27 (5)
      • ►  Apr 26 (4)
      • ►  Apr 23 (1)
      • ►  Apr 22 (1)
      • ►  Apr 16 (2)
      • ►  Apr 15 (1)
      • ►  Apr 14 (2)
      • ►  Apr 13 (1)
      • ►  Apr 11 (2)
      • ►  Apr 09 (1)
      • ►  Apr 08 (4)
      • ►  Apr 07 (1)
      • ►  Apr 06 (4)
      • ►  Apr 05 (7)
      • ►  Apr 04 (1)
    • ►  March (114)
      • ►  Mar 27 (1)
      • ►  Mar 26 (8)
      • ►  Mar 25 (1)
      • ►  Mar 23 (4)
      • ►  Mar 22 (4)
      • ►  Mar 21 (2)
      • ►  Mar 20 (8)
      • ►  Mar 17 (4)
      • ►  Mar 16 (1)
      • ►  Mar 15 (8)
      • ►  Mar 14 (1)
      • ►  Mar 13 (4)
      • ►  Mar 12 (6)
      • ►  Mar 11 (4)
      • ►  Mar 10 (6)
      • ►  Mar 09 (6)
      • ►  Mar 08 (12)
      • ►  Mar 07 (5)
      • ►  Mar 06 (3)
      • ►  Mar 05 (4)
      • ►  Mar 04 (2)
      • ►  Mar 03 (6)
      • ►  Mar 02 (6)
      • ►  Mar 01 (8)
    • ►  February (136)
      • ►  Feb 28 (3)
      • ►  Feb 27 (3)
      • ►  Feb 26 (4)
      • ►  Feb 25 (1)
      • ►  Feb 24 (1)
      • ►  Feb 23 (4)
      • ►  Feb 22 (6)
      • ►  Feb 21 (3)
      • ►  Feb 19 (4)
      • ►  Feb 18 (2)
      • ►  Feb 17 (4)
      • ►  Feb 16 (5)
      • ►  Feb 15 (7)
      • ►  Feb 14 (5)
      • ►  Feb 13 (6)
      • ►  Feb 12 (3)
      • ►  Feb 11 (7)
      • ►  Feb 10 (5)
      • ►  Feb 09 (4)
      • ►  Feb 08 (3)
      • ►  Feb 07 (2)
      • ►  Feb 06 (5)
      • ►  Feb 05 (6)
      • ►  Feb 04 (4)
      • ►  Feb 03 (11)
      • ►  Feb 02 (13)
      • ►  Feb 01 (15)
    • ►  January (268)
      • ►  Jan 31 (16)
      • ►  Jan 30 (21)
      • ►  Jan 29 (11)
      • ►  Jan 28 (14)
      • ►  Jan 27 (11)
      • ►  Jan 26 (14)
      • ►  Jan 25 (5)
      • ►  Jan 23 (1)
      • ►  Jan 22 (2)
      • ►  Jan 19 (2)
      • ►  Jan 17 (9)
      • ►  Jan 16 (3)
      • ►  Jan 14 (14)
      • ►  Jan 13 (5)
      • ►  Jan 12 (6)
      • ►  Jan 11 (8)
      • ►  Jan 10 (13)
      • ►  Jan 09 (4)
      • ►  Jan 08 (14)
      • ►  Jan 07 (9)
      • ►  Jan 06 (10)
      • ►  Jan 05 (15)
      • ►  Jan 04 (13)
      • ►  Jan 03 (14)
      • ►  Jan 02 (19)
      • ►  Jan 01 (15)
  • ►  2021 (3238)
    • ►  December (507)
      • ►  Dec 31 (10)
      • ►  Dec 30 (9)
      • ►  Dec 29 (14)
      • ►  Dec 28 (11)
      • ►  Dec 27 (18)
      • ►  Dec 26 (12)
      • ►  Dec 25 (18)
      • ►  Dec 24 (13)
      • ►  Dec 23 (13)
      • ►  Dec 22 (9)
      • ►  Dec 21 (6)
      • ►  Dec 20 (15)
      • ►  Dec 19 (12)
      • ►  Dec 18 (11)
      • ►  Dec 17 (19)
      • ►  Dec 16 (13)
      • ►  Dec 15 (22)
      • ►  Dec 14 (25)
      • ►  Dec 13 (23)
      • ►  Dec 12 (21)
      • ►  Dec 11 (21)
      • ►  Dec 10 (22)
      • ►  Dec 09 (18)
      • ►  Dec 08 (23)
      • ►  Dec 07 (25)
      • ►  Dec 06 (19)
      • ►  Dec 05 (11)
      • ►  Dec 04 (20)
      • ►  Dec 03 (19)
      • ►  Dec 02 (25)
      • ►  Dec 01 (10)
    • ►  November (305)
      • ►  Nov 30 (16)
      • ►  Nov 29 (20)
      • ►  Nov 28 (11)
      • ►  Nov 27 (16)
      • ►  Nov 26 (17)
      • ►  Nov 25 (20)
      • ►  Nov 24 (14)
      • ►  Nov 23 (15)
      • ►  Nov 22 (16)
      • ►  Nov 21 (16)
      • ►  Nov 20 (16)
      • ►  Nov 19 (11)
      • ►  Nov 18 (12)
      • ►  Nov 17 (10)
      • ►  Nov 16 (13)
      • ►  Nov 15 (9)
      • ►  Nov 14 (6)
      • ►  Nov 13 (5)
      • ►  Nov 12 (10)
      • ►  Nov 11 (3)
      • ►  Nov 10 (6)
      • ►  Nov 09 (7)
      • ►  Nov 08 (2)
      • ►  Nov 07 (1)
      • ►  Nov 06 (5)
      • ►  Nov 05 (4)
      • ►  Nov 04 (2)
      • ►  Nov 03 (5)
      • ►  Nov 02 (3)
      • ►  Nov 01 (14)
    • ►  October (238)
      • ►  Oct 31 (16)
      • ►  Oct 30 (6)
      • ►  Oct 29 (13)
      • ►  Oct 28 (16)
      • ►  Oct 27 (10)
      • ►  Oct 26 (8)
      • ►  Oct 25 (8)
      • ►  Oct 24 (5)
      • ►  Oct 23 (11)
      • ►  Oct 22 (5)
      • ►  Oct 21 (12)
      • ►  Oct 20 (4)
      • ►  Oct 19 (2)
      • ►  Oct 18 (2)
      • ►  Oct 17 (2)
      • ►  Oct 16 (1)
      • ►  Oct 15 (4)
      • ►  Oct 12 (2)
      • ►  Oct 11 (4)
      • ►  Oct 10 (9)
      • ►  Oct 09 (13)
      • ►  Oct 08 (4)
      • ►  Oct 07 (6)
      • ►  Oct 06 (6)
      • ►  Oct 05 (9)
      • ►  Oct 04 (12)
      • ►  Oct 03 (12)
      • ►  Oct 02 (20)
      • ►  Oct 01 (16)
    • ►  September (358)
      • ►  Sep 30 (16)
      • ►  Sep 29 (18)
      • ►  Sep 28 (10)
      • ►  Sep 27 (17)
      • ►  Sep 26 (11)
      • ►  Sep 25 (15)
      • ►  Sep 24 (11)
      • ►  Sep 23 (12)
      • ►  Sep 22 (7)
      • ►  Sep 21 (8)
      • ►  Sep 20 (19)
      • ►  Sep 19 (14)
      • ►  Sep 18 (16)
      • ►  Sep 17 (17)
      • ►  Sep 16 (20)
      • ►  Sep 15 (17)
      • ►  Sep 14 (8)
      • ►  Sep 13 (19)
      • ►  Sep 12 (13)
      • ►  Sep 11 (11)
      • ►  Sep 10 (10)
      • ►  Sep 09 (13)
      • ►  Sep 08 (8)
      • ►  Sep 07 (9)
      • ►  Sep 06 (6)
      • ►  Sep 05 (10)
      • ►  Sep 04 (8)
      • ►  Sep 03 (6)
      • ►  Sep 02 (4)
      • ►  Sep 01 (5)
    • ►  August (213)
      • ►  Aug 31 (6)
      • ►  Aug 30 (10)
      • ►  Aug 29 (4)
      • ►  Aug 26 (3)
      • ►  Aug 25 (2)
      • ►  Aug 23 (4)
      • ►  Aug 22 (2)
      • ►  Aug 21 (10)
      • ►  Aug 20 (12)
      • ►  Aug 19 (10)
      • ►  Aug 18 (13)
      • ►  Aug 17 (8)
      • ►  Aug 16 (12)
      • ►  Aug 15 (15)
      • ►  Aug 14 (12)
      • ►  Aug 13 (10)
      • ►  Aug 12 (3)
      • ►  Aug 11 (7)
      • ►  Aug 10 (7)
