Search This Blog

Saturday, July 13, 2019

Severe weather

From Wikipedia, the free encyclopedia

Various forms of severe weather

Severe weather refers to any dangerous meteorological phenomena with the potential to cause damage, serious social disruption, or loss of human life. Types of severe weather phenomena vary, depending on the latitude, altitude, topography, and atmospheric conditions. High winds, hail, excessive precipitation, and wildfires are forms and effects of severe weather, as are thunderstorms, downbursts, tornadoes, waterspouts, tropical cyclones, and extratropical cyclones. Regional and seasonal severe weather phenomena include blizzards (snowstorms), ice storms, and duststorms.

Terminology

Meteorologists generally define severe weather as any aspect of the weather that poses risks to life, property or requires the intervention of authorities. A narrower definition of severe weather is any weather phenomena relating to severe thunderstorms.

According to the World Meteorological Organization (WMO), severe weather can be categorized into two groups: general severe weather and localized severe weather. Nor'easters, European wind storms, and the phenomena that accompany them form over wide geographic areas. These occurrences are classified as general severe weather. Downbursts and tornadoes are more localized and therefore have a more limited geographic effect. These forms of weather are classified as localized severe weather. The term severe weather is technically not the same phenomenon as extreme weather. Extreme weather describes unusual weather events that are at the extremes of the historical distribution for a given area.

Causes

This graphic shows the conditions favorable for certain organized thunderstorm complexes, based upon CAPE and vertical wind shear values.
 
Organized severe weather occurs from the same conditions that generate ordinary thunderstorms: atmospheric moisture, lift (often from thermals), and instability. A wide variety of conditions cause severe weather. Several factors can convert thunderstorms into severe weather. For example, a pool of cold air aloft may aid in the development of large hail from an otherwise innocuous appearing thunderstorm. However, the most severe hail and tornadoes are produced by supercell thunderstorms, and the worst downbursts and derechos (straight-line winds) are produced by bow echoes. Both of these types of storms tend to form in environments high in wind shear.

Floods, hurricanes, tornadoes, and thunderstorms are considered to be the most destructive weather-related [develop models to predict the most frequent and possible locations. This information is used to notify affected areas and save lives.

Categories

Diagram showing ingredients needed for severe weather. The red arrow shows the position of the low level jet stream, while the blue arrow shows the location of the upper level jet stream
 
Severe thunderstorms can be assessed in three different categories. These are "approaching severe", "severe", and "significantly severe". 

Approaching severe is defined as hail between 12 to 1 inch (13 to 25 mm) diameter or winds between 50 and 58 M.P.H. (50 knots, 80–93 km/h). In the United States, such storms will usually warrant a Significant Weather Alert.

Severe is defined as hail 1 to 2 inches (25 to 51 mm) diameter, winds 58 to 75 miles per hour (93 to 121 km/h), or an F1 tornado.

Significant severe is defined as hail 2 inches (51 mm) in diameter or larger, winds 75 M.P.H. (65 knots, 120 km/h) or more, or a tornado of strength EF2 or stronger. 

Both severe and significant severe events warrant a severe thunderstorm warning from the United States National Weather Service (excludes flash floods), the Environment Canada, the Australian Bureau of Meteorology, or the Meteorological Service of New Zealand if the event occurs in those countries. If a tornado is occurring (a tornado has been seen by spotters) or is imminent (Doppler weather radar has observed strong rotation in a storm, indicating an incipient tornado), the severe thunderstorm warning will be superseded by a tornado warning in the United States and Canada.

A severe weather outbreak is typically considered to be when ten or more tornadoes, some of which will likely be long-tracked and violent, and many large hail or damaging wind reports occur within one or more consecutive days. Severity is also dependent on the size of the geographic area affected, whether it covers hundreds or thousands of square kilometers.

High winds

Panorama of a strong shelf cloud, which can precede the onset of high winds
 
High winds are known to cause damage, depending upon their strength.

Wind speeds as low as 23 knots (43 km/h) may lead to power outages when tree branches fall and disrupt power lines. Some species of trees are more vulnerable to winds. Trees with shallow roots are more prone to uproot, and brittle trees such as eucalyptus, sea hibiscus, and avocado are more prone to branch damage.

Wind gusts may cause poorly designed suspension bridges to sway. When wind gusts harmonize with the frequency of the swaying bridge, the bridge may fail as occurred with the Tacoma Narrows Bridge in 1940.

Hurricane-force winds, caused by individual thunderstorms, thunderstorm complexes, derechos, tornadoes, extratropical cyclones, or tropical cyclones can destroy mobile homes and structurally damage buildings with foundations. Winds of this strength due to downslope winds off terrain have been known to shatter windows and sandblast paint from cars.

Once winds exceed 135 knots (250 km/h) within strong tropical cyclones and tornadoes, homes completely collapse, and significant damage is done to larger buildings. Total destruction to man-made structures occurs when winds reach 175 knots (324 km/h). The Saffir–Simpson scale for cyclones and Enhanced Fujita scale (TORRO scale in Europe) for tornados were developed to help estimate wind speed from the damage they cause.

