Search This Blog

Saturday, March 6, 2021

Biodiversity loss

From Wikipedia, the free encyclopedia

Summary of major biodiversity-related environmental-change categories expressed as a percentage of human-driven change (in red) relative to baseline (blue)

Biodiversity loss includes the extinction of species (plant or animal) worldwide, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity.

The latter phenomenon can be temporary or permanent, depending on whether the environmental degradation that leads to the loss is reversible through ecological restoration/ecological resilience or effectively permanent (e.g. through land loss). Global extinction has so far been proven to be irreversible.

Even though permanent global species loss is a more dramatic and tragic phenomenon than regional changes in species composition, even minor changes from a healthy stable state can have dramatic influence on the food web and the food chain insofar as reductions in only one species can adversely affect the entire chain (coextinction), leading to an overall reduction in biodiversity, possible alternative stable states of an ecosystem notwithstanding. Ecological effects of biodiversity are usually counteracted by its loss. Reduced biodiversity in particular leads to reduced ecosystem services and eventually poses an immediate danger for food security, also for humankind.

Loss rate

Demonstrator against biodiversity loss, at Extinction Rebellion (2018).

You know, when we first set up WWF, our objective was to save endangered species from extinction. But we have failed completely; we haven’t managed to save a single one. If only we had put all that money into condoms, we might have done some good.

— Sir Peter Scott, Founder of the World Wide Fund for Nature, Cosmos Magazine, 2010

The current rate of global diversity loss is estimated to be 100 to 1000 times higher than the (naturally occurring) background extinction rate, faster than at any other time in human history, and expected to still grow in the upcoming years. These rapidly rising extinction trends impacting numerous animal groups including mammals, birds, reptiles, amphibians and ray-finned fishes have prompted scientists to declare a contemporary biodiversity crisis.

Locally bounded loss rates can be measured using species richness and its variation over time. Raw counts may not be as ecologically relevant as relative or absolute abundances. Taking into account the relative frequencies, a considerable number of biodiversity indexes has been developed. Besides richness, evenness and heterogeneity are considered to be the main dimensions along which diversity can be measured.

As with all diversity measures, it is essential to accurately classify the spatial and temporal scope of the observation. "Definitions tend to become less precise as the complexity of the subject increases and the associated spatial and temporal scales widen." Biodiversity itself is not a single concept but can be split up into various scales (e.g. ecosystem diversity vs. habitat diversity or even biodiversity vs. habitat diversity) or different subcategories (e.g. phylogenetic diversity, species diversity, genetic diversity, nucleotide diversity). The question of net loss in confined regions is often a matter of debate but longer observation times are generally thought to be beneficial to loss estimates.

To compare rates between different geographic regions latitudinal gradients in species diversity should also be considered.

Human-driven biodiversity loss and ecological effects

Biodiversity is traditionally defined as the variety of life on Earth in all its forms and it comprises the number of species, their genetic variation and the interaction of these lifeforms. However, from past few years the human-driven biodiversity loss are causing more severe and longer-lasting impacts. Examples of human-driven factors on biodiversity loss includes habitat alteration, pollution, and overexploitation of resources.

Change in land use

The Forest Landscape Integrity Index measures global anthropogenic modification on remaining forests annually. 0 = Most modification; 10= Least.

In 2006, many species were formally classified as rare or endangered or threatened; moreover, scientists have estimated that millions more species are at risk which have not been formally recognized. About 40 percent of the 40,177 species assessed using the IUCN Red List criteria are now listed as threatened with extinction—a total of 16,119.

Examples of changes in land use include deforestation, intensive monoculture, and urbanization.

The UN's Global Biodiversity Outlook 2014 estimates that 70 percent of the projected loss of terrestrial biodiversity are caused by agriculture use. Moreover, more than 1/3 of the planet's land surface is utilised for crops and grazing of livestock. Agriculture destroys biodiversity by converting natural habitats to intensely managed systems and by releasing pollutants, including greenhouse gases. Food value chains further amplify impacts including through energy use, transport and waste. The direct effects of urban growth on habitat loss are well understood:Building construction often results in habitat destruction and fragmentation. The rise of urbanization greatly reduced biodiversity when large areas of natural habitat are fragmented. Small habitat patches are unable to support the same level of genetic or taxonomic diversity as they formerly could while some of the more sensitive species may become locally extinct. According to a 2020 study published in Nature Sustainability, more than 17,000 species are at risk of losing habitat by 2050 as agriculture continues to expand in order to meet future food needs. The researchers suggest that greater agricultural efficiency in the developing world and large scale transitions to healthier, planet-based diets could help reduce habitat loss. Similarly, a 2021 Chatham House report also posited that a global shift towards largely plant-based diets would free up the land to allow for the restoration of ecosystems and biodiversity. Currently, around 80% of all global farmland used to rear cattle.

Pollution

Pollution from burning fossil fuels such as oil, coal and natural gas, can remain in the air as particle pollutants or fall to the ground as acid rain. Acid rain, which is primarily composed of sulfuric and nitric acid, causes acidification of lakes, streams and sensitive forest soils, and contributes to slower forest growth and tree damage at high elevations. Moreover, carbon dioxide released from burning fossil fuels and biomass, deforestation, and agricultural practices contributes to greenhouse gases, which prevent heat from escaping the Earth's surface. With the increase in temperature expected from increasing greenhouse gases, there will be higher levels of air pollution, greater variability in weather patterns, intensification of climate change effects, and changes in the distribution of vegetation in the landscape. These two factors play a huge role towards biodiversity loss and entirely depended on human-driven factors.