      • ►  Aug 09 (5)
      • ►  Aug 08 (7)
      • ►  Aug 07 (9)
      • ►  Aug 06 (9)
      • ►  Aug 05 (6)
      • ►  Aug 04 (5)
      • ►  Aug 03 (4)
      • ►  Aug 02 (6)
      • ►  Aug 01 (12)
    • ►  July (213)
      • ►  Jul 31 (18)
      • ►  Jul 30 (7)
      • ►  Jul 29 (17)
      • ►  Jul 28 (16)
      • ►  Jul 27 (6)
      • ►  Jul 25 (1)
      • ►  Jul 24 (7)
      • ►  Jul 23 (5)
      • ►  Jul 22 (13)
      • ►  Jul 21 (3)
      • ►  Jul 20 (8)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (6)
      • ►  Jul 16 (16)
      • ►  Jul 15 (7)
      • ►  Jul 14 (8)
      • ►  Jul 13 (8)
      • ►  Jul 12 (5)
      • ►  Jul 11 (1)
      • ►  Jul 09 (4)
      • ►  Jul 08 (3)
      • ►  Jul 07 (1)
      • ►  Jul 05 (1)
      • ►  Jul 04 (2)
      • ►  Jul 03 (8)
      • ►  Jul 02 (5)
      • ►  Jul 01 (17)
    • ►  June (292)
      • ►  Jun 30 (13)
      • ►  Jun 29 (19)
      • ►  Jun 28 (17)
      • ►  Jun 27 (12)
      • ►  Jun 26 (27)
      • ►  Jun 25 (18)
      • ►  Jun 24 (11)
      • ►  Jun 23 (12)
      • ►  Jun 22 (11)
      • ►  Jun 21 (16)
      • ►  Jun 20 (7)
      • ►  Jun 19 (9)
      • ►  Jun 18 (14)
      • ►  Jun 17 (7)
      • ►  Jun 16 (11)
      • ►  Jun 15 (9)
      • ►  Jun 14 (12)
      • ►  Jun 13 (2)
      • ►  Jun 12 (4)
      • ►  Jun 11 (8)
      • ►  Jun 10 (6)
      • ►  Jun 09 (2)
      • ►  Jun 08 (5)
      • ►  Jun 07 (4)
      • ►  Jun 06 (3)
      • ►  Jun 05 (4)
      • ►  Jun 04 (4)
      • ►  Jun 03 (8)
      • ►  Jun 02 (6)
      • ►  Jun 01 (11)
    • ►  May (302)
      • ►  May 31 (14)
      • ►  May 30 (21)
      • ►  May 29 (11)
      • ►  May 28 (21)
      • ►  May 27 (8)
      • ►  May 26 (5)
      • ►  May 25 (11)
      • ►  May 24 (13)
      • ►  May 23 (5)
      • ►  May 22 (13)
      • ►  May 21 (8)
      • ►  May 20 (8)
      • ►  May 19 (8)
      • ►  May 18 (11)
      • ►  May 17 (12)
      • ►  May 16 (17)
      • ►  May 15 (13)
      • ►  May 14 (10)
      • ►  May 13 (8)
      • ►  May 12 (16)
      • ►  May 11 (11)
      • ►  May 10 (16)
      • ►  May 09 (9)
      • ►  May 08 (7)
      • ►  May 07 (5)
      • ►  May 06 (7)
      • ►  May 05 (1)
      • ►  May 04 (1)
      • ►  May 03 (3)
      • ►  May 02 (1)
      • ►  May 01 (8)
    • ►  April (398)
      • ►  Apr 30 (7)
      • ►  Apr 29 (6)
      • ►  Apr 28 (11)
      • ►  Apr 27 (5)
      • ►  Apr 26 (21)
      • ►  Apr 25 (18)
      • ►  Apr 24 (16)
      • ►  Apr 23 (21)
      • ►  Apr 22 (19)
      • ►  Apr 21 (14)
      • ►  Apr 20 (16)
      • ►  Apr 19 (25)
      • ►  Apr 18 (11)
      • ►  Apr 17 (3)
      • ►  Apr 16 (9)
      • ►  Apr 15 (8)
      • ►  Apr 14 (11)
      • ►  Apr 13 (19)
      • ►  Apr 12 (9)
      • ►  Apr 11 (15)
      • ►  Apr 10 (11)
      • ►  Apr 09 (14)
      • ►  Apr 08 (15)
      • ►  Apr 07 (15)
      • ►  Apr 06 (13)
      • ►  Apr 05 (12)
      • ►  Apr 04 (14)
      • ►  Apr 03 (17)
      • ►  Apr 02 (16)
      • ►  Apr 01 (7)
    • ►  March (330)
      • ►  Mar 31 (7)
      • ►  Mar 30 (8)
      • ►  Mar 29 (11)
      • ►  Mar 28 (16)
      • ►  Mar 27 (10)
      • ►  Mar 26 (12)
      • ►  Mar 25 (19)
      • ►  Mar 24 (14)
      • ►  Mar 23 (14)
      • ►  Mar 22 (11)
      • ►  Mar 21 (12)
      • ►  Mar 20 (14)
      • ►  Mar 19 (15)
      • ►  Mar 18 (17)
      • ►  Mar 17 (4)
      • ►  Mar 16 (12)
      • ►  Mar 15 (18)
      • ►  Mar 14 (9)
      • ►  Mar 13 (12)
      • ►  Mar 12 (12)
      • ►  Mar 11 (14)
      • ►  Mar 10 (7)
      • ►  Mar 09 (7)
      • ►  Mar 08 (11)
      • ►  Mar 07 (9)
      • ►  Mar 06 (7)
      • ►  Mar 05 (9)
      • ►  Mar 04 (4)
      • ►  Mar 03 (5)
      • ►  Mar 02 (5)
      • ►  Mar 01 (5)
    • ►  February (76)
      • ►  Feb 28 (8)
      • ►  Feb 27 (11)
      • ►  Feb 26 (4)
      • ►  Feb 25 (4)
      • ►  Feb 24 (1)
      • ►  Feb 23 (3)
      • ►  Feb 22 (2)
      • ►  Feb 21 (1)
      • ►  Feb 20 (3)
      • ►  Feb 19 (3)
      • ►  Feb 18 (4)
      • ►  Feb 17 (8)
      • ►  Feb 16 (2)
      • ►  Feb 15 (6)
      • ►  Feb 14 (1)
      • ►  Feb 13 (3)
      • ►  Feb 12 (5)
      • ►  Feb 10 (2)
      • ►  Feb 08 (1)
      • ►  Feb 06 (1)
      • ►  Feb 05 (2)
      • ►  Feb 02 (1)
    • ►  January (6)
      • ►  Jan 31 (1)
      • ►  Jan 24 (1)
      • ►  Jan 15 (1)
      • ►  Jan 14 (3)
  • ►  2020 (2688)
    • ►  December (67)
      • ►  Dec 29 (1)
      • ►  Dec 28 (3)
      • ►  Dec 27 (1)
      • ►  Dec 23 (5)
      • ►  Dec 21 (4)
      • ►  Dec 19 (1)
      • ►  Dec 18 (2)
      • ►  Dec 11 (1)
      • ►  Dec 10 (6)
      • ►  Dec 09 (15)
      • ►  Dec 08 (8)
      • ►  Dec 07 (10)
      • ►  Dec 06 (5)
      • ►  Dec 05 (5)
    • ►  November (141)
      • ►  Nov 30 (5)
      • ►  Nov 29 (5)
      • ►  Nov 28 (1)
      • ►  Nov 27 (8)
      • ►  Nov 26 (20)
      • ►  Nov 25 (9)
      • ►  Nov 24 (11)
      • ►  Nov 23 (9)
      • ►  Nov 22 (11)
      • ►  Nov 21 (12)
      • ►  Nov 20 (3)
      • ►  Nov 19 (10)
      • ►  Nov 18 (7)
      • ►  Nov 17 (8)
      • ►  Nov 16 (2)
      • ►  Nov 15 (4)
      • ►  Nov 14 (8)
      • ►  Nov 13 (4)
      • ►  Nov 12 (2)
      • ►  Nov 10 (1)
      • ►  Nov 02 (1)
    • ►  October (190)
      • ►  Oct 26 (1)
      • ►  Oct 25 (4)
      • ►  Oct 24 (19)
      • ►  Oct 23 (16)
      • ►  Oct 22 (2)
      • ►  Oct 21 (1)
      • ►  Oct 20 (1)
      • ►  Oct 16 (2)
      • ►  Oct 11 (11)
      • ►  Oct 10 (8)
