Search This Blog

Tuesday, August 10, 2021

Food irradiation

From Wikipedia, the free encyclopedia
 
Cobalt-60 irradiation facility is used to test irradiation as a tool to ensure food safety.
 
The international Radura logo, used to show a food has been treated with ionizing radiation.
 
A portable, trailer-mounted food irradiation machine, circa 1968

Food irradiation is the process of exposing food and food packaging to ionizing radiation, such as from gamma rays, x-rays, or electron beams, without direct contact to the food product. When ionizing radiation passes through a food product, some energy is absorbed by some chemical bonds. Some bonds rupture and produce free radicals which are highly reactive and unstable. They instantaneously rejoin with neighboring compounds and the results are called radiolytic compounds. Food irradiation is used to improve food safety by extending product shelf life (preservation), reducing the risk of foodborne illness, delaying or eliminating sprouting or ripening, by sterilization of foods, and as a means of controlling insects and invasive pests. Food irradiation extends the shelf life of irradiated foods by effectively destroying organisms responsible for spoilage and foodborne illness and inhibiting sprouting. Consumer perception of foods treated with irradiation is more negative than those processed by other means. The U.S. Food and Drug Administration (FDA), the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and U.S. Department of Agriculture (USDA) have performed studies that confirm irradiation to be safe. In order for a food to be irradiated in the US, the FDA will still require that the specific food be thoroughly tested for irradiation safety.

Food irradiation is permitted in over 60 countries, and about 500,000 metric tons of food are processed annually worldwide. The regulations for how food is to be irradiated, as well as the foods allowed to be irradiated, vary greatly from country to country. In Austria, Germany, and many other countries of the European Union only dried herbs, spices, and seasonings can be processed with irradiation and only at a specific dose, while in Brazil all foods are allowed at any dose.

Uses

Irradiation is used to reduce or eliminate pests and the risk of food-borne illnesses as well as prevent or slow spoilage and plant maturation or sprouting. Depending on the dose, some or all of the organisms, microorganisms, bacteria, and viruses present are destroyed, slowed, or rendered incapable of reproduction. When targeting bacteria, most foods are irradiated to significantly reduce the number of active microbes, not to sterilize all microbes in the product. Irradiation cannot return spoiled or over-ripe food to a fresh state. If this food was processed by irradiation, further spoilage would cease and ripening would slow, yet the irradiation would not destroy the toxins or repair the texture, color, or taste of the food.

Irradiation slows the speed at which enzymes change the food. By reducing or removing spoilage organisms and slowing ripening and sprouting (e.g. potato, onion, and garlic) irradiation is used to reduce the amount of food that goes bad between harvest and final use. Shelf-stable products are created by irradiating foods in sealed packages, as irradiation reduces chance of spoilage, the packaging prevents re-contamination of the final product. Foods that can tolerate the higher doses of radiation required to do so can be sterilized. This is useful for people at high risk of infection in hospitals as well as situations where proper food storage is not feasible, such as rations for astronauts.

Pests such as insects have been transported to new habitats through the trade in fresh produce and significantly affected agricultural production and the environment once they established themselves. To reduce this threat and enable trade across quarantine boundaries, food is irradiated using a technique called phytosanitary irradiation. Phytosanitary irradiation sterilizes the pests preventing breeding by treating the produce with low doses of irradiation (less than 1000 Gy). The higher doses required to destroy pests are not used due to either affecting the look or taste, or cannot be tolerated by fresh produce.

Process

Efficiency illustration of the different radiation technologies (electron beam, X-ray, gamma rays)

The target material is exposed to a radiation source that is separated from the target material. The radiation source supplies energetic particles or waves. As these waves/particles enter the target material they collide with other particles. The higher the likelihood of these collisions over a distance are, the lower the penetration depth of the irradiation process is as the energy is more quickly depleted. Around the sites of these collisions chemical bonds are broken, creating short lived radicals (e.g. the hydroxyl radical, the hydrogen atom and solvated electrons). These radicals cause further chemical changes by bonding with and or stripping particles from nearby molecules. When collisions occur in cells, cell division is often suppressed, halting or slowing the processes that cause the food to mature. When the process damages DNA or RNA, effective reproduction becomes unlikely halting the population growth of viruses and organisms. The distribution of the dose of radiation varies from the food surface and the interior as it is absorbed as it moves through food and depends on the energy and density of the food and the type of radiation used.

This leaves a product with qualities (sensory and chemical) that are more similar to unprocessed food than any preservation method that can achieve a similar degree of preservation.

Irradiated food does not become radioactive; only radiation sources that are incapable of causing significant induced radioactivity are used for food irradiation. Radioactivity is the ability of an atom to emit energetic particles. When particles hit the target materials, they may free other highly energetic particles. When the nucleus is not modified this ends shortly after the end of the exposure, much like objects stop reflecting light when the source is turned off and warm objects emit heat until they cool down but do not continue to produce their own heat. To modify a material so that it keeps emitting radiation (induce radiation) the atomic cores (nucleus) of the atoms in the target material must be modified by colliding with particles above a specific energy threshold. Particles below this energy can never be strong enough to modify the nucleus of the targeted atom in the food, regardless of how many particles hit the target material, and radioactivity can not be induced without modifying the nucleus. Food irradiators using radioactive materials (gamma irradiation) or electron beams as sources produce radiation at a precise energies making it impossible to induce any amount of radiation. Food irradiatiors using x-rays produce radiation at a wider power spectrum, a small portion of this radiation is above the threshold for inducing radiation, therefore is impossible for food irradiators to induce radiation above the background level (above the normal level of radiation) in a product.

Dosimetry

The radiation absorbed dose is the amount energy absorbed per unit weight of the target material. Dose is used because, when the same substance is given the same dose, similar changes are observed in the target material(Gy or J/kg). Dosimeters are used to measure dose, and are small components that, when exposed to ionizing radiation, change measurable physical attributes to a degree that can be correlated to the dose received. Measuring dose (dosimetry) involves exposing one or more dosimeters along with the target material.

For purposes of legislation doses are divided into low (up to 1 kGy), medium (1 kGy to 10 kGy), and high-dose applications (above 10 kGy). High-dose applications are above those currently permitted in the US for commercial food items by the FDA and other regulators around the world. Though these doses are approved for non commercial applications, such as sterilizing frozen meat for NASA astronauts (doses of 44 kGy) and food for hospital patients.

The ratio of the maximum dose permitted at the outer edge (Dmax) to the minimum limit to achieve processing conditions (Dmin) determines the uniformity of dose distribution. This ratio determines how uniform the irradiation process is.

Applications of food irradiation

Application Dose (kGy)
Low dose (up to 1 kGy) Inhibit sprouting (potatoes, onions, yams, garlic) 0.06 - 0.2
Delay in ripening (strawberries, potatoes) 0.5 - 1.0
Prevent insect infestation (grains, cereals, coffee beans, spices, dried nuts, dried fruits, dried fish, mangoes, papayas) 0.15 - 1.0
Parasite control and inactivation (tape worm, trichina) 0.3 - 1.0
Medium dose (1 kGy to 10 kGy) Extend shelf-life of raw and fresh fish, seafood, fresh produce 1.0 - 5.5
Extend shelf-life of refrigerated and frozen meat products 4.5 - 7.0
Reduce risk of pathogenic and spoilage microbes (meat, seafood, spices, and poultry) 1.0 - 7.0
Increased juice yield, reduction in cooking time of dried vegetables 3.0 - 7.0
High dose (above 10 kGy) Enzymes (dehydrated) 10.0
Sterilization of spices, dry vegetable seasonings 30.0 max
Sterilization of packaging material 10.0 - 25.0
Sterilization of foods (NASA and hospitals) 44.0

Chemical changes

As ionising radiation passes through food, it creates a trail of chemical transformations due to radiolysis effects. Irradiation does not make foods radioactive, change food chemistry, compromise nutrient contents, or change the taste, texture, or appearance of food . However, the Organic consumers organisation disputes that taste and nutritional value are not harmed by food irradiation.

Food quality

Assessed rigorously over several decades, irradiation in commercial amounts to treat food has no negative impact on the sensory qualities and nutrient content of foods, the only new contrary evidence was indicated in publications on leukoencephalomyelopathy in cats which have been fed mainly or exclusively with highly irradiated feed.

Research on minimally processed vegetables

Watercress (Nasturtium officinale) is a rapidly growing aquatic or semi aquatic perennial plant. Because chemical agents do not provide efficient microbial reductions, watercress has been tested with gamma irradiation treatment in order to improve both safety and the shelf life of the product. It is traditionally used on horticultural products to prevent sprouting and post-packaging contamination, delay post-harvest ripening, maturation and senescence.

Public Perceptions

Some who advocate against food irradiation argue the long term health effects & safety of irradiated food cannot be scientifically proven, despite hundreds of animal feeding studies of irradiated food performed since 1950. Endpoints include subchronic and chronic changes in metabolism, histopathology, function of most organs, reproductive effects, growth, teratogenicity, and mutagenicity.

Industrial process

Up to the point where the food is processed by irradiation, the food is processed in the same way as all other food.

Packaging

For some forms of treatment, packaging is used to ensure the food stuffs never come in contact with radioactive substances and prevent re-contamination of the final product. Food processors and manufacturers today struggle with using affordable, efficient packaging materials for irradiation based processing. The implementation of irradiation on prepackaged foods has been found to impact foods by inducing specific chemical alterations to the food packaging material that migrates into the food. Cross-linking in various plastics can lead to physical and chemical modifications that can increase the overall molecular weight. On the other hand, chain scission is fragmentation of polymer chains that leads to a molecular weight reduction.