Invasive species and over exploitation

Invasive species have major implications on biodiversity loss and have degraded various ecosystems worldwide. Invasive species are migrant species that stand in the gap of native species by out competing them.

Human over harvesting of biodiversity example through over fishing will finally lead to their extinction.

Ecological effects of biodiversity loss

Biodiversity loss also threatens the structure and proper functioning of the ecosystem. Although all ecosystems are able to adapt to the stresses associated with reductions in biodiversity to some degree, biodiversity loss reduces an ecosystem's complexity, as roles once played by multiple interacting species or multiple interacting individuals are played by fewer or none. The effects of species loss or changes in composition, and the mechanisms by which the effects manifest themselves, can differ among ecosystem properties, ecosystem types, and pathways of potential community change. At higher levels of extinction (41 to 60 percent of species), the effects of species loss ranked with those of many other major drivers of environmental change, such as ozone pollution, acid deposition on forests and nutrient pollution. Finally, the effects are also seen on human needs such clean water, air and food production over-time. For example, studies over the last two decades have demonstrated that more biologically diverse ecosystems are more productive. As a result, there has been growing concern that the very high rates of modern extinctions – due to habitat loss, overharvesting and other human-caused environmental changes – could reduce nature's ability to provide goods and services like food, clean water and a stable climate.

An October 2020 analysis by Swiss Re found that one-fifth of all countries are at risk of ecosystem collapse as the result of anthropogenic habitat destruction and increased wildlife loss.

Factors

DPSIR: drivers, pressures, state, impact and response model of intervention

Major factors for biotic stress and the ensuing accelerating loss rate are, amongst other threats:

  1. Habitat loss and degradation
    Land use intensification (and ensuing land loss/habitat loss) has been identified to be a significant factor in loss of ecological services due to direct effects as well as biodiversity loss.
  2. Climate change through heat stress and drought stress
  3. Excessive nutrient load and other forms of pollution
  4. Over-exploitation and unsustainable use (e.g. unsustainable fishing methods) we are currently using 25% more natural resources than the planet
  5. Armed conflict, which disrupts human livelihoods and institutions, contributes to habitat loss, and intensifies over-exploitation of economically valuable species, leading to population declines and local extinctions.
  6. Invasive alien species that effectively compete for a niche, replacing indigenous species
  7. Human activity has left the Earth struggling to sustain life, due to the demands humans have. As well as leaving around 30% of mammal, amphibian, and bird species endangered.

Insect loss

In 2017, various publications describe the dramatic reduction in absolute insect biomass and number of species in Germany and North America over a period of 27 years. As possible reasons for the decline, the authors highlight neonicotinoids and other agrochemicals. Writing in the journal PLOS One, Hallman et al. (2017) conclude that "the widespread insect biomass decline is alarming."

Birds loss

Certain types of pesticides named Neonicotinoids probably contributing to decline of certain bird species. A study funded by BirdLife International confirms that 51 species of birds are critically endangered and 8 could be classified as extinct or in danger of extinction. Nearly 30% of extinction is due to hunting and trapping for the exotic pet trade. Deforestation, caused by unsustainable logging and agriculture, could be the next extinction driver, because birds lose their habitat and their food. The biologist Luisa Arnedo said: "as soon as the habitat is gone, they're gone too".

Earthworm loss

The critical decline of earthworms (with a mean of –83.3 %) has been recorded under non-ecological agricultural practices.

Freshwater fish loss

A study by 16 global conservation organizations found that the biodiversity crisis is most acute in freshwater ecosystems, with a rate of decline double that of oceans and forests. Global populations of freshwater fish are collapsing from anthropogenic impacts such as pollution and overfishing. Migratory fish populations have declined by 76% since 1970, and large "megafish" populations have fallen by 94% with 16 species declared extinct in 2020.

Food and agriculture

In 2019, the UN's Food and Agriculture Organization produced its first report on The State of the World’s Biodiversity for Food and Agriculture, which warned that "Many key components of biodiversity for food and agriculture at genetic, species and ecosystem levels are in decline." The report states that this is being caused by “a variety of drivers operating at a range of levels” and more specifically that “major global trends such as changes in climate, international markets and demography give rise to more immediate drivers such as land-use change, pollution and overuse of external inputs, overharvesting and the proliferation of invasive species. Interactions between drivers often exacerbate their effects on BFA [i.e. biodiversity for food and agriculture]. Demographic changes, urbanization, markets, trade and consumer preferences are reported [by the countries that provided inputs to the report] to have a strong influence on food systems, frequently with negative consequences for BFA and the ecosystem services it provides. However, such drivers are also reported to open opportunities to make food systems more sustainable, for example through the development of markets for biodiversity-friendly products.” It further states that “the driver mentioned by the highest number of countries as having negative effects on regulating and supporting ecosystem services [in food and agricultural production systems] is changes in land and water use and management” and that  “loss and degradation of forest and aquatic ecosystems and, in many production systems, transition to intensive production of a reduced number of species, breeds and varieties, remain major drivers of loss of BFA and ecosystem services.”