      • ►  Oct 09 (14)
      • ►  Oct 08 (18)
      • ►  Oct 07 (9)
      • ►  Oct 06 (17)
      • ►  Oct 05 (17)
      • ►  Oct 04 (4)
      • ►  Oct 03 (14)
      • ►  Oct 02 (13)
      • ►  Oct 01 (19)
    • ►  September (371)
      • ►  Sep 30 (12)
      • ►  Sep 29 (11)
      • ►  Sep 28 (14)
      • ►  Sep 27 (14)
      • ►  Sep 26 (13)
      • ►  Sep 25 (25)
      • ►  Sep 24 (30)
      • ►  Sep 23 (16)
      • ►  Sep 22 (11)
      • ►  Sep 21 (18)
      • ►  Sep 20 (16)
      • ►  Sep 19 (23)
      • ►  Sep 18 (22)
      • ►  Sep 17 (15)
      • ►  Sep 16 (11)
      • ►  Sep 15 (13)
      • ►  Sep 14 (9)
      • ►  Sep 13 (11)
      • ►  Sep 12 (9)
      • ►  Sep 11 (6)
      • ►  Sep 10 (1)
      • ►  Sep 09 (9)
      • ►  Sep 08 (14)
      • ►  Sep 07 (7)
      • ►  Sep 06 (13)
      • ►  Sep 05 (8)
      • ►  Sep 04 (6)
      • ►  Sep 03 (1)
      • ►  Sep 02 (3)
      • ►  Sep 01 (10)
    • ►  August (112)
      • ►  Aug 31 (12)
      • ►  Aug 30 (2)
      • ►  Aug 29 (7)
      • ►  Aug 28 (2)
      • ►  Aug 27 (1)
      • ►  Aug 26 (1)
      • ►  Aug 24 (2)
      • ►  Aug 23 (2)
      • ►  Aug 21 (3)
      • ►  Aug 20 (4)
      • ►  Aug 19 (8)
      • ►  Aug 18 (5)
      • ►  Aug 17 (4)
      • ►  Aug 16 (6)
      • ►  Aug 15 (4)
      • ►  Aug 14 (1)
      • ►  Aug 13 (2)
      • ►  Aug 12 (4)
      • ►  Aug 11 (5)
      • ►  Aug 10 (7)
      • ►  Aug 09 (8)
      • ►  Aug 08 (4)
      • ►  Aug 07 (1)
      • ►  Aug 06 (5)
      • ►  Aug 05 (2)
      • ►  Aug 04 (1)
      • ►  Aug 03 (4)
      • ►  Aug 02 (1)
      • ►  Aug 01 (4)
    • ►  July (227)
      • ►  Jul 30 (3)
      • ►  Jul 29 (6)
      • ►  Jul 28 (2)
      • ►  Jul 27 (1)
      • ►  Jul 26 (7)
      • ►  Jul 25 (3)
      • ►  Jul 24 (3)
      • ►  Jul 23 (14)
      • ►  Jul 22 (1)
      • ►  Jul 21 (12)
      • ►  Jul 20 (8)
      • ►  Jul 19 (10)
      • ►  Jul 18 (12)
      • ►  Jul 17 (4)
      • ►  Jul 16 (12)
      • ►  Jul 15 (12)
      • ►  Jul 14 (8)
      • ►  Jul 13 (13)
      • ►  Jul 12 (8)
      • ►  Jul 11 (14)
      • ►  Jul 10 (7)
      • ►  Jul 09 (9)
      • ►  Jul 08 (7)
      • ►  Jul 07 (10)
      • ►  Jul 06 (8)
      • ►  Jul 05 (8)
      • ►  Jul 04 (8)
      • ►  Jul 03 (6)
      • ►  Jul 02 (4)
      • ►  Jul 01 (7)
    • ►  June (243)
      • ►  Jun 30 (5)
      • ►  Jun 29 (3)
      • ►  Jun 28 (4)
      • ►  Jun 27 (6)
      • ►  Jun 26 (4)
      • ►  Jun 25 (2)
      • ►  Jun 24 (3)
      • ►  Jun 23 (5)
      • ►  Jun 22 (6)
      • ►  Jun 20 (5)
      • ►  Jun 19 (6)
      • ►  Jun 18 (5)
      • ►  Jun 17 (16)
      • ►  Jun 16 (17)
      • ►  Jun 15 (8)
      • ►  Jun 14 (11)
      • ►  Jun 13 (8)
      • ►  Jun 12 (11)
      • ►  Jun 11 (6)
      • ►  Jun 10 (15)
      • ►  Jun 09 (6)
      • ►  Jun 08 (20)
      • ►  Jun 07 (10)
      • ►  Jun 06 (11)
      • ►  Jun 05 (13)
      • ►  Jun 04 (12)
      • ►  Jun 03 (11)
      • ►  Jun 02 (6)
      • ►  Jun 01 (8)
    • ►  May (405)
      • ►  May 31 (8)
      • ►  May 30 (6)
      • ►  May 29 (16)
      • ►  May 28 (10)
      • ►  May 27 (15)
      • ►  May 26 (18)
      • ►  May 25 (14)
      • ►  May 24 (23)
      • ►  May 23 (15)
      • ►  May 22 (21)
      • ►  May 21 (13)
      • ►  May 20 (22)
      • ►  May 19 (25)
      • ►  May 18 (17)
      • ►  May 17 (21)
      • ►  May 16 (10)
      • ►  May 15 (12)
      • ►  May 14 (22)
      • ►  May 13 (13)
      • ►  May 12 (14)
      • ►  May 11 (10)
      • ►  May 10 (8)
      • ►  May 09 (15)
      • ►  May 08 (17)
      • ►  May 07 (1)
      • ►  May 06 (3)
      • ►  May 05 (11)
      • ►  May 04 (11)
      • ►  May 03 (7)
      • ►  May 02 (2)
      • ►  May 01 (5)
    • ►  April (183)
      • ►  Apr 30 (10)
      • ►  Apr 29 (6)
      • ►  Apr 28 (7)
      • ►  Apr 27 (9)
      • ►  Apr 26 (8)
      • ►  Apr 25 (10)
      • ►  Apr 24 (8)
      • ►  Apr 23 (10)
      • ►  Apr 22 (4)
      • ►  Apr 21 (10)
      • ►  Apr 20 (9)
      • ►  Apr 19 (10)
      • ►  Apr 18 (22)
      • ►  Apr 17 (8)
      • ►  Apr 16 (8)
      • ►  Apr 15 (5)
      • ►  Apr 14 (2)
      • ►  Apr 13 (4)
      • ►  Apr 12 (1)
      • ►  Apr 11 (7)
      • ►  Apr 10 (8)
      • ►  Apr 09 (1)
      • ►  Apr 07 (3)
      • ►  Apr 06 (1)
      • ►  Apr 03 (3)
      • ►  Apr 02 (3)
      • ►  Apr 01 (6)
    • ►  March (208)
      • ►  Mar 31 (10)
      • ►  Mar 30 (9)
      • ►  Mar 29 (4)
      • ►  Mar 28 (3)
      • ►  Mar 27 (11)
      • ►  Mar 26 (5)
      • ►  Mar 25 (5)
      • ►  Mar 24 (7)
      • ►  Mar 23 (5)
      • ►  Mar 22 (7)
      • ►  Mar 21 (7)
      • ►  Mar 20 (9)
      • ►  Mar 19 (8)
      • ►  Mar 18 (3)
      • ►  Mar 17 (1)
      • ►  Mar 16 (1)
      • ►  Mar 14 (5)
      • ►  Mar 13 (8)
      • ►  Mar 12 (11)
      • ►  Mar 11 (9)
      • ►  Mar 10 (6)
      • ►  Mar 09 (10)
      • ►  Mar 08 (8)
      • ►  Mar 07 (10)
      • ►  Mar 06 (7)
      • ►  Mar 05 (11)
      • ►  Mar 04 (15)
      • ►  Mar 03 (9)
      • ►  Mar 02 (4)
    • ►  February (255)
      • ►  Feb 28 (6)
      • ►  Feb 27 (7)
      • ►  Feb 26 (6)
      • ►  Feb 25 (5)
      • ►  Feb 24 (12)
      • ►  Feb 22 (9)
      • ►  Feb 21 (11)
      • ►  Feb 20 (9)
      • ►  Feb 19 (9)
      • ►  Feb 18 (4)
      • ►  Feb 17 (9)
      • ►  Feb 16 (9)
      • ►  Feb 15 (12)
      • ►  Feb 14 (15)
      • ►  Feb 13 (13)
      • ►  Feb 12 (10)
      • ►  Feb 11 (12)
      • ►  Feb 10 (14)
      • ►  Feb 09 (7)