Treatment

To treat the food, it is exposed to a radioactive source for a set period of time to achieve a desired dose. Radiation may be emitted by a radioactive substance, or by X-ray and electron beam accelerators. Special precautions are taken to ensure the food stuffs never come in contact with the radioactive substances and that the personnel and the environment are protected from exposure radiation. Irradiation treatments are typically classified by dose (high, medium, and low), but are sometimes classified by the effects of the treatment (radappertization, radicidation and radurization). Food irradiation is sometimes referred to as "cold pasteurization" or "electronic pasteurization" because ionizing the food does not heat the food to high temperatures during the process, and the effect is similar to heat pasteurization. The term "cold pasteurization" is controversial because the term may be used to disguise the fact the food has been irradiated and pasteurization and irradiation are fundamentally different processes.

Gamma irradiation

Gamma irradiation is produced from the radioisotopes cobalt-60 and caesium-137, which are derived by neutron bombardment of cobalt-59 and as a nuclear source by-product, respectively. Cobalt-60 is the most common source of gamma rays for food irradiation in commercial scale facilities as it is water insoluble and hence has little risk of environmental contamination by leakage into the water systems. As for transportation of the radiation source, cobalt-60 is transported in special trucks that prevent release of radiation and meet standards mentioned in the Regulations for Safe Transport of Radioactive Materials of the International Atomic Energy Act. The special trucks must meet high safety standards and pass extensive tests to be approved to ship radiation sources. Conversely, caesium-137, is water-soluble and poses a risk of environmental contamination. Insufficient quantities are available for large scale commercial use. An incident where water-soluble caesium-137 leaked into the source storage pool requiring NRC intervention has led to near elimination of this radioisotope.

Cobalt 60 stored in Gamma Irradiation machine

Gamma irradiation is widely used due to its high penetration depth and dose uniformity, allowing for large-scale applications with high through puts. Additionally, gamma irradiation is significantly less expensive than using an X-ray source. In most designs, the radioisotope, contained in stainless steel pencils, is stored in a water-filled storage pool which absorbs the radiation energy when not in use. For treatment, the source is lifted out of the storage tank, and product contained in totes is passed around the pencils to achieve required processing.

Treatment costs vary as a function of dose and facility usage. A pallet or tote is typically exposed for several minutes to hours depending on dose. Low-dose applications such as disinfestation of fruit range between US$0.01/lbs and US$0.08/lbs while higher-dose applications can cost as much as US$0.20/lbs.

Electron beam

Treatment of electron beams is created as a result of high energy electrons in an accelerator that generates electrons accelerated to 99% the speed of light. This system uses electrical energy and can be powered on and off. The high power correlates with a higher throughput and lower unit cost, but electron beams have low dose uniformity and a penetration depth of centimeters. Therefore, electron beam treatment works for products that have low thickness.

Irradiated Guava: Spring Valley Fruits, Mexico

X-ray

X-rays are produced by bombardment of dense target material with high energy accelerated electrons (this process is known as bremsstrahlung-conversion), giving rise to a continuous energy spectrum. Heavy metals, such as tantalum and tungsten, are used because of their high atomic numbers and high melting temperatures.Tantalum is usually preferred versus tungsten for industrial, large-area, high-power targets because it is more workable than tungsten and has a higher threshold energy for induced reactions. Like electron beams, x-rays do not require the use of radioactive materials and can be turned off when not in use. X-rays have high penetration depths and high dose uniformity but they are a very expensive source of irradiation as only 8% of the incident energy is converted into X-rays.

UV-C

UV-C does not penetrate as deeply as other methods. As such, its direct antimicrobial effect is limited to the surface only. Its DNA damage effect produces cyclobutane-type pyrimidine dimers. Besides the direct effects, UV-C also induces resistance even against pathogens not yet inoculated. Some of this induced resistance is understood, being the result of temporary inactivation of self-degradation enzymes like polygalacturonase and increased expression of enzymes associated with cell wall repair.

Cost

Irradiation is a capital-intensive technology requiring a substantial initial investment, ranging from $1 million to $5 million. In the case of large research or contract irradiation facilities, major capital costs include a radiation source, hardware (irradiator, totes and conveyors, control systems, and other auxiliary equipment), land (1 to 1.5 acres), radiation shield, and warehouse. Operating costs include salaries (for fixed and variable labor), utilities, maintenance, taxes/insurance, cobalt-60 replenishment, general utilities, and miscellaneous operating costs. Perishable food items, like fruits, vegetables and meats would still require to be handled in the cold chain, so all other supply chain costs remain the same. Food manufacturers have not embraced food irradiation because the market does not support the increased price of irradiated foods, and because of potential consumer backlash due to irradiated foods.

The cost of food irradiation is influenced by dose requirements, the food's tolerance of radiation, handling conditions, i.e., packaging and stacking requirements, construction costs, financing arrangements, and other variables particular to the situation.

State of the industry

Irradiation has been approved by many countries. For example, in the U.S. and Canada, food irradiation has existed for decades. Food irradiation is used commercially and volumes are in general increasing at a slow rate, even in the European Union where all member countries allow the irradiation of dried herbs spices and vegetable seasonings, but only a few allow other foods to be sold as irradiated.

Although there are some consumers who choose not to purchase irradiated food, a sufficient market has existed for retailers to have continuously stocked irradiated products for years. When labeled irradiated food is offered for retail sale, consumers buy it and re-purchase it, indicating a market for irradiated foods, although there is a continuing need for consumer education.

Food scientists have concluded that any fresh or frozen food undergoing irradiation at specified doses is safe to consume, with some 60 countries using irradiation to maintain quality in their food supply.

Standards and regulations

The Codex Alimentarius represents the global standard for irradiation of food, in particular under the WTO-agreement. Regardless of treatment source, all processing facilities must adhere to safety standards set by the International Atomic Energy Agency (IAEA), Codex Code of Practice for the Radiation Processing of Food, Nuclear Regulatory Commission (NRC), and the International Organization for Standardization (ISO). More specifically, ISO 14470 and ISO 9001 provide in-depth information regarding safety in irradiation facilities.

All commercial irradiation facilities contain safety systems which are designed to prevent exposure of personnel to radiation. The radiation source is constantly shielded by water, concrete, or metal. Irradiation facilities are designed with overlapping layers of protection, interlocks, and safeguards to prevent accidental radiation exposure. Additionally, "melt-downs" do not occur in facilities because the radiation source gives off radiation and decay heat; however, the heat is not sufficient to melt any material.

Labeling

The Radura symbol, as required by U.S. Food and Drug Administration regulations to show a food has been treated with ionizing radiation.

The provisions of the Codex Alimentarius are that any "first generation" product must be labeled "irradiated" as any product derived directly from an irradiated raw material; for ingredients the provision is that even the last molecule of an irradiated ingredient must be listed with the ingredients even in cases where the unirradiated ingredient does not appear on the label. The RADURA-logo is optional; several countries use a graphical version that differs from the Codex-version. The suggested rules for labeling is published at CODEX-STAN – 1 (2005), and includes the usage of the Radura symbol for all products that contain irradiated foods. The Radura symbol is not a designator of quality. The amount of pathogens remaining is based upon dose and the original content and the dose applied can vary on a product by product basis.

The European Union follows the Codex's provision to label irradiated ingredients down to the last molecule of irradiated food. The European Union does not provide for the use of the Radura logo and relies exclusively on labeling by the appropriate phrases in the respective languages of the Member States. The European Union enforces its irradiation labeling laws by requiring its member countries to perform tests on a cross section of food items in the market-place and to report to the European Commission. The results are published annually on EUR-Lex.

The US defines irradiated foods as foods in which the irradiation causes a material change in the food, or a material change in the consequences that may result from the use of the food. Therefore, food that is processed as an ingredient by a restaurant or food processor is exempt from the labeling requirement in the US. All irradiated foods must include a prominent Radura symbol followed in addition to the statement "treated with irradiation" or "treated by irradiation. Bulk foods must be individually labeled with the symbol and statement or, alternatively, the Radura and statement should be located next to the sale container.

Packaging

Under section 409 of the Federal Food, Drug, and Cosmetic Act, irradiation of prepackaged foods requires premarket approval for not only the irradiation source for a specific food but also for the food packaging material. Approved packaging materials include various plastic films, yet does not cover a variety of polymers and adhesive based materials that have been found to meet specific standards. The lack of packaging material approval limits manufacturers production and expansion of irradiated prepackaged foods.

Approved materials by FDA for Irradiation according to 21 CFR 179.45:

Material Paper (kraft) Paper (glassine) Paperboard Cellophane (coated) Polyolefin film Polyestyrene film Nylon-6 Vegetable Parchment Nylon 11
Irradiation (kGy) .05 10 10 10 10 10 10 60 60

Food safety

In 2003, the Codex Alimentarius removed any upper dose limit for food irradiation as well as clearances for specific foods, declaring that all are safe to irradiate. Countries such as Pakistan and Brazil have adopted the Codex without any reservation or restriction.

Standards that describe calibration and operation for radiation dosimetry, as well as procedures to relate the measured dose to the effects achieved and to report and document such results, are maintained by the American Society for Testing and Materials (ASTM international) and are also available as ISO/ASTM standards.

All of the rules involved in processing food are applied to all foods before they are irradiated.

United States

The U.S. Food and Drug Administration (FDA) is the agency responsible for regulation of radiation sources in the United States. Irradiation, as defined by the FDA is a "food additive" as opposed to a food process and therefore falls under the food additive regulations. Each food approved for irradiation has specific guidelines in terms of minimum and maximum dosage as determined safe by the FDA. Packaging materials containing the food processed by irradiation must also undergo approval. The United States Department of Agriculture (USDA) amends these rules for use with meat, poultry, and fresh fruit.

The United States Department of Agriculture (USDA) has approved the use of low-level irradiation as an alternative treatment to pesticides for fruits and vegetables that are considered hosts to a number of insect pests, including fruit flies and seed weevils. Under bilateral agreements that allows less-developed countries to earn income through food exports agreements are made to allow them to irradiate fruits and vegetables at low doses to kill insects, so that the food can avoid quarantine.