The 2019 IPBES Global Assessment Report on Biodiversity and Ecosystem Services asserts that industrial agriculture is the primary driver collapsing biodiversity. The health of humans is largely dependent on the product of an ecosystem. With biodiversity loss, a huge impact on human health comes as well. Biodiversity makes it possible for humans to have a sustainable level of soils and the means to have the genetic factors in order to have food.

Many activists and scholars have suggested that there is a connection between plant patent protection and the loss of crop biodiversity, although such claims are contested.

Native species richness loss

Humans have altered plant richness in regional landscapes worldwide transforming more than 75% of the terrestrial biomes to the "anthropogenic biomes." This is seen through loss of native species being replaced and out competed by agriculture. Models indicate that about half of the biosphere has seen a "substantial net anthropogenic change" in species richness.

Solutions

There are so many conservation challenges when dealing with biodiversity loss that a joint effort needs to be made through public policies, economic solutions, monitoring and education by governments, NGOs, conservationists etc. Incentives are required to protect species and conserve their natural habitat and disincentivize habitat loss and degradation (e.g. implementing sustainable development including targets of SDG 15). Other ways to achieve this goal are enforcing laws that prevent poaching wildlife, protect species from overhunting and overfishing and keep the ecosystems they rely on intact and secure from species invasions and land use conversion.

Environmental organizations

Earth's 25 terrestrial hot spots of biodiversity. These regions contain a number of plant and animal species and have been subjected to high levels of habitat destruction by human activity.

There are many organizations devoted to the cause of prioritizing conservation efforts such as the Red List of Threatened Species from the International Union for Conservation of Nature and Natural Resources (IUCN) and the United States Endangered Species Act. British environmental scientist Norman Myers and his colleagues have identified 25 terrestrial biodiversity hotspots that could serve as priorities for habitat protection.

Many governments in the world have conserved portions of their territories under the Convention on Biological Diversity (CBD), a multilateral treaty signed in 1992–3. The 20 Aichi Biodiversity Targets, part of the CBD's Strategic Plan 2011–2020, were published in 2010. Since 2010, approximately 164 countries have developed plans to reach their conservation targets, including the protection of 17 percent of terrestrial and inland waters and 10 percent of coastal and marine areas.

In 2019 the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), an international organization, reported that up to a million plant and animal species are facing extinction because of human activities. An October 2020 report by IPBES stated that the same human activities which are the underlying drivers of climate change and biodiversity loss, such as the destruction of wildlife and wild habitats, are also the same drivers of pandemics, including the COVID-19 pandemic.

According to the 2020 United Nations' Global Biodiversity Outlook report, of the 20 biodiversity goals laid out by the Aichi Biodiversity Targets in 2010, only 6 were "partially achieved" by the deadline of 2020. The report highlighted that if the status quo is not changed, biodiversity will continue to decline due to "currently unsustainable patterns of production and consumption, population growth and technological developments". The report also singled out Australia, Brazil and Cameroon and the Galapagos Islands (Ecuador) for having had one of its animals lost to extinction in the past 10 years. Following this, the leaders of 64 nations and the European Union pledged to halt environmental degradation and restore the natural world. Leaders from some of the world's biggest polluters, namely China, India, Russia, Brazil and the United States, were not among them. Some top scientists say that even if the targets had been met, it likely would not have resulted in any substantive reductions of current extinction rates.

In 2020, with passing of the 2020 target date for the Aichi Biodiversity Targets, scientists proposed a measurable, near-term biodiversity target - comparable to the below 2°C global warming target - of keeping described species extinctions to well below 20 per year over the next 100 years across all major groups (fungi, plants, invertebrates, and vertebrates) and across all ecosystem types (marine, freshwater, and terrestrial).

 

Ordovician–Silurian extinction events

From Wikipedia, the free encyclopedia
Extinction intensity.svgCambrianOrdovicianSilurianDevonianCarboniferousPermianTriassicJurassicCretaceousPaleogeneNeogene
 
Marine extinction intensity during the Phanerozoic
 
%
Millions of years ago
Extinction intensity.svg
The blue graph shows the apparent percentage (not the absolute number) of marine animal genera becoming extinct during any given time interval. It does not represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised Capitanian mass extinction event are clickable hyperlinks; see Extinction event for more details.

The Ordovician–Silurian extinction events, also known as the Late Ordovician mass extinction (LOME), are collectively the second-largest of the five major extinction events in Earth's history in terms of percentage of genera that became extinct. Extinction was global during this period, eliminating 49–60% of marine genera and nearly 85% of marine species. Only the Permian-Triassic mass extinction exceeds the LOME in total biodiversity loss. The extinction event abruptly affected all major taxonomic groups and caused the disappearance of one third of all brachiopod and bryozoan families, as well as numerous groups of conodonts, trilobites, echinoderms, corals, bivalves, and graptolites. This extinction was the first of the "big five" Phanerozoic mass extinction events and was the first to significantly affect animal-based communities. However, the LOME did not produce major changes to ecosystem structures compared to other mass extinctions, nor did it lead to any particular morphological innovations. Diversity gradually recovered to pre-extinction levels over the first 5 million years of the Silurian period.

The Late Ordovician mass extinction is generally considered to occur in two distinct pulses. The first pulse began at the boundary between the Katian and Hirnantian stages of the Late Ordovician Period. This extinction pulse is typically attributed to the Late Ordovician glaciation, which abruptly expanded over Gondwana at the beginning of the Hirnantian and shifted the earth from a greenhouse to icehouse climate. Cooling and a falling sea level brought on by the glaciation led to habitat loss for many organisms along the continental shelves, especially endemic taxa with restricted temperature tolerance. During this extinction pulse there were also several marked changes in biologically responsive carbon and oxygen isotopes. Marine life partially rediversified during the cold period and a new cold-water ecosystem, the "Hirnantia biota", was established.