Tornado

The F5 tornado that struck Elie, Manitoba, Canada in 2007.
 
A dangerous rotating column of air in contact with both the surface of the earth and the base of a cumulonimbus cloud (thundercloud) or a cumulus cloud, in rare cases. Tornadoes come in many sizes but typically form a visible condensation funnel whose narrowest end reaches the earth and surrounded by a cloud of debris and dust.

Tornadoes' wind speeds generally average between 40 miles per hour (64 km/h) and 110 miles per hour (180 km/h). They are approximately 250 feet (76 m) across and travel a few miles (kilometers) before dissipating. Some attain wind speeds in excess of 300 miles per hour (480 km/h), may stretch more than two miles (3.2 km) across, and maintain contact with the ground for dozens of miles (more than 100 km).

Tornadoes, despite being one of the most destructive weather phenomena, are generally short-lived. A long-lived tornado generally lasts no more than an hour, but some have been known to last for 2 hours or longer (for example, the Tri-State Tornado). Due to their relatively short duration, less information is known about the development and formation of tornadoes.

Downburst and derecho

Downbursts are created within thunderstorms by significantly rain-cooled air, which, upon reaching ground level, spreads out in all directions and produce strong winds. Unlike winds in a tornado, winds in a downburst are not rotational but are directed outwards from the point where they strike land or water.

Illustration of a microburst. The air moves in a downward motion until it hits ground level. It then spreads outward in all directions.
 
"Dry downbursts" are associated with thunderstorms with very little precipitation, while wet downbursts are generated by thunderstorms with large amounts of rainfall. Microbursts are very small downbursts with winds that extend up to 2.5 miles (4 km) from their source, while macrobursts are large-scale downbursts with winds that extend in excess of 2.5 miles (4 km). The heat burst is created by vertical currents on the backside of old outflow boundaries and squall lines where rainfall is lacking. Heat bursts generate significantly higher temperatures due to the lack of rain-cooled air in their formation. Derechos are longer, usually stronger, forms of downburst winds characterized by straight-lined windstorms.

Downbursts create vertical wind shear or microbursts, which are dangerous to aviation. These convective downbursts can produce damaging winds, lasting 5 to 30 minutes, with wind speeds as high as 168 mph (75 m/s), and cause tornado-like damage on the ground. Downbursts also occur much more frequently than tornadoes, with ten downburst damage reports for every one tornado.

Squall line

Cyclonic vortex over Pennsylvania with a trailing squall line.

A squall line is an elongated line of severe thunderstorms that can form along or ahead of a cold front. The squall line typically contains heavy precipitation, hail, frequent lightning, strong straight line winds, and possibly tornadoes or waterspouts. Severe weather in the form of strong straight-line winds can be expected in areas where the squall line forms a bow echo, in the farthest portion of the bow. Tornadoes can be found along waves within a line echo wave pattern (LEWP) where mesoscale low-pressure areas are present. Intense bow echoes responsible for widespread, extensive wind damage are called derechos, and move quickly over large territories. A wake low or a mesoscale low-pressure area forms behind the rain shield (a high pressure system under the rain canopy) of a mature squall line and is sometimes associated with a heat burst.

Squall lines often cause severe straight-line wind damage, and most non-tornadic wind damage is caused from squall lines. Although the primary danger from squall lines is straight-line winds, some squall lines also contain weak tornadoes.

Tropical cyclone

Hurricane Isabel (2003) as seen from orbit during Expedition 7 of the International Space Station.

Very high winds can be caused by mature tropical cyclones (called hurricanes in the United States and Canada and typhoons in eastern Asia). A tropical cyclone's heavy surf created by such winds may cause harm to marine life either close to or upon the surface of the water, such as coral reefs. Coastal regions may receive significant damage from a tropical cyclone while inland regions are relatively safe from the strong winds, due to their rapid dissipation over land. However, severe flooding can occur even far inland because of high amounts of rain from tropical cyclones and their remnants.

Waterspout

Formation of numerous waterspouts in the Great Lakes region.
 
Waterspouts are generally defined as tornadoes or non-supercell tornadoes that develop over bodies of water.

Waterspouts typically do not do much damage because they occur over open water, but they are capable of traveling over land. Vegetation, weakly constructed buildings, and other infrastructure may be damaged or destroyed by waterspouts. Waterspouts do not generally last long over terrestrial environments as the friction produced easily dissipates the winds. Strong horizontal winds disturbe the vortex, causing waterspouts to dissipate, While not generally as dangerous as "classic" tornadoes, waterspouts can overturn boats, and they can cause severe damage to larger ships.

Strong extratropical cyclones

GOES-13 Imagery of an intense Nor'Easter that impacted the North East US on 26 March 2014 and produced recorded gusts of 101mph+

Severe local windstorms in Europe that develop from winds off the North Atlantic. These windstorms are commonly associated with the destructive extratropical cyclones and their low pressure frontal systems. European windstorms occur mainly in the seasons of autumn and winter.