The U.S. Food and Drug Administration and the U.S. Department of Agriculture have approved irradiation of the following foods and purposes:

  • Packaged refrigerated or frozen red meat — to control pathogens (E. Coli O157:H7 and Salmonella) and to extend shelf life
  • Packaged poultry — control pathogens (Salmonella and Camplylobacter)
  • Fresh fruits, vegetables, and grains — to control insects and inhibit growth, ripening and sprouting
  • Pork — to control trichinosis
  • Herbs, spices and vegetable seasonings — to control insects and microorganisms
  • Dry or dehydrated enzyme preparations — to control insects and microorganisms
  • White potatoes — to inhibit sprout development
  • Wheat and wheat flour — to control insects
  • Loose or bagged fresh iceberg lettuce and spinach
  • Crustaceans (lobster, shrimp, and crab)
  • Shellfish (oysters, clams, mussels, and scallops)

European Union

European law stipulates that all member countries must allow the sale of irradiated dried aromatic herbs, spices and vegetable seasonings. However, these Directives allow Member States to maintain previous clearances food categories the EC's Scientific Committee on Food (SCF) had previously approved (the approval body is now the European Food Safety Authority). Presently, Belgium, Czech Republic, France, Italy, Netherlands, Poland, and the United Kingdom allow the sale of many different types of irradiated foods. Before individual items in an approved class can be added to the approved list, studies into the toxicology of each of such food and for each of the proposed dose ranges are requested. It also states that irradiation shall not be used "as a substitute for hygiene or health practices or good manufacturing or agricultural practice". These Directives only control food irradiation for food retail and their conditions and controls are not applicable to the irradiation of food for patients requiring sterile diets. In 2021 the most common food items irradiated were frog legs at 65.1%, poultry 20.6% and dried aromatic herbs, spices and vegetables seasoning.

Because of the Single Market of the EU any food, even if irradiated, must be allowed to be marketed in any other Member State even if a general ban of food irradiation prevails, under the condition that the food has been irradiated legally in the state of origin.

Furthermore, imports into the EC are possible from third countries if the irradiation facility had been inspected and approved by the EC and the treatment is legal within the EC or some Member state.

Nuclear safety and security

Interlocks and safeguards are mandated to minimize this risk. There have been radiation-related accidents, deaths, and injury at such facilities, many of them caused by operators overriding the safety related interlocks. In a radiation processing facility, radiation specific concerns are supervised by special authorities, while "Ordinary" occupational safety regulations are handled much like other businesses.

The safety of irradiation facilities is regulated by the United Nations International Atomic Energy Agency and monitored by the different national Nuclear Regulatory Commissions. The regulators enforce a safety culture that mandates that all incidents that occur are documented and thoroughly analyzed to determine the cause and improvement potential. Such incidents are studied by personnel at multiple facilities, and improvements are mandated to retrofit existing facilities and future design.

In the US the Nuclear Regulatory Commission (NRC) regulates the safety of the processing facility, and the United States Department of Transportation (DOT) regulates the safe transport of the radioactive sources.

Historical timeline

  • 1895 Wilhelm Conrad Röntgen discovers X-rays ("bremsstrahlung", from German for radiation produced by deceleration)
  • 1896 Antoine Henri Becquerel discovers natural radioactivity; Minck proposes the therapeutic use
  • 1904 Samuel Prescott describes the bactericide effects Massachusetts Institute of Technology (MIT)
  • 1906 Appleby & Banks: UK patent to use radioactive isotopes to irradiate particulate food in a flowing bed
  • 1918 Gillett: U.S. Patent to use X-rays for the preservation of food
  • 1921 Schwartz describes the elimination of Trichinella from food
  • 1930 Wuest: French patent on food irradiation
  • 1943 MIT becomes active in the field of food preservation for the U.S. Army
  • 1951 U.S. Atomic Energy Commission begins to co-ordinate national research activities
  • 1958 World first commercial food irradiation (spices) at Stuttgart, Germany
  • 1970 Establishment of the International Food Irradiation Project (IFIP), headquarters at the Federal Research Centre for Food Preservation, Karlsruhe, Germany
  • 1980 FAO/IAEA/WHO Joint Expert Committee on Food Irradiation recommends the clearance generally up to 10 kGy "overall average dose"
  • 1981/1983 End of IFIP after reaching its goals
  • 1983 Codex Alimentarius General Standard for Irradiated Foods: any food at a maximum "overall average dose" of 10 kGy
  • 1984 International Consultative Group on Food Irradiation (ICGFI) becomes the successor of IFIP
  • 1998 The European Union's Scientific Committee on Food (SCF) voted in favour of eight categories of irradiation applications
  • 1997 FAO/IAEA/WHO Joint Study Group on High-Dose Irradiation recommends to lift any upper dose limit
  • 1999 The European Union adopts Directives 1999/2/EC (framework Directive) and 1999/3/EC (implementing Directive) limiting irradiation a positive list whose sole content is one of the eight categories approved by the SCF, but allowing the individual states to give clearances for any food previously approved by the SCF.
  • 2000 Germany leads a veto on a measure to provide a final draft for the positive list.
  • 2003 Codex Alimentarius General Standard for Irradiated Foods: no longer any upper dose limit
  • 2003 The SCF adopts a "revised opinion" that recommends against the cancellation of the upper dose limit.
  • 2004 ICGFI ends
  • 2011 The successor to the SCF, European Food Safety Authority (EFSA), reexamines the SCF's list and makes further recommendations for inclusion.

 

Pasteurization

From Wikipedia, the free encyclopedia

Pasteurized milk in Japan
 
A Chicago Department of Health poster explains home pasteurization to mothers

Pasteurization or pasteurisation is a process in which packaged and non-packaged foods (such as milk and fruit juice) are treated with mild heat, usually to less than 100 °C (212 °F), to eliminate pathogens and extend shelf life. The process is intended to destroy or deactivate organisms and enzymes that contribute to spoilage or risk of disease, including vegetative bacteria, but not bacterial spores.

The process was named after the French microbiologist, Louis Pasteur, whose research in the 1860s demonstrated that thermal processing would deactivate unwanted microorganisms in wine. Spoilage enzymes are also inactivated during pasteurization. Today, pasteurization is used widely in the dairy industry and other food processing industries to achieve food preservation and food safety.

By the year 1999, most liquid products were heat treated in a continuous system where heat can be applied using a plate heat exchanger or the direct or indirect use of hot water and steam. Due to the mild heat, there are minor changes to the nutritional quality and sensory characteristics of the treated foods. Pascalization or high pressure processing (HPP) and pulsed electric field (PEF) are non-thermal processes that are also used to pasteurize foods.

History

Louis Pasteur's pasteurization experiment illustrates the fact that the spoilage of liquid was caused by particles in the air rather than the air itself. These experiments were important pieces of evidence supporting the idea of the germ theory of disease.

The process of heating wine for preservation purposes has been known in China since AD 1117, and was documented in Japan in the diary Tamonin-nikki, written by a series of monks between 1478 and 1618.

Much later, in 1768, research performed by Italian priest and scientist Lazzaro Spallanzani proved a product could be made "sterile" after thermal processing. Spallanzani boiled meat broth for one hour, sealed the container immediately after boiling, and noticed that the broth did not spoil and was free from microorganisms. In 1795, a Parisian chef and confectioner named Nicolas Appert began experimenting with ways to preserve foodstuffs, succeeding with soups, vegetables, juices, dairy products, jellies, jams, and syrups. He placed the food in glass jars, sealed them with cork and sealing wax and placed them in boiling water. In that same year, the French military offered a cash prize of 12,000 francs for a new method to preserve food. After some 14 or 15 years of experimenting, Appert submitted his invention and won the prize in January 1810. Later that year, Appert published L'Art de conserver les substances animales et végétales ("The Art of Preserving Animal and Vegetable Substances"). This was the first cookbook of its kind on modern food preservation methods.

La Maison Appert (English: The House of Appert), in the town of Massy, near Paris, became the first food-bottling factory in the world, preserving a variety of foods in sealed bottles. Appert's method was to fill thick, large-mouthed glass bottles with produce of every description, ranging from beef and fowl to eggs, milk and prepared dishes. He left air space at the top of the bottle, and the cork would then be sealed firmly in the jar by using a vise. The bottle was then wrapped in canvas to protect it while it was dunked into boiling water and then boiled for as much time as Appert deemed appropriate for cooking the contents thoroughly. Appert patented his method, sometimes called appertisation in his honor.

Appert's method was so simple and workable that it quickly became widespread. In 1810, British inventor and merchant Peter Durand, also of French origin, patented his own method, but this time in a tin can, so creating the modern-day process of canning foods. In 1812, Englishmen Bryan Donkin and John Hall purchased both patents and began producing preserves. Just a decade later, Appert's method of canning had made its way to America. Tin can production was not common until the beginning of the 20th century, partly because a hammer and chisel were needed to open cans until the invention of a can opener by Robert Yeates in 1855.

A less aggressive method was developed by French chemist Louis Pasteur during an 1864 summer holiday in Arbois. To remedy the frequent acidity of the local aged wines, he found out experimentally that it is sufficient to heat a young wine to only about 50–60 °C (122–140 °F) for a short time to kill the microbes, and that the wine could subsequently be aged without sacrificing the final quality. In honour of Pasteur, this process is known as "pasteurization". Pasteurization was originally used as a way of preventing wine and beer from souring, and it would be many years before milk was pasteurized. In the United States in the 1870s, before milk was regulated, it was common for milk to contain substances intended to mask spoilage.

Milk

180 kilograms (400 lb) of milk in a cheese vat

Milk is an excellent medium for microbial growth, and when it is stored at ambient temperature bacteria and other pathogens soon proliferate. The US Centers for Disease Control (CDC) says improperly handled raw milk is responsible for nearly three times more hospitalizations than any other food-borne disease source, making it one of the world's most dangerous food products. Diseases prevented by pasteurization can include tuberculosis, brucellosis, diphtheria, scarlet fever, and Q-fever; it also kills the harmful bacteria Salmonella, Listeria, Yersinia, Campylobacter, Staphylococcus aureus, and Escherichia coli O157:H7, among others.