The second pulse of extinction occurred in the later half of the Hirnantian as the glaciation abruptly recedes and warm conditions return. The second pulse is associated with intense worldwide anoxia (oxygen depletion) and euxinia (toxic sulfide production), which persist into the subsequent Rhuddanian stage of the Silurian Period.

Impact on life

The extinction followed the Great Ordovician Biodiversification Event, one of the largest evolutionary surges in the geological and biological history of the Earth.

At the time of the extinction, most complex multicellular organisms lived in the sea, and around 100 marine families became extinct, covering about 49% of faunal genera (a more reliable estimate than species). The brachiopods and bryozoans were decimated, along with many of the trilobite, conodont and graptolite families. Each extinction pulse affected different groups of animals and was followed by a rediversification event. Statistical analysis of marine losses at this time suggests that the decrease in diversity was mainly caused by a sharp increase in extinctions, rather than a decrease in speciation.

Following such a major loss of diversity, Silurian communities were initially less complex and broader niched. Highly endemic faunas, which characterized the Late Ordovician, were replaced by faunas that were amongst the most cosmopolitan in the Phanerozoic, biogeographic patterns that persisted throughout most of the Silurian. The Late Ordovician mass extinction had few of the long-term ecological impacts associated with the Permian–Triassic and Cretaceous–Paleogene extinction events. Nevertheless, a large number of taxa disappeared from the Earth over a short time interval, eliminating and altering the relative diversity and abundance of certain groups. Cambrian-type fauna such as trilobites and inarticulate brachiopods never recovered their pre-extinction diversity.

Trilobites were hit hard by both phases of the extinction, with about 70% of genera going extinct between the Katian and Silurian. The extinction disproportionately affected deep water species and groups with fully planktonic larvae or adults. The order Agnostida was completely wiped out, and the formerly diverse Asaphida survived with only a single genus, Raphiophorus.

Glaciation

The first pulse of the Late Ordovician Extinction has been attributed to the Late Ordovician Glaciation. Although there was a longer cooling trend in Middle and Lower Ordovician, the most severe and abrupt period of glaciation occurred in the Hirnantian stage, which was bracketed by both pulses of the extinction. The rapid continental glaciation was centered on Gondwana, which was located at the South Pole in the Late Ordovician. The Hirnantian glaciation is considered one of the most severe ice age of the Paleozoic, which previously maintained the relatively warm climate conditions of a greenhouse earth.

An illustration depicting Cameroceras shells sticking out of the mud as a result of draining seaways during the Ordovician-Silurian Extinction event.

The cause of the glaciation is heavily debated. The appearance and development of terrestrial plants and microphytoplankton, which consumed atmospheric carbon dioxide, may have diminished the greenhouse effect and promoting the transition of the climatic system to the glacial mode. Though more commonly associated with greenhouse gasses and warming, volcanism may have induced cooling. Volcanoes can supply cooling sulfur aerosols to the atmosphere or deposit basalt flows which accelerate carbon sequestration in a tropical environment. Increased burial of organic carbon is another method of drawing down carbon dioxide from the air.Two environmental changes associated with the glaciation were responsible for much of the Late Ordovician extinction. First, the cooling global climate was probably especially detrimental because the biota were adapted to an intense greenhouse. Second, sea level decline, caused by sequestering of water in the ice cap, drained the vast epicontinental seaways and eliminated the habitat of many endemic communities.

As the southern supercontinent Gondwana drifted over the South Pole, ice caps formed on it. Correlating rock strata have been detected in Late Ordovician rock strata of North Africa and then-adjacent northeastern South America, which were south-polar locations at the time. Glaciation locks up water from the world-ocean, and the interglacials free it, causing sea levels repeatedly to drop and rise; the vast shallow mediterranean Ordovician seas withdrew, which eliminated many ecological niches, then returned, carrying diminished founder populations lacking many whole families of organisms. Then they withdrew again with the next pulse of glaciation, eliminating biological diversity at each change (Emiliani 1992 p. 491). In the North African strata, five pulses of glaciation from seismic sections are recorded.

This incurred a shift in the location of bottom-water formation, shifting from low latitudes, characteristic of greenhouse conditions, to high latitudes, characteristic of icehouse conditions, which was accompanied by increased deep-ocean currents and oxygenation of the bottom-water. An opportunistic fauna briefly thrived there, before anoxic conditions returned. The breakdown in the oceanic circulation patterns brought up nutrients from the abyssal waters. Surviving species were those that coped with the changed conditions and filled the ecological niches left by the extinctions.

Anoxia and euxinia

Another heavily-discussed factor in the Late Ordovician mass extinction is anoxia, the absence of dissolved oxygen in seawater. Anoxia not only deprives most life forms of a vital component of respiration, it also encourages the formation of toxic metal ions and other compounds. One of the most common of these poisonous chemicals is hydrogen sulfide, a biological waste product and major component of the sulfur cycle. Oxygen depletion when combined with high levels of sulfide is called euxinia. Though less toxic, ferrous iron (Fe2+) is another substance which commonly forms in anoxic waters. Anoxia is the most common culprit for the second pulse of the LOME and is connected to many other mass extinctions throughout geological time. It may have also had a role the first pulse of the LOME, though support for this hypothesis is inconclusive and contradicts other evidence for high oxygen levels in seawater during the glaciation.