A synoptic-scale extratropical storm along the East Coast of the United States and Atlantic Canada is called a Nor'easter. They are so named because their winds come from the northeast, especially in the coastal areas of the Northeastern United States and Atlantic Canada. More specifically, it describes a low-pressure area whose center of rotation is just off the East Coast and whose leading winds in the left forward quadrant rotate onto land from the northeast. Nor'easters may cause coastal flooding, coastal erosion, and hurricane-force winds.

Dust storm

An unusual form of windstorm that is characterized by the existence of large quantities of sand and dust particles carried by the wind. Dust storms frequently develop during periods of droughts, or over arid and semi-arid regions. 

A massive dust storm cloud (Haboob) is close to enveloping a military camp as it rolls over Al Asad Airbase, Iraq, just before nightfall on 27 April 2005.
 
Dust storms have numerous hazards and are capable of causing deaths. Visibility may be reduced dramatically, so risks of vehicle and aircraft crashes are possible. Additionally, the particulates may reduce oxygen intake by the lungs, potentially resulting in suffocation. Damage can also be inflicted upon the eyes due to abrasion.

Dust storms can many issues for agricultural industries as well. Soil erosion is one of the most common hazards and decreases arable lands. Dust and sand particles can cause severe weathering of buildings and rock formations. Nearby bodies of water may be polluted by settling dust and sand, killing aquatic organisms. Decrease in exposure to sunlight can affect plant growth, as well as decrease in infrared radiation may cause decreased temperatures.

Wildfires

Wildfire in Yellowstone National Park produces a pyrocumulus cloud
 
The most common cause of wildfires varies throughout the world. In the United States, Canada, and Northwest China, lightning is the major source of ignition. In other parts of the world, human involvement is a major contributor. For instance, in Mexico, Central America, South America, Africa, Southeast Asia, Fiji, and New Zealand, wildfires can be attributed to human activities such as animal husbandry, agriculture, and land-conversion burning. Human carelessness is a major cause of wildfires in China and in the Mediterranean Basin. In Australia, the source of wildfires can be traced to both lightning strikes and human activities such as machinery sparks and cast-away cigarette butts." Wildfires have a rapid forward rate of spread (FROS) when burning through dense, uninterrupted fuels. They can move as fast as 10.8 kilometers per hour (6.7 mph) in forests and 22 kilometers per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing.

Wildfires may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels that surround a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 10 kilometers (6 mi) from the fire front. Since the mid-1980s, earlier snowmelt and associated warming has also been associated with an increase in length and severity of the wildfire season in the Western United States.

Hail

A large hailstone with concentric rings
 
Any form of thunderstorm that produces precipitating hailstones is known as a hailstorm. Hailstorms are generally capable of developing in any geographic area where thunderclouds (cumulonimbus) are present, although they are most frequent in tropical and monsoon regions. The updrafts and downdrafts within cumulonimbus clouds cause water molecules to freeze and solidify, creating hailstones and other forms of solid precipitation. Due to their larger density, these hailstones become heavy enough to overcome the density of the cloud and fall towards the ground. The downdrafts in cumulonimbus clouds can also cause increases in the speed of the falling hailstones. The term "hailstorm" is usually used to describe the existence of significant quantities or size of hailstones. 

Hailstones can cause serious damage, notably to automobiles, aircraft, skylights, glass-roofed structures, livestock, and crops. Rarely, massive hailstones have been known to cause concussions or fatal head trauma. Hailstorms have been the cause of costly and deadly events throughout history. One of the earliest recorded incidents occurred around the 12th century in Wellesbourne, Britain. The largest hailstone in terms of maximum circumference and length ever recorded in the United States fell in 2003 in Aurora, Nebraska, USA. The hailstone had a diameter of 7 inches (18 cm) and a circumference of 18.75 inches (47.6 cm).

Heavy rainfall and flooding

A flash flood caused by a severe thunderstorm

Heavy rainfall can lead to a number of hazards, most of which are floods or hazards resulting from floods. Flooding is the inundation of areas that are not normally under water. It is typically divided into three classes: River flooding, which relates to rivers rising outside their normals banks; flash flooding, which is the process where a landscape, often in urban and arid environments, is subjected to rapid floods; and coastal flooding, which can be caused by strong winds from tropical or non-tropical cyclones. Meteorologically, excessive rains occur within a plume of air with high amounts of moisture (also known as an atmospheric river) which is directed around an upper level cold-core low or a tropical cyclone. Flash flooding can frequently occur in slow-moving thunderstorms and are usually caused by the heavy liquid precipitation that accompanies it. Flash floods are most common in dense populated urban environments, where less plants and bodies of water are presented to absorb and contain the extra water. Flash flooding can be hazardous to small infrastructure, such as bridges, and weakly constructed buildings. Plants and crops in agricultural areas can be destroyed and devastated by the force of raging water. Automobiles parked within experiencing areas can also be displaced. Soil erosion can occur as well, exposing risks of landslide phenomena. Like all forms of flooding phenomenon, flash flooding can also spread and produce waterborne and insect-borne diseases cause by microorganisms. Flash flooding can be caused by extensive rainfall released by tropical cyclones of any strength or the sudden thawing effect of ice dams.