Prior to industrialization, dairy cows were kept in urban areas to limit the time between milk production and consumption, hence the risk of disease transmission via raw milk was reduced. As urban densities increased and supply chains lengthened to the distance from country to city, raw milk (often days old) became recognized as a source of disease. For example, between 1912 and 1937, some 65,000 people died of tuberculosis contracted from consuming milk in England and Wales alone. Because tuberculosis has a long incubation period in humans, it was difficult to link unpasteurized milk consumption with the disease. In 1892, chemist Ernst Lederle experimentally inoculated milk from tuberculosis-diseased cows into guinea pigs, which caused them to develop the disease. In 1910, Lederle, then in the role of Commissioner of Health, introduced mandatory pasteurization of milk in New York City.

Developed countries adopted milk pasteurization to prevent such disease and loss of life, and as a result milk is now considered a safer food. A traditional form of pasteurization by scalding and straining of cream to increase the keeping qualities of butter was practiced in Great Britain in the 18th century and was introduced to Boston in the British Colonies by 1773, although it was not widely practiced in the United States for the next 20 years. Pasteurization of milk was suggested by Franz von Soxhlet in 1886. In the early 20th century, Milton Joseph Rosenau established the standards – i.e. low-temperature, slow heating at 60 °C (140 °F) for 20 minutes – for the pasteurization of milk while at the United States Marine Hospital Service, notably in his publication of The Milk Question (1912). States in the U.S. soon began enacting mandatory dairy pasteurization laws, with the first in 1947, and in 1973 the U.S. federal government required pasteurization of milk used in any interstate commerce.

The shelf life of refrigerated pasteurized milk is greater than that of raw milk. For example, high-temperature, short-time (HTST) pasteurized milk typically has a refrigerated shelf life of two to three weeks, whereas ultra-pasteurized milk can last much longer, sometimes two to three months. When ultra-heat treatment (UHT) is combined with sterile handling and container technology (such as aseptic packaging), it can even be stored non-refrigerated for up to 9 months.

According to the Centers for Disease Control, between 1998 and 2011, 79% of dairy-related disease outbreaks in the United States were due to raw milk or cheese products. They report 148 outbreaks and 2,384 illnesses (with 284 requiring hospitalization), as well as two deaths due to raw milk or cheese products during the same time period.

Medical equipment

Medical equipment, notably respiratory and anesthesia equipment, is often disinfected using hot water, as an alternative to chemical disinfection. The temperature is raised to 70 °C (158 °F) for 30 minutes.

Pasteurization process

General overview of the pasteurization process. The milk starts at the left and enters the piping with functioning enzymes that, when heat-treated, become denatured and stop the enzymes from functioning. This helps to stop pathogen growth by stopping the functionality of the cell. The cooling process helps stop the milk from undergoing the Maillard reaction and caramelization. The pasteurization process also has the ability to heat the cells to the point that they burst from pressure build-up.

Pasteurization is a mild heat treatment of liquid foods (both packaged and unpackaged) where products are typically heated to below 100 °C. The heat treatment and cooling process are designed to inhibit a phase change of the product. The acidity of the food determines the parameters (time and temperature) of the heat treatment as well as the duration of shelf life. Parameters also take into account nutritional and sensory qualities that are sensitive to heat.

In acidic foods (pH <4.6), such as fruit juice and beer, the heat treatments are designed to inactivate enzymes (pectin methylesterase and polygalacturonase in fruit juices) and destroy spoilage microbes (yeast and lactobacillus). Due to the low pH of acidic foods, pathogens are unable to grow. The shelf-life is thereby extended several weeks. In less acidic foods (pH >4.6), such as milk and liquid eggs, the heat treatments are designed to destroy pathogens and spoilage organisms (yeast and molds). Not all spoilage organisms are destroyed under pasteurization parameters, thus subsequent refrigeration is necessary.

Equipment

Food can be pasteurized in two ways: either before or after being packaged into containers. When food is packaged in glass, hot water is used to lower the risk of thermal shock. Plastics and metals are also used to package foods, and these are generally pasteurized with steam or hot water since the risk of thermal shock is low.

Most liquid foods are pasteurized using continuous systems that have a heating zone, hold tube, and cooling zone, after which the product is filled into the package. Plate heat exchangers are used for low-viscosity products such as animal milks, nut milks and juices. A plate heat exchanger is composed of many thin vertical stainless steel plates which separate the liquid from the heating or cooling medium. Scraped surface heat exchangers contain an inner rotating shaft in the tube, and serve to scrape highly viscous material which might accumulate on the wall of the tube.

Shell or tube heat exchangers are designed for the pasteurization of foods that are non-Newtonian fluids, such as dairy products, tomato ketchup and baby foods. A tube heat exchanger is made up of concentric stainless steel tubes. Food passes through the inner tube while the heating/cooling medium is circulated through the outer or inner tube.

The benefits of using a heat exchanger to pasteurize non-packaged foods versus pasteurizing foods in containers are:

  • Heat exchangers provide uniform treatment, and there is greater flexibility with regards to the products which can be pasteurized on these plates
  • The process is more energy-efficient compared to pasteurizing foods in packaged containers
  • Greater throughput

After being heated in a heat exchanger, the product flows through a hold tube for a set period of time to achieve the required treatment. If pasteurization temperature or time is not achieved, a flow diversion valve is utilized to divert under-processed product back to the raw product tank. If the product is adequately processed, it is cooled in a heat exchanger, then filled.

High-temperature short-time (HTST) pasteurization, such as that used for milk (71.5 °C (160.7 °F) for 15 seconds) ensures safety of milk and provides a refrigerated shelf life of approximately two weeks. In ultra-high-temperature (UHT) pasteurization, milk is pasteurized at 135 °C (275 °F) for 1–2 seconds, which provides the same level of safety, but along with the packaging, extends shelf life to three months under refrigeration.

Verification

Direct microbiological techniques are the ultimate measurement of pathogen contamination, but these are costly and time-consuming, which means that products have a reduced shelf-life by the time pasteurization is verified.

As a result of the unsuitability of microbiological techniques, milk pasteurization efficacy is typically monitored by checking for the presence of alkaline phosphatase, which is denatured by pasteurization. Destruction of alkaline phosphatase ensures the destruction of common milk pathogens. Therefore, the presence of alkaline phosphatase is an ideal indicator of pasteurization efficacy. For liquid eggs, the effectiveness of the heat treatment is measured by the residual activity of α-amylase.

Efficacy against pathogenic bacteria

During the early 20th century, there was no robust knowledge of what time and temperature combinations would inactivate pathogenic bacteria in milk, and so a number of different pasteurization standards were in use. By 1943, both HTST pasteurization conditions of 72 °C (162 °F) for 15 seconds, as well as batch pasteurization conditions of 63 °C (145 °F) for 30 minutes, were confirmed by studies of the complete thermal death (as best as could be measured at that time) for a range of pathogenic bacteria in milk. Complete inactivation of Coxiella burnetii (which was thought at the time to cause Q fever by oral ingestion of infected milk) as well as of Mycobacterium tuberculosis (which causes tuberculosis) were later demonstrated. For all practical purposes, these conditions were adequate for destroying almost all yeasts, molds, and common spoilage bacteria and also for ensuring adequate destruction of common pathogenic, heat-resistant organisms. However, the microbiological techniques used until the 1960s did not allow for the actual reduction of bacteria to be enumerated. Demonstration of the extent of inactivation of pathogenic bacteria by milk pasteurization came from a study of surviving bacteria in milk that was heat-treated after being deliberately spiked with high levels of the most heat-resistant strains of the most significant milk-borne pathogens.

The mean log10 reductions and temperatures of inactivation of the major milk-borne pathogens during a 15-second treatment are:

(A log10 reduction between 6 and 7 means that 1 bacterium out of 1 million (106) to 10 million (107) bacteria survive the treatment.)

The Codex Alimentarius Code of Hygienic Practice for Milk notes that milk pasteurization is designed to achieve at least a 5 log10 reduction of Coxiella burnetii. The Code also notes that: "The minimum pasteurization conditions are those having bactericidal effects equivalent to heating every particle of the milk to 72 °C for 15 seconds (continuous flow pasteurization) or 63 °C for 30 minutes (batch pasteurization)” and that "To ensure that each particle is sufficiently heated, the milk flow in heat exchangers should be turbulent, i.e. the Reynolds number should be sufficiently high". The point about turbulent flow is important because simplistic laboratory studies of heat inactivation that use test tubes, without flow, will have less bacterial inactivation than larger-scale experiments that seek to replicate conditions of commercial pasteurization.

As a precaution, modern HTST pasteurization processes must be designed with flow-rate restriction as well as divert valves which ensure that the milk is heated evenly and that no part of the milk is subject to a shorter time or a lower temperature. It is common for the temperatures to exceed 72 °C by 1.5 °C or 2 °C.

Double pasteurization

Since pasteurization is not sterilization, and does not kill spores, a second "double" pasteurization will extend the shelf life by killing spores that have germinated.

The acceptance of double pasteurization vary by jurisdiction. In places where it is allowed, an initial pasteurization usually happens when the milk was collected at the farm, so that it does not spoil before processing. Many countries disallow such milk to be simply labelled as "pasturized", so thermization, a lower-temperature process, is used instead.

Effects on nutritional and sensory characteristics of foods

Because of its mild heat treatment, pasteurization increases the shelf-life by a few days or weeks. However, this mild heat also means there are only minor changes to heat-labile vitamins in the foods.