Anoxia in the first extinction pulse

An excursion in the δ34S ratio of pyrite (top) has been attributed to widespread deep-sea anoxia during the Hirnantian glaciation. However, sulfate-reducing bacteria (bottom) could instead have been responsible for the excursion without contributing to anoxia.

Some geologists have argued that anoxia played a role in the first extinction pulse, though this hypothesis is controversial. In the early Hirnantian, shallow-water sediments throughout the world experience a large positive excursion in the δ34S ratio of buried pyrite. This ratio indicates that shallow-water pyrite which formed at the beginning of the glaciation had a decreased proportion of 32S, a common lightweight isotope of sulfur. 32S in the seawater could hypothetically be used up by extensive deep-sea pyrite deposition. The Ordovician ocean also had very low levels of sulfate, a nutrient which would otherwise resupply 32S from the land. Pyrite forms most easily in anoxic and euxinic environments, while better oxygenation encourages the formation of gypsum instead. As a result, anoxia and euxinia would need to be common in the deep sea to produce enough pyrite to shift the δ34S ratio.

A more direct proxy for anoxic conditions is FeHR/FeT. This ratio describes the comparative abundance of highly reactive iron compounds which are only stable without oxygen. Most geological sections corresponding to the beginning of the Hirnantian glaciation have FeHR/FeT below 0.38, indicating oxygenated waters. However, higher FeHR/FeT values are known from a few deep-water early Hirnantian sequences found in Nevada and China.

Glaciation could conceivably trigger anoxic conditions, albeit indirectly. If continental shelves are exposed by falling sea levels, then organic surface runoff flows into deeper oceanic basins. The organic matter would have more time to leach out phosphate and other nutrients before being deposited on the seabed. Increased phosphate concentration in the seawater would lead to eutrophication and then anoxia. Deep-water anoxia and euxinia would impact deep-water benthic fauna, as expected for the first pulse of extinction. Chemical cycle disturbances would also steepen the chemocline, restricting the habitable zone of planktonic fauna which also go extinct in the first pulse. This scenario is congruent with both organic carbon isotope excursions and general extinction patterns observed in the first pulse.

However, data supporting deep-water anoxia during the glaciation contrasts with more extensive evidence for well-oxygenated waters. Black shales, which are indicative of an anoxic environment, become very rare in the early Hirnantian compared to surrounding time periods. Although early Hirnantian black shales can be found in a few isolated ocean basins (such as the Yangtze platform of China), from a worldwide perspective these correspond to local events. Some Chinese sections record an early Hirnantian increase in the abundance of Mo-98, a heavy isotope of molybdenum. This shift can correspond to a balance between minor local anoxia and well-oxygenated waters on a global scale.

Other trace elements point towards increased deep-sea oxygenation at the start of the glaciation. Oceanic current modelling suggest that glaciation would have encouraged oxygenation in most areas, apart from the Paleo-Tethys ocean.

Deep-sea anoxia is not the only explanation for the δ34S excursion of pyrite. Carbonate-associated sulfate maintains high 32S levels, indicating that seawater in general did not experience 32S depletion during the glaciation. Even if pyrite burial did increase at that time, its chemical effects would have been far too slow to explain the rapid excursion or extinction pulse. Instead, cooling may lower the metabolism of warm-water aerobic bacteria, reducing decomposition of organic matter. Fresh organic matter would eventually sink down and supply nutrients to sulfate-reducing microbes living in the seabed. Sulfate-reducing microbes prioritize 32S during anaerobic respiration, leaving behind heavier isotopes. A bloom of sulfate-reducing microbes can quickly account for the δ34S excursion in marine sediments without a corresponding decrease in oxygen.

A few studies have proposed that the first extinction pulse did not begin with the Hirnantian glaciation, but instead corresponds to an interglacial period or other warming event. Anoxia would be the most likely mechanism of extinction in a warming event, as evidenced by other extinctions involving warming. However, this view of the first extinction pulse is controversial and not widely accepted.

Anoxia in the second extinction pulse

The late Hirnantian experienced a dramatic increase in the abundance of black shales. Coinciding with the retreat of the Hirnantian glaciation, black shale expands out of isolated basins to become the dominant oceanic sediment at all latitudes and depths. The worldwide distribution of black shales in the late Hirnantian is indicative of a global anoxic event. Molybdenum, uranium, and neodymium isotope excursions found in many different regions also correspond to widespread anoxia. At least in European sections, late Hirnantian anoxic waters were originally ferruginous (dominated by ferrous iron) before gradually becoming more euxinic. In China, the second extinction pulse occurs alongside intense euxinia which spreads out from the middle of the continental shelf. On a global scale, euxinia was probably one or two orders of magnitude more prevalent than in the modern day. Global anoxia may have lasted more than 3 million years, persisting through the entire Rhuddanian stage of the Silurian period. This would make the Hirnantian-Rhuddanian anoxia one of the longest-lasting anoxic events in geologic time.

Cyanobacteria blooms after the Hirnantian glaciation likely caused the Hirnantian-Rhuddanian global anoxic event, the main factor behind the second extinction pulse.