Monsoons

Seasonal wind shifts lead to long-lasting wet seasons which produce the bulk of annual precipitation in areas such as Southeast Asia, Australia, Western Africa, eastern South America, Mexico, and the Philippines. Widespread flooding occurs if rainfall is excessive, which can lead to landslides and mudflows in mountainous areas. Floods cause rivers to exceed their capacity with nearby buildings becoming submerged. Flooding may be exacerbated if there are fires during the previous dry season. This may cause soils which are sandy or composed of loam to become hydrophobic and repel water.

Government organizations help their residents deal with wet-season floods though floodplain mapping and information on erosion control. Mapping is conducted to help determine areas that may be more prone to flooding. Erosion control instructions are provided through outreach over the telephone or the internet.

Flood waters that occur during monsoon seasons can often host numerous protozoa, bacterial, and viral microorganisms. Mosquitoes and flies will lay their eggs within the contaminated bodies of water. These disease agents may cause infections of foodborne and waterborne diseases. Diseases associated with exposure to flood waters include malaria, cholera, typhoid, hepatitis A, and the common cold. Possible trenchfoot infections may also occur when personnel are exposed for extended periods of time within flooded areas.

Tropical cyclone

The damage caused by Hurricane Andrew is a good example of the damage caused by a category 5 Tropical cyclone
 
A tropical cyclone is a storm system characterized by a low-pressure center and numerous thunderstorms that produce strong winds and flooding rain. A tropical cyclone feeds on heat released when moist air rises, resulting in condensation of water vapor contained in the moist air. Tropical cyclones may produce torrential rain, high waves, and damaging storm surge. Heavy rains produce significant inland flooding. Storm surges may produce extensive coastal flooding up to 40 kilometres (25 mi) from the coastline. 

Although cyclones take an enormous toll in lives and personal property, they are also important factors in the precipitation regimes of areas they affect. They bring much-needed precipitation to otherwise dry regions. Areas in their path can receive a year's worth of rainfall from a tropical cyclone passage. Tropical cyclones can also relieve drought conditions. They also carry heat and energy away from the tropics and transport it toward temperate latitudes, which makes them an important part of the global atmospheric circulation mechanism. As a result, tropical cyclones help to maintain equilibrium in the Earth's troposphere.

Severe winter weather

Heavy snowfall

Damage caused by Lake Storm "Aphid" in October 2006
 
When extratropical cyclones deposit heavy, wet snow with a snow-water equivalent (SWE) ratio of between 6:1 and 12:1 and a weight in excess of 10 pounds per square foot (~50 kg/m2) piles onto trees or electricity lines, significant damage may occur on a scale usually associated with strong tropical cyclones. An avalanche can occur with a sudden thermal or mechanical impact on snow that has accumulated on a mountain, which causes the snow to rush downhill suddenly. Preceding an avalanche is a phenomenon known as an avalanche wind caused by the approaching avalanche itself, which adds to its destructive potential. Large amounts of snow which accumulate on top of man-made structures can lead to structural failure. During snowmelt, acidic precipitation which previously fell in the snow pack is released and harms marine life.

Lake-effect snow is produced in the winter in the shape of one or more elongated bands. This occurs when cold winds move across long expanses of warmer lake water, providing energy and picking up water vapor which freezes and is deposited on the lee shores. For more information on this effect see the main article. 

Conditions within blizzards often include large quantities of blowing snow and strong winds which may significantly reduce visibility. Reduced viability of personnel on foot may result in extended exposure to the blizzard and increase the chance of becoming lost. The strong winds associated with blizzards create wind chill that can result in frostbites and hypothermia. The strong winds present in blizzards are capable of damaging plants and may cause power outages, frozen pipes, and cut off fuel lines.

Strong extratropical cyclones

The precipitation pattern of Nor'easters is similar to other mature extratropical storms. Nor'easters can cause heavy rain or snow, either within their comma-head precipitation pattern or along their trailing cold or stationary front. Nor'easters can occur at any time of the year but are mostly known for their presence in the winter season. Severe European windstorms are often characterized by heavy precipitation as well.

Ice storm

Trees that have been destroyed by an ice storm.
 
Ice storms are also known as a Silver storm, referring to the color of the freezing precipitation. Ice storms are caused by liquid precipitation which freezes upon cold surfaces and leads to the gradual development of a thickening layer of ice. The accumulations of ice during the storm can be extremely destructive. Trees and vegetation can be destroyed and in turn may bring down power lines, causing the loss of heat and communication lines. Roofs of buildings and automobiles may be severely damaged. Gas pipes can become frozen or even damaged causing gas leaks. Avalanches may develop due to the extra weight of the ice present. Visibility can be reduced dramatically. The aftermath of an ice storm may result in severe flooding due to sudden thawing, with large quantities of displaced water, especially near lakes, rivers, and bodies of water.

Heat and drought

Drought

Crops in Australia that have failed due to drought conditions.
 