      • ►  Feb 08 (8)
      • ►  Feb 07 (11)
      • ►  Feb 06 (8)
      • ►  Feb 05 (14)
      • ►  Feb 04 (7)
      • ►  Feb 03 (12)
      • ►  Feb 02 (12)
      • ►  Feb 01 (4)
    • ►  January (286)
      • ►  Jan 31 (10)
      • ►  Jan 30 (12)
      • ►  Jan 29 (10)
      • ►  Jan 28 (6)
      • ►  Jan 27 (11)
      • ►  Jan 26 (11)
      • ►  Jan 25 (11)
      • ►  Jan 24 (13)
      • ►  Jan 23 (17)
      • ►  Jan 22 (6)
      • ►  Jan 21 (10)
      • ►  Jan 20 (9)
      • ►  Jan 19 (12)
      • ►  Jan 18 (6)
      • ►  Jan 17 (11)
      • ►  Jan 16 (6)
      • ►  Jan 15 (7)
      • ►  Jan 14 (8)
      • ►  Jan 13 (10)
      • ►  Jan 12 (9)
      • ►  Jan 11 (1)
      • ►  Jan 10 (11)
      • ►  Jan 09 (9)
      • ►  Jan 08 (10)
      • ►  Jan 07 (13)
      • ►  Jan 06 (5)
      • ►  Jan 05 (11)
      • ►  Jan 04 (8)
      • ►  Jan 03 (6)
      • ►  Jan 02 (11)
      • ►  Jan 01 (6)
  • ►  2019 (3306)
    • ►  December (344)
      • ►  Dec 31 (13)
      • ►  Dec 30 (9)
      • ►  Dec 29 (10)
      • ►  Dec 28 (15)
      • ►  Dec 27 (10)
      • ►  Dec 26 (6)
      • ►  Dec 25 (13)
      • ►  Dec 24 (10)
      • ►  Dec 23 (13)
      • ►  Dec 22 (9)
      • ►  Dec 21 (13)
      • ►  Dec 20 (14)
      • ►  Dec 19 (10)
      • ►  Dec 18 (12)
      • ►  Dec 17 (13)
      • ►  Dec 16 (16)
      • ►  Dec 15 (11)
      • ►  Dec 14 (19)
      • ►  Dec 13 (10)
      • ►  Dec 12 (15)
      • ►  Dec 11 (10)
      • ►  Dec 10 (9)
      • ►  Dec 09 (12)
      • ►  Dec 08 (9)
      • ►  Dec 07 (10)
      • ►  Dec 06 (7)
      • ►  Dec 05 (10)
      • ►  Dec 04 (8)
      • ►  Dec 03 (11)
      • ►  Dec 02 (10)
      • ►  Dec 01 (7)
    • ►  November (197)
      • ►  Nov 30 (13)
      • ►  Nov 29 (14)
      • ►  Nov 28 (11)
      • ►  Nov 27 (9)
      • ►  Nov 26 (5)
      • ►  Nov 25 (3)
      • ►  Nov 24 (11)
      • ►  Nov 23 (2)
      • ►  Nov 22 (7)
      • ►  Nov 21 (4)
      • ►  Nov 20 (4)
      • ►  Nov 19 (2)
      • ►  Nov 18 (7)
      • ►  Nov 17 (3)
      • ►  Nov 16 (9)
      • ►  Nov 15 (1)
      • ►  Nov 14 (3)
      • ►  Nov 13 (14)
      • ►  Nov 12 (2)
      • ►  Nov 11 (5)
      • ►  Nov 10 (5)
      • ►  Nov 09 (4)
      • ►  Nov 08 (11)
      • ►  Nov 07 (3)
      • ►  Nov 06 (9)
      • ►  Nov 05 (7)
      • ►  Nov 04 (2)
      • ►  Nov 03 (7)
      • ►  Nov 02 (10)
      • ►  Nov 01 (10)
    • ►  October (154)
      • ►  Oct 31 (7)
      • ►  Oct 30 (8)
      • ►  Oct 29 (5)
      • ►  Oct 28 (12)
      • ►  Oct 27 (5)
      • ►  Oct 26 (12)
      • ►  Oct 25 (7)
      • ►  Oct 24 (7)
      • ►  Oct 23 (5)
      • ►  Oct 22 (14)
      • ►  Oct 21 (9)
      • ►  Oct 20 (8)
      • ►  Oct 19 (4)
      • ►  Oct 18 (2)
      • ►  Oct 17 (5)
      • ►  Oct 16 (3)
      • ►  Oct 15 (9)
      • ►  Oct 14 (7)
      • ►  Oct 13 (4)
      • ►  Oct 12 (5)
      • ►  Oct 10 (2)
      • ►  Oct 09 (10)
      • ►  Oct 07 (2)
      • ►  Oct 05 (1)
      • ►  Oct 02 (1)
    • ►  September (67)
      • ►  Sep 30 (3)
      • ►  Sep 29 (1)
      • ►  Sep 28 (2)
      • ►  Sep 27 (2)
      • ►  Sep 26 (4)
      • ►  Sep 25 (3)
      • ►  Sep 22 (3)
      • ►  Sep 21 (6)
      • ►  Sep 19 (1)
      • ►  Sep 18 (3)
      • ►  Sep 16 (3)
      • ►  Sep 15 (2)
      • ►  Sep 14 (4)
      • ►  Sep 13 (1)
      • ►  Sep 11 (1)
      • ►  Sep 09 (4)
      • ►  Sep 08 (4)
      • ►  Sep 07 (1)
      • ►  Sep 06 (6)
      • ►  Sep 04 (3)
      • ►  Sep 03 (6)
      • ►  Sep 01 (4)
    • ►  August (84)
      • ►  Aug 26 (2)
      • ►  Aug 25 (2)
      • ►  Aug 24 (2)
      • ►  Aug 23 (1)
      • ►  Aug 22 (3)
      • ►  Aug 21 (2)
      • ►  Aug 19 (1)
      • ►  Aug 18 (2)
      • ►  Aug 17 (1)
      • ►  Aug 14 (1)
      • ►  Aug 13 (1)
      • ►  Aug 12 (5)
      • ►  Aug 11 (4)
      • ►  Aug 10 (7)
      • ►  Aug 09 (2)
      • ►  Aug 08 (2)
      • ►  Aug 07 (5)
      • ►  Aug 06 (6)
      • ►  Aug 05 (3)
      • ►  Aug 04 (5)
      • ►  Aug 03 (9)
      • ►  Aug 02 (8)
      • ►  Aug 01 (10)
    • ►  July (217)
      • ►  Jul 31 (6)
      • ►  Jul 29 (10)
      • ►  Jul 28 (5)
      • ►  Jul 27 (10)
      • ►  Jul 25 (7)
      • ►  Jul 24 (11)
      • ►  Jul 23 (8)
      • ►  Jul 22 (4)
      • ►  Jul 21 (17)
      • ►  Jul 20 (7)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (7)
      • ►  Jul 16 (10)
      • ►  Jul 15 (6)
      • ►  Jul 14 (6)
      • ►  Jul 13 (15)
      • ►  Jul 12 (12)
      • ►  Jul 11 (3)
      • ►  Jul 10 (7)
      • ►  Jul 09 (2)
      • ►  Jul 08 (2)
      • ►  Jul 07 (7)
      • ►  Jul 06 (9)
      • ►  Jul 04 (11)
      • ►  Jul 03 (2)
      • ►  Jul 02 (4)
      • ►  Jul 01 (9)
    • ►  June (260)
      • ►  Jun 30 (7)
      • ►  Jun 29 (15)
      • ►  Jun 28 (4)
      • ►  Jun 27 (2)
      • ►  Jun 26 (6)
      • ►  Jun 25 (2)
      • ►  Jun 24 (10)
      • ►  Jun 23 (10)
      • ►  Jun 22 (8)
      • ►  Jun 21 (12)
      • ►  Jun 20 (8)
      • ►  Jun 19 (8)
      • ►  Jun 18 (12)
      • ►  Jun 17 (7)
      • ►  Jun 16 (7)
      • ►  Jun 15 (10)
      • ►  Jun 14 (11)
      • ►  Jun 13 (1)
      • ►  Jun 11 (2)
      • ►  Jun 10 (13)
      • ►  Jun 09 (16)
      • ►  Jun 08 (10)
      • ►  Jun 07 (16)
      • ►  Jun 06 (11)
      • ►  Jun 05 (17)
      • ►  Jun 04 (6)
      • ►  Jun 03 (13)
      • ►  Jun 02 (4)
      • ►  Jun 01 (12)
    • ►  May (426)
      • ►  May 31 (22)
      • ►  May 30 (14)
      • ►  May 29 (7)
      • ►  May 28 (16)