Milk

According to a systematic review and meta-analysis, it was found that pasteurization appeared to reduce concentrations of vitamins B12 and E, but it also increased concentrations of vitamin A. Apart from meta-analysis, it is not possible to draw conclusions about the effect of pasteurization on vitamins A, B12, and E based merely on consultation of the vast literature available. Milk is not an important source of vitamins B12 or E in the North American diet, so the effects of pasteurization on the adult daily intake of these vitamins is negligible. However, milk is considered an important source of vitamin A, and because pasteurization appears to increase vitamin A concentrations in milk, the effect of milk heat treatment on this vitamin is a not a major public health concern. Results of meta-analyses reveal that pasteurization of milk leads to a significant decrease in vitamin C and folate, but milk is also not an important source of these vitamins. A significant decrease in vitamin B2 concentrations was found after pasteurization. Vitamin B2 is typically found in bovine milk at concentrations of 1.83 mg/liter. Because the recommended daily intake for adults is 1.1 mg/day, milk consumption greatly contributes to the recommended daily intake of this vitamin. With the exception of B2, pasteurization does not appear to be a concern in diminishing the nutritive value of milk because milk is often not a primary source of these studied vitamins in the North American diet.

Sensory effects

Pasteurization also has a small but measurable effect on the sensory attributes of the foods that are processed. In fruit juices, pasteurization may result in loss of volatile aroma compounds. Fruit juice products undergo a deaeration process prior to pasteurization that may be responsible for this loss. Deaeration also minimizes the loss of nutrients like vitamin C. To prevent the decrease in quality resulting from the loss in volatile compounds, volatile recovery, though costly, can be utilized to produce higher-quality juice products.

In regards to color, the pasteurization process does not have much effect on pigments such as chlorophylls, anthocyanins and carotenoids in plants and animal tissues. In fruit juices, polyphenol oxidase (PPO) is the main enzyme responsible for causing browning and color changes. However, this enzyme is deactivated in the deaeration step prior to pasteurization with the removal of oxygen.

In milk, the color difference between pasteurized and raw milk is related to the homogenization step that takes place prior to pasteurization. Before pasteurization milk is homogenized to emulsify its fat and water-soluble components, which results in the pasteurized milk having a whiter appearance compared to raw milk. For vegetable products, color degradation is dependent on the temperature conditions and the duration of heating.

Pasteurization may result in some textural loss as a result of enzymatic and non-enzymatic transformations in the structure of pectin if the processing temperatures are too high as a result. However, with mild heat treatment pasteurization, tissue softening in the vegetables that causes textural loss is not of concern as long as the temperature does not get above 80 °C (176 °F).

Novel pasteurization methods

Other thermal and non-thermal processes have been developed to pasteurize foods as a way of reducing the effects on nutritional and sensory characteristics of foods and preventing degradation of heat-labile nutrients. Pascalization or high pressure processing (HPP) and pulsed electric field (PEF) are examples of these non-thermal pasteurization methods that are currently commercially utilized.

Microwave volumetric heating (MVH) is the newest available pasteurization technology. It uses microwaves to heat liquids, suspensions, or semi-solids in a continuous flow. Because MVH delivers energy evenly and deeply into the whole body of a flowing product, it allows for gentler and shorter heating, so that almost all heat-sensitive substances in the milk are preserved.

Low Temperature, Short Time (LTST) is a patented method that implies spraying droplets in a chamber heated below the usual pasteurization temperatures. It takes several thousandth of a second to treat liquid products, so the method is also known as the millisecond technology (MST). It significantly extends the shelf life of products (50+ days) when combined with HTST without damaging the nutrients or flavor. LTST has been commercial since 2019.

Products that are commonly pasteurized

 

Louis Pasteur

From Wikipedia, the free encyclopedia

Louis Pasteur


Louis Pasteur, foto av Paul Nadar, Crisco edit.jpg
Photograph by Nadar
BornDecember 27, 1822
Dole, Jura, France
DiedSeptember 28, 1895 (aged 72)
NationalityFrench
Alma mater
Known forCreated the first vaccines for rabies
Cholera vaccine
Anthrax vaccines
Pasteurization
Spouse(s)
Marie Laurent
(m. 1849)
Children5
Awards
Scientific career
Fields
Institutions
Notable studentsCharles Friedel
Signature
Louis Pasteur Signature.svg

Louis Pasteur ForMemRS (/ˈli pæˈstɜːr/, French: [lwi pastœʁ]; 27 December 1822 – 28 September 1895) was a French chemist and microbiologist renowned for his discoveries of the principles of vaccination, microbial fermentation, and pasteurization. His research in chemistry led to remarkable breakthroughs in the understanding of the causes and preventions of diseases, which laid down the foundations of hygiene, public health and much of modern medicine. His works are credited to saving millions of lives through the developments of vaccines for rabies and anthrax. He is regarded as one of the founders of modern bacteriology and has been honoured as the "father of bacteriology" and as the "father of microbiology" (together with Robert Koch, and the latter epithet also attributed to Antonie van Leeuwenhoek).

Pasteur was responsible for disproving the doctrine of spontaneous generation. Under the auspices of the French Academy of Sciences, his experiment demonstrated that in sterilized and sealed flasks, nothing ever developed; and, conversely, in sterilized but open flasks, microorganisms could grow. For this experiment, the academy awarded him the Alhumbert Prize carrying 2,500 francs in 1862.

Pasteur is also regarded as one of the fathers of germ theory of diseases, which was a minor medical concept at the time. His many experiments showed that diseases could be prevented by killing or stopping germs, thereby directly supporting the germ theory and its application in clinical medicine. He is best known to the general public for his invention of the technique of treating milk and wine to stop bacterial contamination, a process now called pasteurization. Pasteur also made significant discoveries in chemistry, most notably on the molecular basis for the asymmetry of certain crystals and racemization. Early in his career, his investigation of tartaric acid resulted in the first resolution of what is now called optical isomers. His work led the way to the current understanding of a fundamental principle in the structure of organic compounds.

He was the director of the Pasteur Institute, established in 1887, until his death, and his body was interred in a vault beneath the institute. Although Pasteur made groundbreaking experiments, his reputation became associated with various controversies. Historical reassessment of his notebook revealed that he practiced deception to overcome his rivals.

Education and early life

Portraits of father and mother by Louis Pasteur

 
The house in which Pasteur was born, Dole

Louis Pasteur was born on December 27, 1822, in Dole, Jura, France, to a Catholic family of a poor tanner. He was the third child of Jean-Joseph Pasteur and Jeanne-Etiennette Roqui. The family moved to Marnoz in 1826 and then to Arbois in 1827. Pasteur entered primary school in 1831.

He was an average student in his early years, and not particularly academic, as his interests were fishing and sketching. He drew many pastels and portraits of his parents, friends and neighbors. Pasteur attended secondary school at the Collège d'Arbois. In October 1838, he left for Paris to join the Pension Barbet, but became homesick and returned in November.

In 1839, he entered the Collège Royal at Besançon to study philosophy and earned his Bachelor of Letters degree in 1840. He was appointed a tutor at the Besançon college while continuing a degree science course with special mathematics. He failed his first examination in 1841. He managed to pass the baccalauréat scientifique (general science) degree in 1842 from Dijon but with a mediocre grade in chemistry.

Later in 1842, Pasteur took the entrance test for the École Normale Supérieure. He passed the first set of tests, but because his ranking was low, Pasteur decided not to continue and try again next year. He went back to the Pension Barbet to prepare for the test. He also attended classes at the Lycée Saint-Louis and lectures of Jean-Baptiste Dumas at the Sorbonne. In 1843, he passed the test with a high ranking and entered the École Normale Supérieure. In 1845 he received the licencié ès sciences degree. In 1846, he was appointed professor of physics at the Collège de Tournon (now called Lycée Gabriel-Faure) in Ardèche. But the chemist Antoine Jérôme Balard wanted him back at the École Normale Supérieure as a graduate laboratory assistant (agrégé préparateur). He joined Balard and simultaneously started his research in crystallography and in 1847, he submitted his two thesis, one in chemistry and the other in physics.

After serving briefly as professor of physics at the Dijon Lycée in 1848, he became professor of chemistry at the University of Strasbourg, where he met and courted Marie Laurent, daughter of the university's rector in 1849. They were married on May 29, 1849, and together had five children, only two of whom survived to adulthood; the other three died of typhoid.

Career

Louis Pasteur in 1857
Pasteur in 1857

Pasteur was appointed professor of chemistry at the University of Strasbourg in 1848, and became the chair of chemistry in 1852. In 1854, he was named dean of the new faculty of sciences at University of Lille, where he began his studies on fermentation. It was on this occasion that Pasteur uttered his oft-quoted remark: "dans les champs de l'observation, le hasard ne favorise que les esprits préparés" ("In the field of observation, chance favors only the prepared mind").

In 1857, he moved to Paris as the director of scientific studies at the École Normale Supérieure where he took control from 1858 to 1867 and introduced a series of reforms to improve the standard of scientific work. The examinations became more rigid, which led to better results, greater competition, and increased prestige. Many of his decrees, however, were rigid and authoritarian, leading to two serious student revolts. During "the bean revolt" he decreed that a mutton stew, which students had refused to eat, would be served and eaten every Monday. On another occasion he threatened to expel any student caught smoking, and 73 of the 80 students in the school resigned.

In 1863, he was appointed professor of geology, physics, and chemistry at the École nationale supérieure des Beaux-Arts, a position he held until his resignation in 1867. In 1867, he became the chair of organic chemistry at the Sorbonne, but he later gave up the position because of poor health. In 1867, the École Normale's laboratory of physiological chemistry was created at Pasteur's request, and he was the laboratory's director from 1867 to 1888. In Paris, he established the Pasteur Institute in 1887, in which he was its director for the rest of his life.

Research

Molecular asymmetry

Pasteur separated the left and right crystal shapes from each other to form two piles of crystals: in solution one form rotated light to the left, the other to the right, while an equal mixture of the two forms canceled each other's effect, and does not rotate the polarized light.

In Pasteur's early work as a chemist, beginning at the École Normale Supérieure, and continuing at Strasbourg and Lille, he examined the chemical, optical and crystallographic properties of a group of compounds known as tartrates.