The cause of the Hirnantian-Rhuddanian anoxic event is uncertain. Like most global anoxic events, an increased supply of nutrients (such as nitrates and phosphates) would encourage algal or microbial blooms that deplete oxygen levels in the seawater. The most likely culprits are cyanobacteria, which can use nitrogen fixation to produce usable nitrogen compounds in the absence of nitrates. Nitrogen isotopes during the anoxic event record high rates of denitrification, a biological process which depletes nitrates. The Nitrogen-fixing ability of cyanobacteria would give them an edge over inflexible competitors like eukaryotic algae. At Anticosti Island, a uranium isotope excursion consistent with anoxia actually occurs prior to indicators of receding glaciation. This may suggest that the Hirnantian-Rhuddanian anoxic event (and its corresponding extinction) began during the glaciation, not after it. Cool temperatures can lead to upwelling, cycling nutrients into productive surface waters via air and ocean cycles. Upwelling could instead be encouraged by increasing oceanic stratification through an input of freshwater from melting glaciers. This would be more reasonable if the anoxic event coincided with the end of glaciation, as supported by most other studies. However, oceanic models argue that marine currents would recover too quickly for freshwater disruptions to have a meaningful effect on nutrient cycles. Retreating glaciers could expose more land to weathering, which would be a more sustained source of phosphates flowing into the ocean.

There were few clear patterns of extinction associated with the second extinction pulse. Every region and marine environment experienced the second extinction pulse to some extent. Many taxa which survived or diversified after the first pulse were finished off in the second pulse. These include the Hirnantia brachiopod fauna and Mucronaspis trilobite fauna, which previously thrived in the cold glacial period. Other taxa such as graptolites and warm-water reef denizens were less affected. Sediments from China and Baltica seemingly show a more gradual replacement of the Hirnantia fauna after glaciation. Although this suggests that the second extinction pulse may have been a minor event at best, other paleontologists maintain that an abrupt ecological turnover accompanied the end of glaciation. There may be a correlation between the relatively slow recovery after the second extinction pulse, and the prolonged nature of the anoxic event which accompanied it.

Other possible causes

Metal poisoning

Toxic metals on the ocean floor may have dissolved into the water when the oceans' oxygen was depleted. An increase in available nutrients in the oceans may have been a factor, and decreased ocean circulation caused by global cooling may also have been a factor.

The toxic metals may have killed life forms in lower trophic levels of the food chain, causing a decline in population, and subsequently resulting in starvation for the dependent higher feeding life forms in the chain.

Gamma-ray burst

Some scientists have suggested that the initial extinctions could have been caused by a gamma-ray burst originating from a hypernova in a nearby arm of the Milky Way galaxy, within 6,000 light-years of Earth. A ten-second burst would have stripped the Earth's atmosphere of half of its ozone almost immediately, exposing surface-dwelling organisms, including those responsible for planetary photosynthesis, to high levels of extreme ultraviolet radiation. Under this hypothesis, several groups of marine organisms with a planktonic lifestyle were more exposed to UV radiation than groups that lived on the seabed. This is consistent with observations that planktonic organisms suffered severely during the first extinction pulse. In addition, species dwelling in shallow water were more likely to become extinct than species dwelling in deep water. A gamma-ray burst could also explain the rapid onset of glaciation, since ozone and nitrogen would react to form nitrogen dioxide, a darkly-colored aerosol which cools the earth. Although the gamma-ray burst hypothesis is consistent with some patterns at the onset of extinction, there is no unambiguous evidence that such a nearby gamma-ray burst ever happened.

Volcanism and weathering

The late Ordovician glaciation was preceded by a fall in atmospheric carbon dioxide (from 7,000 ppm to 4,400 ppm). The dip is correlated with a burst of volcanic activity that deposited new silicate rocks, which draw CO2 out of the air as they erode. A major role of CO2 is implied by a 2009 paper. Atmospheric and oceanic CO2 levels may have fluctuated with the growth and decay of Gondwanan glaciation. Through the Late Ordovician, outgassing from major volcanism was balanced by heavy weathering of the uplifting Appalachian Mountains, which sequestered CO2. In the Hirnantian Stage the volcanism ceased, and the continued weathering caused a significant and rapid draw down of CO2. This coincides with the rapid and short ice age.

The appearance and development of terrestrial plants and microphytoplankton, which consumed atmospheric carbon dioxide, thus, diminishing the greenhouse effect and promoting the transition of the climatic system to the glacial mode, played a unique role in that period. During this extinction event there were also several marked changes in biologically responsive carbon and oxygen isotopes.

More recently, in May 2020, a study suggested the first pulse of mass extinction was caused by volcanism which induced global warming and anoxia, rather than cooling and glaciation.

Evolution of birds

From Wikipedia, the free encyclopedia
 

The evolution of birds began in the Jurassic Period, with the earliest birds derived from a clade of theropod dinosaurs named Paraves. Birds are categorized as a biological class, Aves. For more than a century, the small theropod dinosaur Archaeopteryx lithographica from the Late Jurassic period was considered to have been the earliest bird. Modern phylogenies place birds in the dinosaur clade Theropoda. According to the current consensus, Aves and a sister group, the order Crocodilia, together are the sole living members of an unranked "reptile" clade, the Archosauria. Four distinct lineages of bird survived the Cretaceous–Paleogene extinction event 66 million years ago, giving rise to ostriches and relatives (Paleognathae), ducks and relatives (Anseriformes), ground-living fowl (Galliformes), and "modern birds" (Neoaves).