      • ►  May 27 (8)
      • ►  May 26 (9)
      • ►  May 25 (25)
      • ►  May 24 (10)
      • ►  May 23 (10)
      • ►  May 22 (13)
      • ►  May 21 (11)
      • ►  May 20 (16)
      • ►  May 19 (26)
      • ►  May 18 (8)
      • ►  May 17 (17)
      • ►  May 16 (11)
      • ►  May 15 (3)
      • ►  May 14 (17)
      • ►  May 13 (17)
      • ►  May 12 (14)
      • ►  May 11 (13)
      • ►  May 10 (18)
      • ►  May 09 (15)
      • ►  May 08 (12)
      • ►  May 07 (8)
      • ►  May 06 (12)
      • ►  May 05 (12)
      • ►  May 04 (13)
      • ►  May 03 (13)
      • ►  May 02 (16)
      • ►  May 01 (20)
    • ►  April (356)
      • ►  Apr 30 (9)
      • ►  Apr 29 (10)
      • ►  Apr 28 (11)
      • ►  Apr 27 (11)
      • ►  Apr 26 (15)
      • ►  Apr 25 (9)
      • ►  Apr 24 (12)
      • ►  Apr 23 (15)
      • ►  Apr 22 (12)
      • ►  Apr 21 (15)
      • ►  Apr 20 (13)
      • ►  Apr 19 (9)
      • ►  Apr 18 (14)
      • ►  Apr 17 (11)
      • ►  Apr 16 (8)
      • ►  Apr 15 (15)
      • ►  Apr 14 (6)
      • ►  Apr 13 (8)
      • ►  Apr 12 (10)
      • ►  Apr 11 (17)
      • ►  Apr 10 (12)
      • ►  Apr 09 (8)
      • ►  Apr 08 (13)
      • ►  Apr 07 (18)
      • ►  Apr 06 (11)
      • ►  Apr 05 (12)
      • ►  Apr 04 (16)
      • ►  Apr 03 (12)
      • ►  Apr 02 (12)
      • ►  Apr 01 (12)
    • ►  March (419)
      • ►  Mar 31 (13)
      • ►  Mar 30 (17)
      • ►  Mar 29 (13)
      • ►  Mar 28 (14)
      • ►  Mar 27 (17)
      • ►  Mar 26 (12)
      • ►  Mar 25 (9)
      • ►  Mar 24 (13)
      • ►  Mar 23 (13)
      • ►  Mar 22 (12)
      • ►  Mar 21 (12)
      • ►  Mar 20 (12)
      • ►  Mar 19 (12)
      • ►  Mar 18 (12)
      • ►  Mar 17 (12)
      • ►  Mar 16 (17)
      • ►  Mar 15 (13)
      • ►  Mar 14 (16)
      • ►  Mar 13 (8)
      • ►  Mar 12 (12)
      • ►  Mar 11 (11)
      • ►  Mar 10 (12)
      • ►  Mar 09 (15)
      • ►  Mar 08 (11)
      • ►  Mar 07 (19)
      • ►  Mar 06 (26)
      • ►  Mar 05 (14)
      • ►  Mar 04 (14)
      • ►  Mar 03 (12)
      • ►  Mar 02 (12)
      • ►  Mar 01 (14)
    • ►  February (375)
      • ►  Feb 28 (11)
      • ►  Feb 27 (10)
      • ►  Feb 26 (8)
      • ►  Feb 25 (11)
      • ►  Feb 24 (11)
      • ►  Feb 23 (5)
      • ►  Feb 22 (14)
      • ►  Feb 21 (13)
      • ►  Feb 20 (17)
      • ►  Feb 19 (14)
      • ►  Feb 18 (15)
      • ►  Feb 17 (12)
      • ►  Feb 16 (14)
      • ►  Feb 15 (14)
      • ►  Feb 14 (15)
      • ►  Feb 13 (20)
      • ►  Feb 12 (11)
      • ►  Feb 11 (21)
      • ►  Feb 10 (12)
      • ►  Feb 09 (18)
      • ►  Feb 08 (20)
      • ►  Feb 07 (13)
      • ►  Feb 06 (12)
      • ►  Feb 05 (14)
      • ►  Feb 04 (17)
      • ►  Feb 03 (8)
      • ►  Feb 02 (11)
      • ►  Feb 01 (14)
    • ►  January (407)
      • ►  Jan 31 (15)
      • ►  Jan 30 (11)
      • ►  Jan 29 (5)
      • ►  Jan 28 (19)
      • ►  Jan 27 (15)
      • ►  Jan 26 (13)
      • ►  Jan 25 (15)
      • ►  Jan 24 (13)
      • ►  Jan 23 (15)
      • ►  Jan 22 (10)
      • ►  Jan 21 (10)
      • ►  Jan 20 (18)
      • ►  Jan 19 (18)
      • ►  Jan 18 (7)
      • ►  Jan 17 (14)
      • ►  Jan 16 (17)
      • ►  Jan 15 (12)
      • ►  Jan 14 (14)
      • ►  Jan 13 (19)
      • ►  Jan 12 (8)
      • ►  Jan 11 (15)
      • ►  Jan 10 (9)
      • ►  Jan 09 (13)
      • ►  Jan 08 (12)
      • ►  Jan 07 (12)
      • ►  Jan 06 (15)
      • ►  Jan 05 (25)
      • ►  Jan 04 (11)
      • ►  Jan 03 (7)
      • ►  Jan 02 (12)
      • ►  Jan 01 (8)
  • ►  2018 (2910)
    • ►  December (343)
      • ►  Dec 31 (10)
      • ►  Dec 30 (14)
      • ►  Dec 29 (10)
      • ►  Dec 28 (7)
      • ►  Dec 27 (6)
      • ►  Dec 26 (16)
      • ►  Dec 25 (15)
      • ►  Dec 24 (11)
      • ►  Dec 23 (14)
      • ►  Dec 22 (7)
      • ►  Dec 21 (11)
      • ►  Dec 20 (9)
      • ►  Dec 19 (12)
      • ►  Dec 18 (8)
      • ►  Dec 17 (13)
      • ►  Dec 16 (16)
      • ►  Dec 15 (14)
      • ►  Dec 14 (9)
      • ►  Dec 13 (12)
      • ►  Dec 12 (11)
      • ►  Dec 11 (7)
      • ►  Dec 10 (8)
      • ►  Dec 09 (8)
      • ►  Dec 08 (14)
      • ►  Dec 07 (16)
      • ►  Dec 06 (12)
      • ►  Dec 05 (14)
      • ►  Dec 04 (8)
      • ►  Dec 03 (10)
      • ►  Dec 02 (3)
      • ►  Dec 01 (18)
    • ►  November (319)
      • ►  Nov 30 (11)
      • ►  Nov 29 (14)
      • ►  Nov 28 (9)
      • ►  Nov 27 (4)
      • ►  Nov 26 (10)
      • ►  Nov 25 (18)
      • ►  Nov 24 (14)
      • ►  Nov 23 (9)
      • ►  Nov 22 (15)
      • ►  Nov 21 (4)
      • ►  Nov 20 (6)
      • ►  Nov 19 (9)
      • ►  Nov 18 (3)
      • ►  Nov 17 (10)
      • ►  Nov 16 (5)
      • ►  Nov 15 (13)
      • ►  Nov 14 (11)
      • ►  Nov 13 (11)
      • ►  Nov 12 (16)
      • ►  Nov 11 (8)
      • ►  Nov 10 (14)
      • ►  Nov 09 (6)
      • ►  Nov 08 (6)
      • ►  Nov 07 (6)
      • ►  Nov 06 (14)
      • ►  Nov 05 (6)
      • ►  Nov 04 (18)
      • ►  Nov 03 (22)
      • ►  Nov 02 (7)
      • ►  Nov 01 (20)
    • ►  October (304)
      • ►  Oct 31 (6)
      • ►  Oct 30 (10)
      • ►  Oct 29 (17)
      • ►  Oct 28 (10)
      • ►  Oct 27 (11)
      • ►  Oct 26 (11)
      • ►  Oct 25 (12)
      • ►  Oct 24 (13)
      • ►  Oct 23 (13)
      • ►  Oct 22 (10)
      • ►  Oct 21 (9)
      • ►  Oct 20 (11)
      • ►  Oct 19 (7)
      • ►  Oct 18 (7)
      • ►  Oct 17 (14)
      • ►  Oct 16 (5)
      • ►  Oct 15 (13)
      • ►  Oct 14 (8)
      • ►  Oct 13 (13)
      • ►  Oct 12 (6)