Another form of severe weather is drought, which is a prolonged period of persistently dry weather (that is, absence of precipitation). Although droughts do not develop or progress as quickly as other forms of severe weather, their effects can be just as deadly; in fact, droughts are classified and measured based upon these effects. Droughts have a variety of severe effects; they can cause crops to fail, and they can severely deplete water resources, sometimes interfering with human life. A drought in the 1930s known as the Dust Bowl affected 50 million acres of farmland in the central United States. In economic terms, they can cost many billions of dollars: a drought in the United States in 1988 caused over $40 billion in losses, exceeding the economic totals of Hurricane Andrew, the Great Flood of 1993, and the 1989 Loma Prieta earthquake. In addition to the other severe effects, the dry conditions caused by droughts also significantly increase the risk of wildfires.

Heat waves

A map indicating above-normal temperatures in Europe in 2003
 
Although official definitions vary, a heat wave is generally defined as a prolonged period with excessive heat. Although heat waves do not cause as much economic damage as other types of severe weather, they are extremely dangerous to humans and animals: according to the United States National Weather Service, the average total number of heat-related fatalities each year is higher than the combined total fatalities for floods, tornadoes, lightning strikes, and hurricanes. In Australia, heat waves cause more fatalities than any other type of severe weather. As in droughts, plants can also be severely affected by heat waves (which are often accompanied by dry conditions) can cause plants to lose their moisture and die. Heat waves are often more severe when combined with high humidity.

Time travel

From Wikipedia, the free encyclopedia

Time travel is the concept of movement between certain points in time, analogous to movement between different points in space by an object or a person, typically using a hypothetical device known as a time machine. Time travel is a widely-recognized concept in philosophy and fiction. The idea of a time machine was popularized by H. G. Wells' 1895 novel The Time Machine.

It is uncertain if time travel to the past is physically possible. Forward time travel, outside the usual sense of the perception of time, is an extensively-observed phenomenon and well-understood within the framework of special relativity and general relativity. However, making one body advance or delay more than a few milliseconds compared to another body is not feasible with current technology. As for backwards time travel, it is possible to find solutions in general relativity that allow for it, but the solutions require conditions that may not be physically possible. Traveling to an arbitrary point in spacetime has a very limited support in theoretical physics, and usually only connected with quantum mechanics or wormholes, also known as Einstein-Rosen bridges.

History of the time travel concept

Some ancient myths depict a character skipping forward in time. In Hindu mythology, the Mahabharata mentions the story of King Raivata Kakudmi, who travels to heaven to meet the creator Brahma and is surprised to learn when he returns to Earth that many ages have passed. The Buddhist Pāli Canon mentions the relativity of time. The Payasi Sutta tells of one of the Buddha's chief disciples, Kumara Kassapa, who explains to the skeptic Payasi that time in the Heavens passes differently than on Earth. The Japanese tale of "Urashima Tarō", first described in the Nihongi (720) tells of a young fisherman named Urashima Tarō who visits an undersea palace. After three days, he returns home to his village and finds himself 300 years in the future, where he has been forgotten, his house is in ruins, and his family has died. In Jewish tradition, the 1st-century BC scholar Honi ha-M'agel is said to have fallen asleep and slept for seventy years. When waking up he returned home but found none of the people he knew, and no one believed his claims of who he was.

Shift to science fiction

Early science fiction stories feature characters who sleep for years and awaken in a changed society, or are transported to the past through supernatural means. Among them L'An 2440, rêve s'il en fût jamais (1770) by Louis-Sébastien Mercier, Rip Van Winkle (1819) by Washington Irving, Looking Backward (1888) by Edward Bellamy, and When the Sleeper Awakes (1899) by H.G. Wells. Prolonged sleep, like the more familiar time machine, is used as a means of time travel in these stories.

The earliest work about backwards time travel is uncertain. Samuel Madden's Memoirs of the Twentieth Century (1733) is a series of letters from British ambassadors in 1997 and 1998 to diplomats in the past, conveying the political and religious conditions of the future. Because the narrator receives these letters from his guardian angel, Paul Alkon suggests in his book Origins of Futuristic Fiction that "the first time-traveler in English literature is a guardian angel." Madden does not explain how the angel obtains these documents, but Alkon asserts that Madden "deserves recognition as the first to toy with the rich idea of time-travel in the form of an artifact sent backward from the future to be discovered in the present." In the science fiction anthology Far Boundaries (1951), editor August Derleth claims that an early short story about time travel is Missing One's Coach: An Anachronism, written for the Dublin Literary Magazine by an anonymous author in 1838. While the narrator waits under a tree for a coach to take him out of Newcastle, he is transported back in time over a thousand years. He encounters the Venerable Bede in a monastery and explains to him the developments of the coming centuries. However, the story never makes it clear whether these events are real or a dream. Another early work about time travel is The Forebears of Kalimeros: Alexander, son of Philip of Macedon by Alexander Veltman published in 1836.

Mr. and Mrs. Fezziwig dance in a vision shown to Scrooge by the Ghost of Christmas Past.
 