He resolved a problem concerning the nature of tartaric acid in 1848. A solution of this compound derived from living things rotated the plane of polarization of light passing through it. The problem was that tartaric acid derived by chemical synthesis had no such effect, even though its chemical reactions were identical and its elemental composition was the same.

Pasteur noticed that crystals of tartrates had small faces. Then he observed that, in racemic mixtures of tartrates, half of the crystals were right-handed and half were left-handed. In solution, the right-handed compound was dextrorotatory, and the left-handed one was levorotatory. Pasteur determined that optical activity related to the shape of the crystals, and that an asymmetric internal arrangement of the molecules of the compound was responsible for twisting the light. The (2R,3R)- and (2S,3S)- tartrates were isometric, non-superposable mirror images of each other. This was the first time anyone had demonstrated molecular chirality, and also the first explanation of isomerism.

Some historians consider Pasteur's work in this area to be his "most profound and most original contributions to science", and his "greatest scientific discovery."

Fermentation and germ theory of diseases

Pasteur was motivated to investigate fermentation while working at Lille. In 1856 a local wine manufacturer, M. Bigot, whose son was one of Pasteur's students, sought for his advice on the problems of making beetroot alcohol and souring.

According to his son-in-law, René Vallery-Radot, in August 1857 Pasteur sent a paper about lactic acid fermentation to the Société des Sciences de Lille, but the paper was read three months later. A memoire was subsequently published on November 30, 1857. In the memoir, he developed his ideas stating that: "I intend to establish that, just as there is an alcoholic ferment, the yeast of beer, which is found everywhere that sugar is decomposed into alcohol and carbonic acid, so also there is a particular ferment, a lactic yeast, always present when sugar becomes lactic acid."

Pasteur also wrote about alcoholic fermentation. It was published in full form in 1858. Jöns Jacob Berzelius and Justus von Liebig had proposed the theory that fermentation was caused by decomposition. Pasteur demonstrated that this theory was incorrect, and that yeast was responsible for fermentation to produce alcohol from sugar. He also demonstrated that, when a different microorganism contaminated the wine, lactic acid was produced, making the wine sour. In 1861, Pasteur observed that less sugar fermented per part of yeast when the yeast was exposed to air. The lower rate of fermentation aerobically became known as the Pasteur effect.

Pasteur experimenting in his laboratory.
 

Pasteur's research also showed that the growth of micro-organisms was responsible for spoiling beverages, such as beer, wine and milk. With this established, he invented a process in which liquids such as milk were heated to a temperature between 60 and 100 °C. This killed most bacteria and moulds already present within them. Pasteur and Claude Bernard completed tests on blood and urine on April 20, 1862. Pasteur patented the process, to fight the "diseases" of wine, in 1865. The method became known as pasteurization, and was soon applied to beer and milk.

Beverage contamination led Pasteur to the idea that micro-organisms infecting animals and humans cause disease. He proposed preventing the entry of micro-organisms into the human body, leading Joseph Lister to develop antiseptic methods in surgery.

In 1866, Pasteur published Etudes sur le Vin, about the diseases of wine, and he published Etudes sur la Bière in 1876, concerning the diseases of beer.

In the early 19th century, Agostino Bassi had shown that muscardine was caused by a fungus that infected silkworms. Since 1853, two diseases called pébrine and flacherie had been infecting great numbers of silkworms in southern France, and by 1865 they were causing huge losses to farmers. In 1865, Pasteur went to Alès and worked for five years until 1870.

Silkworms with pébrine were covered in corpuscles. In the first three years, Pasteur thought that the corpuscles were a symptom of the disease. In 1870, he concluded that the corpuscles were the cause of pébrine (it is now known that the cause is a microsporidian). Pasteur also showed that the disease was hereditary. Pasteur developed a system to prevent pébrine: after the female moths laid their eggs, the moths were turned into a pulp. The pulp was examined with a microscope, and if corpuscles were observed, the eggs were destroyed. Pasteur concluded that bacteria caused flacherie. The primary cause is currently thought to be viruses. The spread of flacherie could be accidental or hereditary. Hygiene could be used to prevent accidental flacherie. Moths whose digestive cavities did not contain the microorganisms causing flacherie were used to lay eggs, preventing hereditary flacherie.

Spontaneous generation

Bottle en col de cygne (swan-neck bottle) used by Pasteur
 
Louis Pasteur’s pasteurization experiment illustrates the fact that the spoilage of liquid was caused by particles in the air rather than the air itself. These experiments were important pieces of evidence supporting the germ theory of disease.

Following his fermentation experiments, Pasteur demonstrated that the skin of grapes was the natural source of yeasts, and that sterilized grapes and grape juice never fermented. He drew grape juice from under the skin with sterilized needles, and also covered grapes with sterilized cloth. Both experiments could not produce wine in sterilized containers.

His findings and ideas were against the prevailing notion of spontaneous generation. He received a particularly stern criticism from Félix Archimède Pouchet, who was director of the Rouen Museum of Natural History. To settle the debate between the eminent scientists, the French Academy of Sciences offered the Alhumbert Prize carrying 2,500 francs to whoever could experimentally demonstrate for or against the doctrine.

Pouchet stated that air everywhere could cause spontaneous generation of living organisms in liquids. In the late 1850s, he performed experiments and claimed that they were evidence of spontaneous generation. Francesco Redi and Lazzaro Spallanzani had provided some evidence against spontaneous generation in the 17th and 18th centuries, respectively. Spallanzani's experiments in 1765 suggested that air contaminated broths with bacteria. In the 1860s, Pasteur repeated Spallanzani's experiments, but Pouchet reported a different result using a different broth.

Pasteur performed several experiments to disprove spontaneous generation. He placed boiled liquid in a flask and let hot air enter the flask. Then he closed the flask, and no organisms grew in it. In another experiment, when he opened flasks containing boiled liquid, dust entered the flasks, causing organisms to grow in some of them. The number of flasks in which organisms grew was lower at higher altitudes, showing that air at high altitudes contained less dust and fewer organisms. Pasteur also used swan neck flasks containing a fermentable liquid. Air was allowed to enter the flask via a long curving tube that made dust particles stick to it. Nothing grew in the broths unless the flasks were tilted, making the liquid touch the contaminated walls of the neck. This showed that the living organisms that grew in such broths came from outside, on dust, rather than spontaneously generating within the liquid or from the action of pure air.

These were some of the most important experiments disproving the theory of spontaneous generation. Pasteur gave a series of five presentations of his findings before the French Academy of Sciences in 1881, which were published in 1882 as Mémoire Sur les corpuscules organisés qui existent dans l'atmosphère: Examen de la doctrine des générations spontanées (Account of Organized Corpuscles Existing in the Atmosphere: Examining the Doctrine of Spontaneous Generation). Pasteur won the Alhumbert Prize in 1862. He concluded that:

Never will the doctrine of spontaneous generation recover from the mortal blow of this simple experiment. There is no known circumstance in which it can be confirmed that microscopic beings came into the world without germs, without parents similar to themselves.

Immunology and vaccination

Chicken cholera

Pasteur's first work on vaccine development was on chicken cholera. He received the bacteria samples (later called Pasteurella multocida after him) from Henry Toussaint. He started the study in 1877, and by the next year, was able to maintain a stable culture using broths. After another year of continuous culturing, he found that the bacteria were less pathogenic. Some of his culture samples could no longer induce the disease in healthy chickens. In 1879, Pasteur, planning for holiday, instructed his assistant, Charles Chamberland to inoculate the chickens with fresh bacteria culture. Chamberland forgot and went on holiday himself. On his return, he injected the month-old cultures to healthy chickens. The chickens showed some symptoms of infection, but instead of the infections being fatal, as they usually were, the chickens recovered completely. Chamberland assumed an error had been made, and wanted to discard the apparently faulty culture, but Pasteur stopped him. Pasteur injected the freshly recovered chickens with fresh bacteria (that normally would kill other chickens), the chickens no longer showed any sign of infection. It was clear to him that the weakened bacteria had caused the chickens to become immune to the disease.

In December 1880, Pasteur presented his results to the French Academy of Sciences as "Sur les maladies virulentes et en particulier sur la maladie appelée vulgairement choléra des poules (On virulent diseases, and in particular on the disease commonly called chicken cholera)" and published it in the academy's journal (Comptes-Rendus hebdomadaires des séances de l'Académie des Sciences). He attributed that the bacteria were weakened by contact with oxygen. He explained that bacteria kept in sealed containers never lost their virulence, and only those exposed to air in culture media could be used as vaccine. Pasteur introduced the term "attenuation" for this weakening of virulence as he presented before the academy, saying:

We can diminish the microbe’s virulence by changing the mode of culturing. This is the crucial point of my subject. I ask the Academy not to criticize, for the time being, the confidence of my proceedings that permit me to determine the microbe’s attenuation, in order to save the independence of my studies and to better assure their progress... [In conclusion] I would like to point out to the Academy two main consequences to the facts presented: the hope to culture all microbes and to find a vaccine for all infectious diseases that have repeatedly afflicted humanity, and are a major burden on agriculture and breeding of domestic animals.

Anthrax

In the 1870s, he applied this immunization method to anthrax, which affected cattle, and aroused interest in combating other diseases. Pasteur cultivated bacteria from the blood of animals infected with anthrax. When he inoculated animals with the bacteria, anthrax occurred, proving that the bacteria was the cause of the disease. Many cattle were dying of anthrax in "cursed fields". Pasteur was told that sheep that died from anthrax were buried in the field. Pasteur thought that earthworms might have brought the bacteria to the surface. He found anthrax bacteria in earthworms' excrement, showing that he was correct. He told the farmers not to bury dead animals in the fields. Pasteur had been trying to develop the anthrax vaccine since 1877, soon after Robert Koch's discovery of the bacterium.