      • ►  Oct 11 (17)
      • ►  Oct 10 (17)
      • ►  Oct 09 (1)
      • ►  Oct 08 (10)
      • ►  Oct 07 (2)
      • ►  Oct 06 (11)
      • ►  Oct 05 (16)
      • ►  Oct 04 (6)
      • ►  Oct 03 (9)
      • ►  Oct 02 (6)
      • ►  Oct 01 (3)
    • ►  September (324)
      • ►  Sep 30 (5)
      • ►  Sep 29 (8)
      • ►  Sep 28 (9)
      • ►  Sep 27 (9)
      • ►  Sep 26 (11)
      • ►  Sep 25 (13)
      • ►  Sep 24 (16)
      • ►  Sep 23 (7)
      • ►  Sep 22 (18)
      • ►  Sep 21 (8)
      • ►  Sep 20 (8)
      • ►  Sep 19 (8)
      • ►  Sep 18 (11)
      • ►  Sep 17 (6)
      • ►  Sep 16 (9)
      • ►  Sep 15 (13)
      • ►  Sep 14 (7)
      • ►  Sep 13 (13)
      • ►  Sep 12 (4)
      • ►  Sep 11 (14)
      • ►  Sep 10 (12)
      • ►  Sep 09 (9)
      • ►  Sep 08 (14)
      • ►  Sep 07 (11)
      • ►  Sep 06 (13)
      • ►  Sep 05 (17)
      • ►  Sep 04 (12)
      • ►  Sep 03 (17)
      • ►  Sep 02 (10)
      • ►  Sep 01 (12)
    • ►  August (453)
      • ►  Aug 31 (6)
      • ►  Aug 30 (12)
      • ►  Aug 29 (13)
      • ►  Aug 28 (7)
      • ►  Aug 27 (6)
      • ►  Aug 26 (9)
      • ►  Aug 25 (11)
      • ►  Aug 24 (6)
      • ►  Aug 23 (10)
      • ►  Aug 22 (18)
      • ►  Aug 21 (8)
      • ►  Aug 20 (18)
      • ►  Aug 19 (5)
      • ►  Aug 18 (8)
      • ►  Aug 17 (16)
      • ►  Aug 16 (18)
      • ►  Aug 15 (7)
      • ►  Aug 14 (8)
      • ►  Aug 13 (17)
      • ►  Aug 12 (18)
      • ►  Aug 11 (21)
      • ►  Aug 10 (10)
      • ►  Aug 09 (14)
      • ►  Aug 08 (25)
      • ►  Aug 07 (25)
      • ►  Aug 06 (22)
      • ►  Aug 05 (32)
      • ►  Aug 04 (24)
      • ►  Aug 03 (15)
      • ►  Aug 02 (26)
      • ►  Aug 01 (18)
    • ►  July (443)
      • ►  Jul 31 (28)
      • ►  Jul 30 (13)
      • ►  Jul 29 (20)
      • ►  Jul 28 (16)
      • ►  Jul 27 (30)
      • ►  Jul 26 (14)
      • ►  Jul 25 (16)
      • ►  Jul 24 (26)
      • ►  Jul 23 (14)
      • ►  Jul 22 (15)
      • ►  Jul 21 (21)
      • ►  Jul 20 (10)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (12)
      • ►  Jul 16 (10)
      • ►  Jul 15 (10)
      • ►  Jul 14 (11)
      • ►  Jul 13 (12)
      • ►  Jul 12 (7)
      • ►  Jul 11 (12)
      • ►  Jul 10 (8)
      • ►  Jul 09 (16)
      • ►  Jul 08 (7)
      • ►  Jul 07 (11)
      • ►  Jul 06 (8)
      • ►  Jul 05 (22)
      • ►  Jul 04 (15)
      • ►  Jul 03 (15)
      • ►  Jul 02 (13)
      • ►  Jul 01 (11)
    • ►  June (335)
      • ►  Jun 30 (18)
      • ►  Jun 29 (16)
      • ►  Jun 28 (27)
      • ►  Jun 27 (8)
      • ►  Jun 26 (9)
      • ►  Jun 25 (15)
      • ►  Jun 24 (6)
      • ►  Jun 23 (12)
      • ►  Jun 22 (8)
      • ►  Jun 21 (6)
      • ►  Jun 20 (8)
      • ►  Jun 19 (15)
      • ►  Jun 18 (7)
      • ►  Jun 17 (7)
      • ►  Jun 16 (16)
      • ►  Jun 15 (9)
      • ►  Jun 14 (10)
      • ►  Jun 13 (14)
      • ►  Jun 12 (9)
      • ►  Jun 11 (20)
      • ►  Jun 10 (16)
      • ►  Jun 09 (10)
      • ►  Jun 08 (9)
      • ►  Jun 07 (9)
      • ►  Jun 06 (6)
      • ►  Jun 05 (9)
      • ►  Jun 04 (9)
      • ►  Jun 03 (6)
      • ►  Jun 02 (9)
      • ►  Jun 01 (12)
    • ►  May (298)
      • ►  May 31 (15)
      • ►  May 30 (10)
      • ►  May 29 (12)
      • ►  May 28 (13)
      • ►  May 27 (12)
      • ►  May 26 (23)
      • ►  May 25 (13)
      • ►  May 24 (7)
      • ►  May 23 (4)
      • ►  May 22 (10)
      • ►  May 21 (7)
      • ►  May 20 (13)
      • ►  May 19 (10)
      • ►  May 18 (10)
      • ►  May 17 (8)
      • ►  May 16 (8)
      • ►  May 15 (12)
      • ►  May 14 (10)
      • ►  May 13 (19)
      • ►  May 12 (7)
      • ►  May 11 (6)
      • ►  May 10 (11)
      • ►  May 09 (7)
      • ►  May 08 (4)
      • ►  May 07 (4)
      • ►  May 06 (12)
      • ►  May 05 (6)
      • ►  May 04 (3)
      • ►  May 03 (7)
      • ►  May 02 (13)
      • ►  May 01 (2)
    • ►  April (36)
      • ►  Apr 30 (3)
      • ►  Apr 29 (11)
      • ►  Apr 28 (2)
      • ►  Apr 27 (2)
      • ►  Apr 26 (4)
      • ►  Apr 23 (1)
      • ►  Apr 22 (3)
      • ►  Apr 21 (1)
      • ►  Apr 20 (4)
      • ►  Apr 16 (1)
      • ►  Apr 14 (1)
      • ►  Apr 08 (1)
      • ►  Apr 07 (2)
    • ►  March (24)
      • ►  Mar 30 (3)
      • ►  Mar 25 (1)
      • ►  Mar 24 (1)
      • ►  Mar 23 (1)
      • ►  Mar 22 (1)
      • ►  Mar 17 (1)
      • ►  Mar 15 (2)
      • ►  Mar 13 (1)
      • ►  Mar 12 (2)
      • ►  Mar 11 (2)
      • ►  Mar 10 (1)
      • ►  Mar 09 (1)
      • ►  Mar 06 (1)
      • ►  Mar 05 (2)
      • ►  Mar 03 (1)
      • ►  Mar 02 (2)
      • ►  Mar 01 (1)
    • ►  February (19)
      • ►  Feb 28 (4)
      • ►  Feb 26 (1)
      • ►  Feb 23 (1)
      • ►  Feb 21 (1)
      • ►  Feb 20 (1)
      • ►  Feb 19 (1)
      • ►  Feb 18 (2)
      • ►  Feb 17 (1)
      • ►  Feb 16 (1)
      • ►  Feb 15 (3)
      • ►  Feb 07 (1)
      • ►  Feb 06 (1)
      • ►  Feb 05 (1)
    • ►  January (12)
      • ►  Jan 28 (3)
      • ►  Jan 26 (5)
      • ►  Jan 24 (2)
      • ►  Jan 07 (1)
      • ►  Jan 05 (1)
  • ►  2017 (105)
    • ►  December (9)
      • ►  Dec 31 (1)
      • ►  Dec 27 (2)
      • ►  Dec 24 (1)
      • ►  Dec 15 (1)
      • ►  Dec 02 (4)
    • ►  November (8)
      • ►  Nov 24 (1)
      • ►  Nov 23 (1)
      • ►  Nov 17 (1)
      • ►  Nov 16 (2)
      • ►  Nov 13 (1)
      • ►  Nov 11 (2)
    • ►  October (1)
      • ►  Oct 09 (1)
    • ►  August (2)
      • ►  Aug 12 (1)
      • ►  Aug 04 (1)
    • ►  July (18)
      • ►  Jul 28 (1)