Charles Dickens's A Christmas Carol (1843) has early depictions of time travel in both directions, as the protagonist, Ebenezer Scrooge, is transported to Christmases past and future. Other stories employ the same template, where a character naturally goes to sleep, and upon waking up finds themself in a different time. A clearer example of backward time travel is found in the popular 1861 book Paris avant les hommes (Paris before Men) by the French botanist and geologist Pierre Boitard, published posthumously. In this story, the protagonist is transported to the prehistoric past by the magic of a "lame demon" (a French pun on Boitard's name), where he encounters a Plesiosaur and an apelike ancestor and is able to interact with ancient creatures. Edward Everett Hale's "Hands Off" (1881) tells the story of an unnamed being, possibly the soul of a person who has recently died, who interferes with ancient Egyptian history by preventing Joseph's enslavement. This may have been the first story to feature an alternate history created as a result of time travel.

Early time machines

One of the first stories to feature time travel by means of a machine is "The Clock that Went Backward" by Edward Page Mitchell, which appeared in the New York Sun in 1881. However, the mechanism borders on fantasy. An unusual clock, when wound, runs backwards and transports people nearby back in time. The author does not explain the origin or properties of the clock. Enrique Gaspar y Rimbau's El Anacronópete (1887) may have been the first story to feature a vessel engineered to travel through time. Andrew Sawyer has commented that the story "does seem to be the first literary description of a time machine noted so far", adding that "Edward Page Mitchell's story 'The Clock That Went Backward' (1881) is usually described as the first time-machine story, but I'm not sure that a clock quite counts." H. G. Wells's The Time Machine (1895) popularized the concept of time travel by mechanical means.

Time travel in physics

Some theories, most notably special and general relativity, suggest that suitable geometries of spacetime or specific types of motion in space might allow time travel into the past and future if these geometries or motions were possible. In technical papers, physicists discuss the possibility of closed timelike curves, which are world lines that form closed loops in spacetime, allowing objects to return to their own past. There are known to be solutions to the equations of general relativity that describe spacetimes which contain closed timelike curves, such as Gödel spacetime, but the physical plausibility of these solutions is uncertain.

Many in the scientific community believe that backward time travel is highly unlikely. Any theory that would allow time travel would introduce potential problems of causality. The classic example of a problem involving causality is the "grandfather paradox": what if one were to go back in time and kill one's own grandfather before one's father was conceived? Some physicists, such as Novikov and Deutsch, suggested that these sorts of temporal paradoxes can be avoided through the Novikov self-consistency principle or to a variation of the many-worlds interpretation with interacting worlds.

General relativity

Time travel to the past is theoretically possible in certain general relativity spacetime geometries that permit traveling faster than the speed of light, such as cosmic strings, transversable wormholes, and Alcubierre drive. The theory of general relativity does suggest a scientific basis for the possibility of backward time travel in certain unusual scenarios, although arguments from semiclassical gravity suggest that when quantum effects are incorporated into general relativity, these loopholes may be closed. These semiclassical arguments led Stephen Hawking to formulate the chronology protection conjecture, suggesting that the fundamental laws of nature prevent time travel, but physicists cannot come to a definite judgment on the issue without a theory of quantum gravity to join quantum mechanics and general relativity into a completely unified theory.

Different spacetime geometries

The theory of general relativity describes the universe under a system of field equations that determine the metric, or distance function, of spacetime. There exist exact solutions to these equations that include closed time-like curves, which are world lines that intersect themselves; some point in the causal future of the world line is also in its causal past, a situation that can be described as time travel. Such a solution was first proposed by Kurt Gödel, a solution known as the Gödel metric, but his (and others') solution requires the universe to have physical characteristics that it does not appear to have, such as rotation and lack of Hubble expansion. Whether general relativity forbids closed time-like curves for all realistic conditions is still being researched.

Wormholes

Wormholes are a hypothetical warped spacetime which are permitted by the Einstein field equations of general relativity. A proposed time-travel machine using a traversable wormhole would hypothetically work in the following way: One end of the wormhole is accelerated to some significant fraction of the speed of light, perhaps with some advanced propulsion system, and then brought back to the point of origin. Alternatively, another way is to take one entrance of the wormhole and move it to within the gravitational field of an object that has higher gravity than the other entrance, and then return it to a position near the other entrance. For both of these methods, time dilation causes the end of the wormhole that has been moved to have aged less, or become "younger", than the stationary end as seen by an external observer; however, time connects differently through the wormhole than outside it, so that synchronized clocks at either end of the wormhole will always remain synchronized as seen by an observer passing through the wormhole, no matter how the two ends move around. This means that an observer entering the "younger" end would exit the "older" end at a time when it was the same age as the "younger" end, effectively going back in time as seen by an observer from the outside. One significant limitation of such a time machine is that it is only possible to go as far back in time as the initial creation of the machine; in essence, it is more of a path through time than it is a device that itself moves through time, and it would not allow the technology itself to be moved backward in time.