Louis Pasteur in his laboratory, painting by A. Edelfeldt in 1885

On 12 July 1880, Henri Bouley read before the French Academy of Sciences a report from Henry Toussaint, a veterinary surgeon, who was not member of the academy. Toussaint had developed anthrax vaccine by killing the bacilli by heating at 55°C for 10  minutes. He tested on eight dogs and 11 sheep, half of which died after inoculation. It was not a great success. Upon hearing the news, Pasteur immediately wrote to the academy that he could not believe that dead vaccine would work and that Toussaint's claim "overturns all the ideas I had on viruses, vaccines, etc." Following Pasteur's criticism, Toussaint switched to carbolic acid to kill anthrax bacilli and tested the vaccine on sheep in August 1880. Pasteur thought that this type of killed vaccine should not work because he believed that attenuated bacteria used up nutrients that the bacteria needed to grow. He thought oxidizing bacteria made them less virulent.

But Pasteur found that anthrax bacillus was not easily weakened by culturing in air as it formed spores – unlike chicken cholera bacillus. In early 1881, he discovered that growing anthrax bacilli at about 42 °C made them unable to produce spores, and he described this method in a speech to the French Academy of Sciences on February 28. On 21 March, he announced successful vaccination of sheep. To this news, veterinarian Hippolyte Rossignol proposed that the Société d'agriculture de Melun organize an experiment to test Pasteur's vaccine. Pasteur signed agreement of the challenge on 28 April. A public experiment was conducted in May at Pouilly-le-Fort. 58 sheep, 2 goats and 10 cattle were used, half of which were given the vaccine on 5 and 17 May; while the other half was untreated. All the animals were injected with the fresh virulent culture of anthrax bacillus on 31 May. The official result was observed and analysed on 2 June in the presence of over 200 spectators. All cattle survived, vaccinated or not, as Pasteur had bravely had predicted: "I hypothesized that the six vaccinated cows would not become very ill, while the four unvaccinated cows would perish or at least become very ill." On the other hand, all vaccinated sheep and goats survived, while the unvaccinated one either had died or were dying before the viewers. His report to the French Academy of Sciences on 13 June concludes:

[By] looking at everything from the scientific point of view, the development of a vaccination against anthrax constitutes significant progress beyond the first vaccine developed by Jenner, since the latter had never been obtained experimentally.

Pasteur did not directly disclose how he prepared the vaccines used at Pouilly-le-Fort. Although his report indicated it as a "live vaccine", his laboratory notebooks show that he actually used potassium dichromate-killed vaccine, as developed by Chamberland, quite similar to Toussaint's method.

The notion of a weak form of a disease causing immunity to the virulent version was not new; this had been known for a long time for smallpox. Inoculation with smallpox (variolation) was known to result in a much less severe disease, and greatly reduced mortality, in comparison with the naturally acquired disease. Edward Jenner had also studied vaccination using cowpox (vaccinia) to give cross-immunity to smallpox in the late 1790s, and by the early 1800s vaccination had spread to most of Europe.

The difference between smallpox vaccination and anthrax or chicken cholera vaccination was that the latter two disease organisms had been artificially weakened, so a naturally weak form of the disease organism did not need to be found. This discovery revolutionized work in infectious diseases, and Pasteur gave these artificially weakened diseases the generic name of "vaccines", in honour of Jenner's discovery.

In 1876, Robert Koch had shown that Bacillus anthracis caused anthrax. In his papers published between 1878 and 1880, Pasteur only mentioned Koch's work in a footnote. Koch met Pasteur at the Seventh International Medical Congress in 1881. A few months later, Koch wrote that Pasteur had used impure cultures and made errors. In 1882, Pasteur replied to Koch in a speech, to which Koch responded aggressively. Koch stated that Pasteur tested his vaccine on unsuitable animals and that Pasteur's research was not properly scientific. In 1882, Koch wrote "On the Anthrax Inoculation", in which he refuted several of Pasteur's conclusions about anthrax and criticized Pasteur for keeping his methods secret, jumping to conclusions, and being imprecise. In 1883, Pasteur wrote that he used cultures prepared in a similar way to his successful fermentation experiments and that Koch misinterpreted statistics and ignored Pasteur's work on silkworms.

Swine erysipelas

In 1882, Pasteur sent his assistant Louis Thuillier to southern France because of an epizootic of swine erysipelas. Thuillier identified the bacillus that caused the disease in March 1883. Pasteur and Thuillier increased the bacillus's virulence after passing it through pigeons. Then they passed the bacillus through rabbits, weakening it and obtaining a vaccine. Pasteur and Thuillier incorrectly described the bacterium as a figure-eight shape. Roux described the bacterium as stick-shaped in 1884.

Rabies

Pasteur produced the first vaccine for rabies by growing the virus in rabbits, and then weakening it by drying the affected nerve tissue. The rabies vaccine was initially created by Emile Roux, a French doctor and a colleague of Pasteur, who had produced a killed vaccine using this method. The vaccine had been tested in 50 dogs before its first human trial. This vaccine was used on 9-year-old Joseph Meister, on July 6, 1885, after the boy was badly mauled by a rabid dog. This was done at some personal risk for Pasteur, since he was not a licensed physician and could have faced prosecution for treating the boy. After consulting with physicians, he decided to go ahead with the treatment. Over 11 days, Meister received 13 inoculations, each inoculation using viruses that had been weakened for a shorter period of time. Three months later he examined Meister and found that he was in good health. Pasteur was hailed as a hero and the legal matter was not pursued. Analysis of his laboratory notebooks shows that Pasteur had treated two people before his vaccination of Meister. One survived but may not actually have had rabies, and the other died of rabies. Pasteur began treatment of Jean-Baptiste Jupille on October 20, 1885, and the treatment was successful. Later in 1885, people, including four children from the United States, went to Pasteur's laboratory to be inoculated. In 1886, he treated 350 people, of which only one developed rabies. The treatment's success laid the foundations for the manufacture of many other vaccines. The first of the Pasteur Institutes was also built on the basis of this achievement.

In The Story of San Michele, Axel Munthe writes of some risks Pasteur undertook in the rabies vaccine research:

Pasteur himself was absolutely fearless. Anxious to secure a sample of saliva straight from the jaws of a rabid dog, I once saw him with the glass tube held between his lips draw a few drops of the deadly saliva from the mouth of a rabid bull-dog, held on the table by two assistants, their hands protected by leather gloves.

Because of his study in germs, Pasteur encouraged doctors to sanitize their hands and equipment before surgery. Prior to this, few doctors or their assistants practiced these procedures. Ignaz Semmelweis and Joseph Lister was however earlier with the idea of the importance to sanitize the hands in medical contexts, and after Lister doctors had started doing so in the 1870s.

Controversies

A French national hero at age 55, in 1878 Pasteur discreetly told his family never to reveal his laboratory notebooks to anyone. His family obeyed, and all his documents were held and inherited in secrecy. Finally, in 1964 Pasteur's grandson and last surviving male descendant, Pasteur Vallery-Radot, donated the papers to the French national library. Yet the papers were restricted for historical studies until the death of Vallery-Radot in 1971. The documents were given a catalogue number only in 1985.

In 1995, the centennial of the death of Louis Pasteur, a historian of science Gerald L. Geison published an analysis of Pasteur's private notebooks in his The Private Science of Louis Pasteur, and declared that Pasteur had given several misleading accounts and played deceptions in his most important discoveries. Max Perutz published a defense of Pasteur in The New York Review of Books. Based on further examinations of Pasteur's documents, French immunologist Patrice Debré concluded in his book Louis Pasteur (1998) that, in spite of his genius, Pasteur had some faults. A book review states that Debré "sometimes finds him unfair, combative, arrogant, unattractive in attitude, inflexible and even dogmatic".

Fermentation

Scientists before Pasteur had studied fermentation. In the 1830s, Charles Cagniard-Latour, Friedrich Traugott Kützing and Theodor Schwann used microscopes to study yeasts and concluded that yeasts were living organisms. In 1839, Justus von Liebig, Friedrich Wöhler and Jöns Jacob Berzelius stated that yeast was not an organism and was produced when air acted on plant juice.

In 1855, Antoine Béchamp, Professor of Chemistry at the University of Montpellier, conducted experiments with sucrose solutions and concluded that water was the factor for fermentation. He changed his conclusion in 1858, stating that fermentation was directly related to the growth of moulds, which required air for growth. He regarded himself as the first to show the role of microorganisms in fermentation.

Pasteur started his experiments in 1857 and published his findings in 1858 (April issue of Comptes Rendus Chimie, Béchamp's paper appeared in January issue). Béchamp noted that Pasteur did not bring any novel idea or experiments. On the other hand, Béchamp was probably aware of Pasteur's 1857 preliminary works. With both scientists claiming priority on the discovery, a dispute, extending to several areas, lasted throughout their lives.

However, Béchamp was on the losing side, as the BMJ obituary remarked: His name was "associated with bygone controversies as to priority which it would be unprofitable to recall". Béchamp proposed the incorrect theory of microzymes. According to K. L. Manchester, anti-vivisectionists and proponents of alternative medicine promoted Béchamp and microzymes, unjustifiably claiming that Pasteur plagiarized Béchamp.

Pasteur thought that succinic acid inverted sucrose. In 1860, Marcellin Berthelot isolated invertase and showed that succinic acid did not invert sucrose. Pasteur believed that fermentation was only due to living cells. He and Berthelot engaged in a long argument subject of vitalism, in which Berthelot was vehemently opposed to any idea of vitalism. Hans Buchner discovered that zymase catalyzed fermentation, showing that fermentation was catalyzed by enzymes within cells. Eduard Buchner also discovered that fermentation could take place outside living cells.