      • ►  Jul 27 (1)
      • ►  Jul 26 (4)
      • ►  Jul 19 (1)
      • ►  Jul 17 (1)
      • ►  Jul 15 (2)
      • ►  Jul 14 (2)
      • ►  Jul 13 (1)
      • ►  Jul 12 (2)
      • ►  Jul 02 (3)
    • ►  June (9)
      • ►  Jun 25 (1)
      • ►  Jun 18 (1)
      • ►  Jun 16 (1)
      • ►  Jun 14 (2)
      • ►  Jun 08 (1)
      • ►  Jun 05 (2)
      • ►  Jun 04 (1)
    • ►  May (22)
      • ►  May 29 (1)
      • ►  May 20 (2)
      • ►  May 19 (1)
      • ►  May 18 (1)
      • ►  May 17 (1)
      • ►  May 14 (3)
      • ►  May 13 (1)
      • ►  May 09 (1)
      • ►  May 07 (3)
      • ►  May 06 (2)
      • ►  May 05 (1)
      • ►  May 04 (2)
      • ►  May 03 (1)
      • ►  May 02 (1)
      • ►  May 01 (1)
    • ►  April (25)
      • ►  Apr 30 (1)
      • ►  Apr 29 (1)
      • ►  Apr 27 (1)
      • ►  Apr 24 (2)
      • ►  Apr 23 (1)
      • ►  Apr 18 (1)
      • ►  Apr 17 (2)
      • ►  Apr 16 (1)
      • ►  Apr 14 (2)
      • ►  Apr 12 (2)
      • ►  Apr 11 (1)
      • ►  Apr 08 (1)
      • ►  Apr 06 (1)
      • ►  Apr 05 (1)
      • ►  Apr 04 (1)
      • ►  Apr 03 (2)
      • ►  Apr 02 (2)
      • ►  Apr 01 (2)
    • ►  March (11)
      • ►  Mar 31 (2)
      • ►  Mar 30 (2)
      • ►  Mar 28 (1)
      • ►  Mar 27 (3)
      • ►  Mar 25 (2)
      • ►  Mar 11 (1)
  • ►  2016 (31)
    • ►  August (1)
      • ►  Aug 10 (1)
    • ►  March (3)
      • ►  Mar 17 (1)
      • ►  Mar 12 (1)
      • ►  Mar 04 (1)
    • ►  February (11)
      • ►  Feb 29 (1)
      • ►  Feb 24 (1)
      • ►  Feb 22 (1)
      • ►  Feb 21 (2)
      • ►  Feb 11 (1)
      • ►  Feb 09 (2)
      • ►  Feb 03 (1)
      • ►  Feb 02 (1)
      • ►  Feb 01 (1)
    • ►  January (16)
      • ►  Jan 26 (2)
      • ►  Jan 24 (1)
      • ►  Jan 22 (2)
      • ►  Jan 21 (1)
      • ►  Jan 20 (1)
      • ►  Jan 19 (2)
      • ►  Jan 16 (1)
      • ►  Jan 14 (3)
      • ►  Jan 13 (1)
      • ►  Jan 12 (1)
      • ►  Jan 07 (1)
  • ►  2015 (1803)
    • ►  December (9)
      • ►  Dec 31 (1)
      • ►  Dec 26 (1)
      • ►  Dec 25 (1)
      • ►  Dec 23 (1)
      • ►  Dec 22 (2)
      • ►  Dec 19 (1)
      • ►  Dec 01 (2)
    • ►  November (11)
      • ►  Nov 28 (2)
      • ►  Nov 13 (1)
      • ►  Nov 11 (1)
      • ►  Nov 09 (3)
      • ►  Nov 07 (1)
      • ►  Nov 05 (1)
      • ►  Nov 03 (1)
      • ►  Nov 02 (1)
    • ►  October (31)
      • ►  Oct 31 (1)
      • ►  Oct 30 (2)
      • ►  Oct 29 (1)
      • ►  Oct 28 (3)
      • ►  Oct 26 (1)
      • ►  Oct 24 (1)
      • ►  Oct 22 (1)
      • ►  Oct 21 (1)
      • ►  Oct 19 (1)
      • ►  Oct 17 (1)
      • ►  Oct 16 (1)
      • ►  Oct 15 (1)
      • ►  Oct 14 (1)
      • ►  Oct 11 (2)
      • ►  Oct 09 (4)
      • ►  Oct 08 (1)
      • ►  Oct 07 (6)
      • ►  Oct 06 (1)
      • ►  Oct 02 (1)
    • ►  September (34)
      • ►  Sep 29 (4)
      • ►  Sep 28 (2)
      • ►  Sep 27 (2)
      • ►  Sep 26 (3)
      • ►  Sep 25 (1)
      • ►  Sep 24 (1)
      • ►  Sep 23 (2)
      • ►  Sep 22 (4)
      • ►  Sep 21 (6)
      • ►  Sep 14 (1)
      • ►  Sep 13 (1)
      • ►  Sep 12 (1)
      • ►  Sep 11 (1)
      • ►  Sep 09 (2)
      • ►  Sep 08 (1)
      • ►  Sep 05 (1)
      • ►  Sep 04 (1)
    • ►  August (6)
      • ►  Aug 22 (1)
      • ►  Aug 20 (1)
      • ►  Aug 08 (1)
      • ►  Aug 07 (2)
      • ►  Aug 06 (1)
    • ►  July (29)
      • ►  Jul 21 (1)
      • ►  Jul 18 (1)
      • ►  Jul 15 (1)
      • ►  Jul 14 (3)
      • ►  Jul 13 (1)
      • ►  Jul 12 (1)
      • ►  Jul 10 (2)
      • ►  Jul 09 (1)
      • ►  Jul 08 (1)
      • ►  Jul 06 (4)
      • ►  Jul 05 (3)
      • ►  Jul 04 (1)
      • ►  Jul 03 (6)
      • ►  Jul 02 (1)
      • ►  Jul 01 (2)
    • ►  June (9)
      • ►  Jun 28 (2)
      • ►  Jun 24 (2)
      • ►  Jun 22 (1)
      • ►  Jun 18 (1)
      • ►  Jun 17 (1)
      • ►  Jun 02 (2)
    • ►  May (141)
      • ►  May 31 (3)
      • ►  May 30 (7)
      • ►  May 29 (8)
      • ►  May 28 (4)
      • ►  May 27 (4)
      • ►  May 26 (5)
      • ►  May 25 (1)
      • ►  May 24 (4)
      • ►  May 23 (8)
      • ►  May 22 (6)
      • ►  May 21 (4)
      • ►  May 20 (4)
      • ►  May 19 (7)
      • ►  May 18 (3)
      • ►  May 17 (2)
      • ►  May 16 (7)
      • ►  May 15 (10)
      • ►  May 14 (7)
      • ►  May 13 (5)
      • ►  May 12 (2)
      • ►  May 11 (2)
      • ►  May 10 (4)
      • ►  May 09 (3)
      • ►  May 08 (3)
      • ►  May 07 (5)
      • ►  May 06 (4)
      • ►  May 05 (4)
      • ►  May 04 (2)
      • ►  May 03 (3)
      • ►  May 02 (4)
      • ►  May 01 (6)
    • ►  April (150)
      • ►  Apr 29 (4)
      • ►  Apr 28 (5)
      • ►  Apr 24 (3)
      • ►  Apr 22 (1)
      • ►  Apr 19 (3)
      • ►  Apr 17 (2)
      • ►  Apr 16 (2)
      • ►  Apr 15 (1)
      • ►  Apr 14 (1)
      • ►  Apr 12 (3)
      • ►  Apr 10 (13)
      • ►  Apr 09 (18)
      • ►  Apr 08 (8)
      • ►  Apr 07 (15)
      • ►  Apr 06 (13)
      • ►  Apr 05 (17)
      • ►  Apr 04 (9)
      • ►  Apr 03 (4)
      • ►  Apr 02 (14)
      • ►  Apr 01 (14)
    • ►  March (609)
      • ►  Mar 31 (29)
      • ►  Mar 30 (24)
      • ►  Mar 29 (18)
      • ►  Mar 28 (15)
      • ►  Mar 27 (7)
      • ►  Mar 26 (14)
      • ►  Mar 25 (6)
      • ►  Mar 23 (11)
      • ►  Mar 22 (22)
      • ►  Mar 21 (29)
      • ►  Mar 20 (41)
      • ►  Mar 19 (34)
      • ►  Mar 18 (34)
      • ►  Mar 17 (41)
      • ►  Mar 16 (31)
      • ►  Mar 15 (1)
      • ►  Mar 14 (3)
      • ►  Mar 13 (17)