According to current theories on the nature of wormholes, construction of a traversable wormhole would require the existence of a substance with negative energy, often referred to as "exotic matter". More technically, the wormhole spacetime requires a distribution of energy that violates various energy conditions, such as the null energy condition along with the weak, strong, and dominant energy conditions. However, it is known that quantum effects can lead to small measurable violations of the null energy condition, and many physicists believe that the required negative energy may actually be possible due to the Casimir effect in quantum physics. Although early calculations suggested a very large amount of negative energy would be required, later calculations showed that the amount of negative energy can be made arbitrarily small.

In 1993, Matt Visser argued that the two mouths of a wormhole with such an induced clock difference could not be brought together without inducing quantum field and gravitational effects that would either make the wormhole collapse or the two mouths repel each other. Because of this, the two mouths could not be brought close enough for causality violation to take place. However, in a 1997 paper, Visser hypothesized that a complex "Roman ring" (named after Tom Roman) configuration of an N number of wormholes arranged in a symmetric polygon could still act as a time machine, although he concludes that this is more likely a flaw in classical quantum gravity theory rather than proof that causality violation is possible.

Other approaches based on general relativity

Another approach involves a dense spinning cylinder usually referred to as a Tipler cylinder, a GR solution discovered by Willem Jacob van Stockum in 1936 and Kornel Lanczos in 1924, but not recognized as allowing closed timelike curves until an analysis by Frank Tipler in 1974. If a cylinder is infinitely long and spins fast enough about its long axis, then a spaceship flying around the cylinder on a spiral path could travel back in time (or forward, depending on the direction of its spiral). However, the density and speed required is so great that ordinary matter is not strong enough to construct it. A similar device might be built from a cosmic string, but none are known to exist, and it does not seem to be possible to create a new cosmic string. Physicist Ronald Mallett is attempting to recreate the conditions of a rotating black hole with ring lasers, in order to bend spacetime and allow for time travel.

A more fundamental objection to time travel schemes based on rotating cylinders or cosmic strings has been put forward by Stephen Hawking, who proved a theorem showing that according to general relativity it is impossible to build a time machine of a special type (a "time machine with the compactly generated Cauchy horizon") in a region where the weak energy condition is satisfied, meaning that the region contains no matter with negative energy density (exotic matter). Solutions such as Tipler's assume cylinders of infinite length, which are easier to analyze mathematically, and although Tipler suggested that a finite cylinder might produce closed timelike curves if the rotation rate were fast enough, he did not prove this. But Hawking points out that because of his theorem, "it can't be done with positive energy density everywhere! I can prove that to build a finite time machine, you need negative energy." This result comes from Hawking's 1992 paper on the chronology protection conjecture, where he examines "the case that the causality violations appear in a finite region of spacetime without curvature singularities" and proves that "there will be a Cauchy horizon that is compactly generated and that in general contains one or more closed null geodesics which will be incomplete. One can define geometrical quantities that measure the Lorentz boost and area increase on going round these closed null geodesics. If the causality violation developed from a noncompact initial surface, the averaged weak energy condition must be violated on the Cauchy horizon." This theorem does not rule out the possibility of time travel by means of time machines with the non-compactly generated Cauchy horizons (such as the Deutsch-Politzer time machine) or in regions which contain exotic matter, which would be used for traversable wormholes or the Alcubierre drive.

Quantum physics

No-communication theorem

When a signal is sent from one location and received at another location, then as long as the signal is moving at the speed of light or slower, the mathematics of simultaneity in the theory of relativity show that all reference frames agree that the transmission-event happened before the reception-event. When the signal travels faster than light, it is received before it is sent, in all reference frames. The signal could be said to have moved backward in time. This hypothetical scenario is sometimes referred to as a tachyonic antitelephone.

Quantum-mechanical phenomena such as quantum teleportation, the EPR paradox, or quantum entanglement might appear to create a mechanism that allows for faster-than-light (FTL) communication or time travel, and in fact some interpretations of quantum mechanics such as the Bohm interpretation presume that some information is being exchanged between particles instantaneously in order to maintain correlations between particles. This effect was referred to as "spooky action at a distance" by Einstein.

Nevertheless, the fact that causality is preserved in quantum mechanics is a rigorous result in modern quantum field theories, and therefore modern theories do not allow for time travel or FTL communication. In any specific instance where FTL has been claimed, more detailed analysis has proven that to get a signal, some form of classical communication must also be used. The no-communication theorem also gives a general proof that quantum entanglement cannot be used to transmit information faster than classical signals.

Interacting many-worlds interpretation

A variation of Everett's many-worlds interpretation (MWI) of quantum mechanics provides a resolution to the grandfather paradox that involves the time traveler arriving in a different universe than the one they came from; it's been argued that since the traveler arrives in a different universe's history and not their own history, this is not "genuine" time travel. The accepted many-worlds interpretation suggests that all possible quantum events can occur in mutually exclusive histories. However, some variations allow different universes to interact. This concept is most often used in science-fiction, but some physicists such as David Deutsch have suggested that a time traveler should end up in a different history than the one he started from. On the other hand, Stephen Hawking has argued that even if the MWI is correct, we should expect each time traveler to experience a single self-consistent history, so that time travelers remain within their own world rather than traveling to a different one. The physicist Allen Everett argued that Deutsch's approach "involves modifying fundamental principles of quantum mechanics; it certainly goes beyond simply adopting the MWI". Everett also argues that even if Deutsch's approach is correct, it would imply that any macroscopic object composed of multiple particles would be split apart when traveling back in time through a wormhole, with different particles emerging in different worlds.