Anthrax vaccine

Pasteur publicly claimed his success in developing the anthrax vaccine in 1881. However, his admirer-turned-rival Henry Toussaint was the one who developed the first vaccine. Toussaint isolated the bacteria that caused chicken cholera (later named Pasteurella in honour of Pasteur) in 1879 and gave samples to Pasteur who used them for his own works. On July 12, 1880, Toussaint presented his successful result to the French Academy of Sciences, using an attenuated vaccine against anthrax in dogs and sheep. Pasteur on grounds of jealousy contested the discovery by publicly displaying his vaccination method at Pouilly-le-Fort on May 5, 1881. Pasteur then gave a misleading account of the preparation of the anthrax vaccine used in the experiment. He claimed that he made "live vaccine", but used potassium dichromate to kill the vaccine, a method similar to Toussaint's. The promotional experiment was a success and helped Pasteur sell his products, getting the benefits and glory.

Experimental ethics

Pasteur experiments are often cited as against medical ethics, especially on his vaccination of Meister. He did not have any experience in medical practice, and more importantly, lacked a medical license. This is often cited as a serious threat to his professional and personal reputation. His closest partner Émile Roux, who had medical qualifications, refused to participate in the clinical trial, likely because he considered it unjust. However, Pasteur executed vaccination of the boy under the close watch of practising physicians Jacques-Joseph Grancher, head of the Paris Children's Hospital's paediatric clinic, and Alfred Vulpian, a member of the Commission on Rabies. He was not allowed to hold the syringe, although the inoculations were entirely under his supervision. It was Grancher who was responsible for the injections, and he defended Pasteur before the French National Academy of Medicine in the issue.

Pasteur has also been criticized for keeping secrecy of his procedure and not giving proper pre-clinical trials on animals. Pasteur stated that he kept his procedure secret in order to control its quality. He later disclosed his procedures to a small group of scientists. Pasteur wrote that he had successfully vaccinated 50 rabid dogs before using it on Meister. According to Geison, Pasteur's laboratory notebooks show that he had vaccinated only 11 dogs.

Meister never showed any symptoms of rabies, but the vaccination has not been proved to be the reason. One source estimates the probability of Meister contracting rabies at 10%.

Awards and honours

Pasteur was awarded 1,500 francs in 1853 by the Pharmaceutical Society for the synthesis of racemic acid. In 1856 the Royal Society of London presented him the Rumford Medal for his discovery of the nature of racemic acid and its relations to polarized light, and the Copley Medal in 1874 for his work on fermentation. He was elected a Foreign Member of the Royal Society (ForMemRS) in 1869.

The French Academy of Sciences awarded Pasteur the 1859 Montyon Prize for experimental physiology in 1860, and the Jecker Prize in 1861 and the Alhumbert Prize in 1862 for his experimental refutation of spontaneous generation. Though he lost elections in 1857 and 1861 for membership to the French Academy of Sciences, he won the 1862 election for membership to the mineralogy section. He was elected to permanent secretary of the physical science section of the academy in 1887 and held the position until 1889.

In 1873 Pasteur was elected to the Académie Nationale de Médecine and was made the commander in the Brazilian Order of the Rose. In 1881 he was elected to a seat at the Académie française left vacant by Émile Littré. Pasteur received the Albert Medal from the Royal Society of Arts in 1882. In 1883 he became foreign member of the Royal Netherlands Academy of Arts and Sciences. In 1885, he was elected as a member to the American Philosophical Society. On June 8, 1886, the Ottoman Sultan Abdul Hamid II awarded Pasteur with the Order of the Medjidie (I Class) and 10000 Ottoman liras. He was awarded the Cameron Prize for Therapeutics of the University of Edinburgh in 1889. Pasteur won the Leeuwenhoek Medal from the Royal Netherlands Academy of Arts and Sciences for his contributions to microbiology in 1895.

Pasteur was made a Chevalier of the Legion of Honour in 1853, promoted to Officer in 1863, to Commander in 1868, to Grand Officer in 1878 and made a Grand Cross of the Legion of Honor in 1881.

Pasteur Street (Đường Pasteur) in Da Nang, Vietnam.

Legacy

Pasteur's street in Odessa.
Vulitsya Pastera or Pasteur Street in Odessa, Ukraine

In many localities worldwide, streets are named in his honor. For example, in the US: Palo Alto and Irvine, California, Boston and Polk, Florida, adjacent to the University of Texas Health Science Center at San Antonio; Jonquière, Québec; San Salvador de Jujuy and Buenos Aires (Argentina), Great Yarmouth in Norfolk, in the United Kingdom, Jericho and Wulguru in Queensland, (Australia); Phnom Penh in Cambodia; Ho Chi Minh City and Da Nang, Vietnam; Batna in Algeria; Bandung in Indonesia, Tehran in Iran, near the central campus of the Warsaw University in Warsaw, Poland; adjacent to the Odessa State Medical University in Odessa, Ukraine; Milan in Italy and Bucharest, Cluj-Napoca and Timișoara in Romania. The Avenue Pasteur in Saigon, Vietnam, is one of the few streets in that city to retain its French name. Avenue Louis Pasteur in the Longwood Medical and Academic Area in Boston, Massachusetts was named in his honor in the French manner with "Avenue" preceding the name of the dedicatee.

Both the Institut Pasteur and Université Louis Pasteur were named after Pasteur. The schools Lycée Pasteur in Neuilly-sur-Seine, France, and Lycée Louis Pasteur in Calgary, Alberta, Canada, are named after him. In South Africa, the Louis Pasteur Private Hospital in Pretoria, and Life Louis Pasteur Private Hospital, Bloemfontein, are named after him. Louis Pasteur University Hospital in Košice, Slovakia is also named after Pasteur.

Louis Pasteur University Hospital, Košice, Slovakia

A statue of Pasteur is erected at San Rafael High School in San Rafael, California. A bronze bust of him resides on the French Campus of Kaiser Permanente's San Francisco Medical Center in San Francisco. The sculpture was designed by Harriet G. Moore and cast in 1984 by Artworks Foundry.

The UNESCO/Institut Pasteur Medal was created on the centenary of Pasteur's death, and is given every two years in his name, "in recognition of outstanding research contributing to a beneficial impact on human health".

Pasteur Institute

After developing the rabies vaccine, Pasteur proposed an institute for the vaccine. In 1887, fundraising for the Pasteur Institute began, with donations from many countries. The official statute was registered in 1887, stating that the institute's purposes were "the treatment of rabies according to the method developed by M. Pasteur" and "the study of virulent and contagious diseases". The institute was inaugurated on November 14, 1888. He brought together scientists with various specialties. The first five departments were directed by two graduates of the École Normale Supérieure: Émile Duclaux (general microbiology research) and Charles Chamberland (microbe research applied to hygiene), as well as a biologist, Élie Metchnikoff (morphological microbe research) and two physicians, Jacques-Joseph Grancher (rabies) and Émile Roux (technical microbe research). One year after the inauguration of the institute, Roux set up the first course of microbiology ever taught in the world, then entitled Cours de Microbie Technique (Course of microbe research techniques). Since 1891 the Pasteur Institute had been extended to different countries, and currently there are 32 institutes in 29 countries in various parts of the world.

Personal life

Pasteur married Louise Pasteur (néé Laurent) in 1849. She was the daughter of the rector of the University of Strasbourg, and was Pasteur's scientific assistant. They had five children together, only three of whom survived until adulthood.

Faith and spirituality

His grandson, Louis Pasteur Vallery-Radot, wrote that Pasteur had kept from his Catholic background only a spiritualism without religious practice. However, Catholic observers often said that Pasteur remained an ardent Christian throughout his whole life, and his son-in-law wrote, in a biography of him:

Absolute faith in God and in Eternity, and a conviction that the power for good given to us in this world will be continued beyond it, were feelings which pervaded his whole life; the virtues of the gospel had ever been present to him. Full of respect for the form of religion which had been that of his forefathers, he came simply to it and naturally for spiritual help in these last weeks of his life.

The Literary Digest of 18 October 1902 gives this statement from Pasteur that he prayed while he worked:

Posterity will one day laugh at the foolishness of modern materialistic philosophers. The more I study nature, the more I stand amazed at the work of the Creator. I pray while I am engaged at my work in the laboratory.

Maurice Vallery-Radot, grandson of the brother of the son-in-law of Pasteur and outspoken Catholic, also holds that Pasteur fundamentally remained Catholic. According to both Pasteur Vallery-Radot and Maurice Vallery-Radot, the following well-known quotation attributed to Pasteur is apocryphal: "The more I know, the more nearly is my faith that of the Breton peasant. Could I but know all I would have the faith of a Breton peasant's wife". According to Maurice Vallery-Radot, the false quotation appeared for the first time shortly after the death of Pasteur. However, despite his belief in God, it has been said that his views were that of a freethinker rather than a Catholic, a spiritual more than a religious man. He was also against mixing science with religion.

Death

In 1868, Pasteur suffered a severe brain stroke that paralysed the left side of his body, but he recovered. A stroke or uremia in 1894 severely impaired his health. Failing to fully recover, he died on September 28, 1895, near Paris. He was given a state funeral and was buried in the Cathedral of Notre Dame, but his remains were reinterred in the Pasteur Institute in Paris, in a vault covered in depictions of his accomplishments in Byzantine mosaics.

Publications

Pasteur's principal published works are:

French Title Year English Title
Etudes sur le Vin 1866 Studies on Wine
Etudes sur le Vinaigre 1868 Studies on Vinegar
Etudes sur la Maladie des Vers à Soie (2 volumes) 1870 Studies on Silk Worm Disease
Quelques Réflexions sur la Science en France 1871 Some Reflections on Science in France
Etudes sur la Bière 1876 Studies on Beer
Les Microbes organisés, leur rôle dans la Fermentation, la Putréfaction et la Contagion 1878 Microbes organized, their role in fermentation, putrefaction and the Contagion
Discours de Réception de M.L. Pasteur à l'Académie française 1882 Speech by Mr L. Pasteur on reception to the Académie française
Traitement de la Rage1886Treatment of Rabies

 

Personality theories of addiction

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Personality_theories_of_addiction ...