      • ►  Mar 12 (12)
      • ►  Mar 11 (12)
      • ►  Mar 10 (19)
      • ►  Mar 09 (25)
      • ►  Mar 08 (20)
      • ►  Mar 07 (17)
      • ►  Mar 06 (20)
      • ►  Mar 05 (19)
      • ►  Mar 04 (30)
      • ►  Mar 03 (5)
      • ►  Mar 02 (18)
      • ►  Mar 01 (35)
    • ►  February (652)
      • ►  Feb 28 (19)
      • ►  Feb 27 (19)
      • ►  Feb 26 (28)
      • ►  Feb 25 (18)
      • ►  Feb 24 (8)
      • ►  Feb 23 (26)
      • ►  Feb 22 (15)
      • ►  Feb 21 (40)
      • ►  Feb 20 (24)
      • ►  Feb 19 (40)
      • ►  Feb 18 (38)
      • ►  Feb 17 (39)
      • ►  Feb 16 (53)
      • ►  Feb 15 (28)
      • ►  Feb 14 (31)
      • ►  Feb 13 (14)
      • ►  Feb 12 (26)
      • ►  Feb 11 (18)
      • ►  Feb 10 (32)
      • ►  Feb 09 (15)
      • ►  Feb 08 (7)
      • ►  Feb 07 (24)
      • ►  Feb 06 (15)
      • ►  Feb 05 (16)
      • ►  Feb 04 (21)
      • ►  Feb 03 (9)
      • ►  Feb 02 (23)
      • ►  Feb 01 (6)
    • ►  January (122)
      • ►  Jan 31 (10)
      • ►  Jan 30 (21)
      • ►  Jan 29 (4)
      • ►  Jan 28 (5)
      • ►  Jan 27 (9)
      • ►  Jan 26 (3)
      • ►  Jan 25 (6)
      • ►  Jan 24 (9)
      • ►  Jan 23 (5)
      • ►  Jan 22 (4)
      • ►  Jan 21 (3)
      • ►  Jan 20 (1)
      • ►  Jan 17 (1)
      • ►  Jan 16 (2)
      • ►  Jan 15 (2)
      • ►  Jan 14 (2)
      • ►  Jan 13 (8)
      • ►  Jan 12 (4)
      • ►  Jan 11 (4)
      • ►  Jan 10 (2)
      • ►  Jan 09 (6)
      • ►  Jan 08 (6)
      • ►  Jan 07 (5)
  • ►  2014 (1062)
    • ►  November (6)
      • ►  Nov 26 (2)
      • ►  Nov 25 (3)
      • ►  Nov 24 (1)
    • ►  October (10)
      • ►  Oct 23 (2)
      • ►  Oct 16 (3)
      • ►  Oct 12 (4)
      • ►  Oct 06 (1)
    • ►  September (270)
      • ►  Sep 21 (34)
      • ►  Sep 20 (15)
      • ►  Sep 17 (9)
      • ►  Sep 13 (10)
      • ►  Sep 12 (33)
      • ►  Sep 11 (30)
      • ►  Sep 10 (1)
      • ►  Sep 09 (14)
      • ►  Sep 08 (23)
      • ►  Sep 07 (5)
      • ►  Sep 06 (19)
      • ►  Sep 05 (18)
      • ►  Sep 04 (24)
      • ►  Sep 03 (18)
      • ►  Sep 02 (10)
      • ►  Sep 01 (7)
    • ►  August (497)
      • ►  Aug 31 (15)
      • ►  Aug 30 (20)
      • ►  Aug 28 (1)
      • ►  Aug 25 (10)
      • ►  Aug 24 (26)
      • ►  Aug 23 (23)
      • ►  Aug 22 (14)
      • ►  Aug 21 (22)
      • ►  Aug 20 (21)
      • ►  Aug 19 (18)
      • ►  Aug 18 (66)
      • ►  Aug 17 (21)
      • ►  Aug 16 (16)
      • ►  Aug 15 (34)
      • ►  Aug 14 (25)
      • ►  Aug 13 (12)
      • ►  Aug 11 (7)
      • ►  Aug 10 (18)
      • ►  Aug 09 (13)
      • ►  Aug 08 (13)
      • ►  Aug 07 (26)
      • ►  Aug 06 (21)
      • ►  Aug 05 (7)
      • ►  Aug 04 (15)
      • ►  Aug 03 (20)
      • ►  Aug 02 (5)
      • ►  Aug 01 (8)
    • ►  July (85)
      • ►  Jul 31 (5)
      • ►  Jul 30 (26)
      • ►  Jul 29 (21)
      • ►  Jul 28 (33)
    • ►  March (3)
      • ►  Mar 25 (1)
      • ►  Mar 12 (1)
      • ►  Mar 09 (1)
    • ►  February (23)
      • ►  Feb 14 (1)
      • ►  Feb 06 (2)
      • ►  Feb 04 (4)
      • ►  Feb 03 (1)
      • ►  Feb 02 (6)
      • ►  Feb 01 (9)
    • ►  January (168)
      • ►  Jan 31 (10)
      • ►  Jan 30 (6)
      • ►  Jan 29 (4)
      • ►  Jan 27 (6)
      • ►  Jan 26 (1)
      • ►  Jan 25 (7)
      • ►  Jan 24 (13)
      • ►  Jan 23 (11)
      • ►  Jan 22 (3)
      • ►  Jan 21 (6)
      • ►  Jan 20 (3)
      • ►  Jan 19 (8)
      • ►  Jan 18 (7)
      • ►  Jan 17 (7)
      • ►  Jan 16 (13)
      • ►  Jan 15 (1)
      • ►  Jan 12 (1)
      • ►  Jan 11 (1)
      • ►  Jan 09 (3)
      • ►  Jan 08 (6)
      • ►  Jan 07 (7)
      • ►  Jan 06 (14)
      • ►  Jan 05 (10)
      • ►  Jan 04 (2)
      • ►  Jan 02 (6)
      • ►  Jan 01 (12)
  • ►  2013 (210)
    • ►  December (199)
      • ►  Dec 30 (5)
      • ►  Dec 29 (8)
      • ►  Dec 28 (6)
      • ►  Dec 27 (11)
      • ►  Dec 26 (9)
      • ►  Dec 25 (7)
      • ►  Dec 24 (15)
      • ►  Dec 23 (13)
      • ►  Dec 22 (3)
      • ►  Dec 21 (9)
      • ►  Dec 20 (10)
      • ►  Dec 19 (7)
      • ►  Dec 18 (4)
      • ►  Dec 17 (7)
      • ►  Dec 16 (6)
      • ►  Dec 15 (5)
      • ►  Dec 14 (3)
      • ►  Dec 13 (5)
      • ►  Dec 12 (2)
      • ►  Dec 11 (4)
      • ►  Dec 10 (9)
      • ►  Dec 09 (11)
      • ►  Dec 08 (11)
      • ►  Dec 07 (14)
      • ►  Dec 06 (3)
      • ►  Dec 05 (3)
      • ►  Dec 04 (6)
      • ►  Dec 03 (1)
      • ►  Dec 02 (2)
    • ►  September (2)
      • ►  Sep 25 (2)
    • ►  April (1)
      • ►  Apr 30 (1)
    • ►  January (8)
      • ►  Jan 22 (1)
      • ►  Jan 20 (4)
      • ►  Jan 16 (1)
      • ►  Jan 15 (1)
      • ►  Jan 14 (1)
  • ►  2012 (2)
    • ►  December (1)
      • ►  Dec 21 (1)
    • ►  January (1)
      • ►  Jan 11 (1)
  • ►  2011 (26)
    • ►  December (25)
      • ►  Dec 22 (1)
      • ►  Dec 17 (3)
      • ►  Dec 16 (2)
      • ►  Dec 15 (1)
      • ►  Dec 14 (1)
      • ►  Dec 13 (2)
      • ►  Dec 12 (1)
      • ►  Dec 11 (1)
      • ►  Dec 10 (1)
      • ►  Dec 07 (4)
      • ►  Dec 06 (2)
      • ►  Dec 04 (1)
      • ►  Dec 03 (2)
      • ►  Dec 02 (3)
    • ►  November (1)
      • ►  Nov 19 (1)
  • ►  2010 (2)
    • ►  September (1)
      • ►  Sep 11 (1)
    • ►  January (1)
      • ►  Jan 16 (1)
  • ►  2008 (1)
    • ►  April (1)
      • ►  Apr 05 (1)

Labels

  • Estradiol

Report Abuse

Followers

Total Pageviews

Translate

Simple theme. Theme images by merrymoonmary. Powered by Blogger.