Phylogenetically, Aves is usually defined as all descendants of the most recent common ancestor of a specific modern bird species (such as the house sparrow, Passer domesticus), and either Archaeopteryx, or some prehistoric species closer to Neornithes (to avoid the problems caused by the unclear relationships of Archaeopteryx to other theropods). If the latter classification is used then the larger group is termed Avialae. Currently, the relationship between dinosaurs, Archaeopteryx, and modern birds is still under debate.

Origins

There is significant evidence that birds emerged within theropod dinosaurs, specifically, that birds are members of Maniraptora, a group of theropods which includes dromaeosaurs and oviraptorids, among others. As more non-avian theropods that are closely related to birds are discovered, the formerly clear distinction between non-birds and birds becomes less so. This was noted already in the 19th century, with Thomas Huxley writing:

We have had to stretch the definition of the class of birds so as to include birds with teeth and birds with paw-like fore limbs and long tails. There is no evidence that Compsognathus possessed feathers; but, if it did, it would be hard indeed to say whether it should be called a reptilian bird or an avian reptile.

The mounted skeleton of a Velociraptor, showing the very bird-like quality of the smaller theropod dinosaurs

Discoveries in northeast China (Liaoning Province) demonstrate that many small theropod dinosaurs did indeed have feathers, among them the compsognathid Sinosauropteryx and the microraptorian dromaeosaurid Sinornithosaurus. This has contributed to this ambiguity of where to draw the line between birds and reptiles. Cryptovolans, a dromaeosaurid found in 2002 (which may be a junior synonym of Microraptor) was capable of powered flight, possessed a sternal keel and had ribs with uncinate processes. Cryptovolans seems to make a better "bird" than Archaeopteryx which lacks some of these modern bird features. Because of this, some paleontologists have suggested that dromaeosaurs are actually basal birds whose larger members are secondarily flightless, i.e. that dromaeosaurs evolved from birds and not the other way around. Evidence for this theory is currently inconclusive, but digs continue to unearth fossils (especially in China) of feathered dromaeosaurs. At any rate, it is fairly certain that flight utilizing feathered wings existed in the mid-Jurassic theropods. The Cretaceous unenlagiine Rahonavis also possesses features suggesting it was at least partially capable of powered flight.

Although ornithischian (bird-hipped) dinosaurs share the same hip structure as birds, birds actually originated from the saurischian (lizard-hipped) dinosaurs if the dinosaurian origin theory is correct. They thus arrived at their hip structure condition independently. In fact, a bird-like hip structure also developed a third time among a peculiar group of theropods, the Therizinosauridae.

An alternate theory to the dinosaurian origin of birds, espoused by a few scientists, notably Larry Martin and Alan Feduccia, states that birds (including maniraptoran "dinosaurs") evolved from early archosaurs like Longisquama. This theory is contested by most other paleontologists and experts in feather development and evolution.

Mesozoic birds

The basal bird Archaeopteryx, from the Jurassic, is well known as one of the first "missing links" to be found in support of evolution in the late 19th century. Though it is not considered a direct ancestor of modern birds, it gives a fair representation of how flight evolved and how the very first bird might have looked. It may be predated by Protoavis texensis, though the fragmentary nature of this fossil leaves it open to considerable doubt whether this was a bird ancestor. The skeleton of all early bird candidates is basically that of a small theropod dinosaur with long, clawed hands, though the exquisite preservation of the Solnhofen Plattenkalk shows Archaeopteryx was covered in feathers and had wings. While Archaeopteryx and its relatives may not have been very good fliers, they would at least have been competent gliders, setting the stage for the evolution of life on the wing.

Reconstruction of Iberomesornis romerali, a toothed enantiornithe

The evolutionary trend among birds has been the reduction of anatomical elements to save weight. The first element to disappear was the bony tail, being reduced to a pygostyle and the tail function taken over by feathers. Confuciusornis is an example of their trend. While keeping the clawed fingers, perhaps for climbing, it had a pygostyle tail, though longer than in modern birds. A large group of birds, the Enantiornithes, evolved into ecological niches similar to those of modern birds and flourished throughout the Mesozoic. Though their wings resembled those of many modern bird groups, they retained the clawed wings and a snout with teeth rather than a beak in most forms. The loss of a long tail was followed by a rapid evolution of their legs which evolved to become highly versatile and adaptable tools that opened up new ecological niches.

The Cretaceous saw the rise of more modern birds with a more rigid ribcage with a carina and shoulders able to allow for a powerful upstroke, essential to sustained powered flight. Another improvement was the appearance of an alula, used to achieve better control of landing or flight at low speeds. They also had a more derived pygostyle, with a ploughshare-shaped end. An early example is Yanornis. Many were coastal birds, strikingly resembling modern shorebirds, like Ichthyornis, or ducks, like Gansus. Some evolved as swimming hunters, like the Hesperornithiformes – a group of flightless divers resembling grebes and loons. While modern in most respects, most of these birds retained typical reptilian-like teeth and sharp claws on the manus.

The modern toothless birds evolved from the toothed ancestors in the Cretaceous. Meanwhile, the earlier primitive birds, particularly the Enantiornithes, continued to thrive and diversify alongside the pterosaurs through this geologic period until they became extinct due to the K–T extinction event. All but a few groups of the toothless Neornithes were also cut short. The surviving lineages of birds were the comparatively primitive Paleognathae (ostrich and its allies), the aquatic duck lineage, the terrestrial fowl, and the highly volant Neoaves.

Adaptive radiation of modern birds

Modern birds are classified in Neornithes, which are now known to have evolved into some basic lineages by the end of the Cretaceous. The Neornithes are split into the paleognaths and neognaths.

The paleognaths include the tinamous (found only in Central and South America) and the ratites, which nowadays are found almost exclusively on the Southern Hemisphere. The ratites are large flightless birds, and include ostriches, rheas, cassowaries, kiwis and emus. A few scientists propose that the ratites represent an artificial grouping of birds which have independently lost the ability to fly in a number of unrelated lineages. In any case, the available data regarding their evolution is still very confusing, partly because there are no uncontroversial fossils from the Mesozoic. Phylogenetic analysis supports the assertion that the ratites are polyphyletic and do not represent a valid grouping of birds.

Haast's eagle and moa in New Zealand; the eagle is a neognath, the moa are paleognaths.

The basal divergence from the remaining Neognathes was that of the Galloanserae, the superorder containing the Anseriformes (ducks, geese and swans), and the Galliformes (chickens, turkeys, pheasants, and their allies). The presence of basal anseriform fossils in the Mesozoic and likely some galliform fossils implies the presence of paleognaths at the same time, in spite of the absence of fossil evidence.

The dates for the splits are a matter of considerable debate amongst scientists. It is agreed that the Neornithes evolved in the Cretaceous and that the split between the Galloanserae and the other neognaths – the Neoaves – occurred before the Cretaceous–Paleogene extinction event, but there are different opinions about whether the radiation of the remaining neognaths occurred before or after the extinction of the other dinosaurs. This disagreement is in part caused by a divergence in the evidence, with molecular dating suggesting a Cretaceous radiation, a small and equivocal neoavian fossil record from Cretaceous, and most living families turning up during the Paleogene. Attempts made to reconcile the molecular and fossil evidence have proved controversial.

On the other hand, two factors must be considered: First, molecular clocks cannot be considered reliable in the absence of robust fossil calibration, whereas the fossil record is naturally incomplete. Second, in reconstructed phylogenetic trees, the time and pattern of lineage separation corresponds to the evolution of the characters (such as DNA sequences, morphological traits etc.) studied, not to the actual evolutionary pattern of the lineages; these ideally should not differ by much, but may well do so in practice.

Considering this, it is easy to see that fossil data, compared to molecular data, tends to be more accurate in general, but also to underestimate divergence times: morphological traits, being the product of entire developmental genetics networks, usually only start to diverge some time after a lineage split would become apparent in DNA sequence comparison – especially if the sequences used contain many silent mutations.

The authors of a May 2018 report in Current Biology think that the birds that survived the end-of-Cetaceous disaster were Neornithes, Neognathae (Galloanserae + Neoaves), not tree-living, and could not fly far, because of the worldwide destruction of forests and that it took a long time for the world's forests to return properly. Virtually the same conclusions were already reached before, in a 2016 book on avian evolution.

In August 2020 scientists reported that bird skull evolution decelerated compared with the evolution of their dinosaur predecessors after the Cretaceous–Paleogene extinction event, rather than accelerating as often believed to have caused the cranial shape diversity of modern birds.

Classification of modern species

The diversity of modern birds

The phylogenetic classification of birds is a contentious issue. Sibley & Ahlquist's Phylogeny and Classification of Birds (1990) is a landmark work on the classification of birds (although frequently debated and constantly revised). A preponderance of evidence suggests that most modern bird orders constitute good clades. However, scientists are not in agreement as to the precise relationships between the main clades. Evidence from modern bird anatomy, fossils and DNA have all been brought to bear on the problem but no strong consensus has emerged.

Current evolutionary trends in birds

Evolution generally occurs at a scale far too slow to be witnessed by humans. However, bird species are currently going extinct at a far greater rate than any possible speciation or other generation of new species. The disappearance of a population, subspecies, or species represents the permanent loss of a range of genes.

Another concern with evolutionary implications is a suspected increase in hybridization. This may arise from human alteration of habitats enabling related allopatric species to overlap. Forest fragmentation can create extensive open areas, connecting previously isolated patches of open habitat. Populations that were isolated for sufficient time to diverge significantly, but not sufficient to be incapable of producing fertile offspring may now be interbreeding so broadly that the integrity of the original species may be compromised. For example, the many hybrid hummingbirds found in northwest South America may represent a threat to the conservation of the distinct species involved.

Several species of birds have been bred in captivity to create variations on wild species. In some birds this is limited to color variations, while others are bred for larger egg or meat production, for flightlessness or other characteristics.

In December 2019 the results of a joint study by Chicago's Field Museum and the University of Michigan into changes in the morphology of birds was published in Ecology Letters. The study uses bodies of birds which died as a result of colliding with buildings in Chicago, Illinois, since 1978. The sample is made up of over 70,000 specimens from 52 species and span the period from 1978 to 2016. The study shows that the length of birds' lower leg bones (an indicator of body sizes) shortened by an average of 2.4% and their wings lengthened by 1.3%. The findings of the study suggest the morphological changes are the result of climate change, demonstrating an example of evolutionary change following Bergmann's rule.

Brønsted–Lowry acid–base theory

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Br%C3%B8nsted%E2%80%93Lowry_acid%E2%80%93base_theory The B...