Experimental results

Certain experiments carried out give the impression of reversed causality, but fail to show it under closer examination. 

The delayed choice quantum eraser experiment performed by Marlan Scully involves pairs of entangled photons that are divided into "signal photons" and "idler photons", with the signal photons emerging from one of two locations and their position later measured as in the double-slit experiment. Depending on how the idler photon is measured, the experimenter can either learn which of the two locations the signal photon emerged from or "erase" that information. Even though the signal photons can be measured before the choice has been made about the idler photons, the choice seems to retroactively determine whether or not an interference pattern is observed when one correlates measurements of idler photons to the corresponding signal photons. However, since interference can only be observed after the idler photons are measured and they are correlated with the signal photons, there is no way for experimenters to tell what choice will be made in advance just by looking at the signal photons, only by gathering classical information from the entire system; thus causality is preserved.

The experiment of Lijun Wang might also show causality violation since it made it possible to send packages of waves through a bulb of caesium gas in such a way that the package appeared to exit the bulb 62 nanoseconds before its entry, but a wave package is not a single well-defined object but rather a sum of multiple waves of different frequencies, and the package can appear to move faster than light or even backward in time even if none of the pure waves in the sum do so. This effect cannot be used to send any matter, energy, or information faster than light, so this experiment is understood not to violate causality either. 

The physicists Günter Nimtz and Alfons Stahlhofen, of the University of Koblenz, claim to have violated Einstein's theory of relativity by transmitting photons faster than the speed of light. They say they have conducted an experiment in which microwave photons traveled "instantaneously" between a pair of prisms that had been moved up to 3 ft (0.91 m) apart, using a phenomenon known as quantum tunneling. Nimtz told New Scientist magazine: "For the time being, this is the only violation of special relativity that I know of." However, other physicists say that this phenomenon does not allow information to be transmitted faster than light. Aephraim Steinberg, a quantum optics expert at the University of Toronto, Canada, uses the analogy of a train traveling from Chicago to New York, but dropping off train cars at each station along the way, so that the center of the train moves forward at each stop; in this way, the speed of the center of the train exceeds the speed of any of the individual cars.

Shengwang Du claims in a peer-reviewed journal to have observed single photons' precursors, saying that they travel no faster than c in a vacuum. His experiment involved slow light as well as passing light through a vacuum. He generated two single photons, passing one through rubidium atoms that had been cooled with a laser (thus slowing the light) and passing one through a vacuum. Both times, apparently, the precursors preceded the photons' main bodies, and the precursor traveled at c in a vacuum. According to Du, this implies that there is no possibility of light traveling faster than c and, thus, no possibility of violating causality.

Absence of time travelers from the future

Krononauts
 
The absence of time travelers from the future is a variation of the Fermi paradox. As the absence of extraterrestrial visitors does not prove they do not exist, so the absence of time travelers fails to prove time travel is physically impossible; it might be that time travel is physically possible but is never developed or is cautiously used. Carl Sagan once suggested the possibility that time travelers could be here but are disguising their existence or are not recognized as time travelers. Some versions of general relativity suggest that time travel might only be possible in a region of spacetime that is warped a certain way, and hence time travelers would not be able to travel back to earlier regions in spacetime, before this region existed. Stephen Hawking stated that this would explain why the world has not already been overrun by "tourists from the future."

Several experiments have been carried out to try to entice future humans, who might invent time travel technology, to come back and demonstrate it to people of the present time. Events such as Perth's Destination Day or MIT's Time Traveler Convention heavily publicized permanent "advertisements" of a meeting time and place for future time travelers to meet. In 1982, a group in Baltimore, Maryland, identifying itself as the Krononauts, hosted an event of this type welcoming visitors from the future. These experiments only stood the possibility of generating a positive result demonstrating the existence of time travel, but have failed so far—no time travelers are known to have attended either event. Some versions of the many-worlds interpretation can be used to suggest that future humans have traveled back in time, but have traveled back to the meeting time and place in a parallel universe.

Forward time travel in physics

Time dilation

Transversal time dilation. The blue dots represent a pulse of light. Each pair of dots with light "bouncing" between them is a clock. For each group of clocks, the other group appears to be ticking more slowly, because the moving clock's light pulse has to travel a larger distance than the stationary clock's light pulse. That is so, even though the clocks are identical and their relative motion is perfectly reciprocal.
 
There is a great deal of observable evidence for time dilation in special relativity and gravitational time dilation in general relativity, for example in the famous and easy-to-replicate observation of atmospheric muon decay. The theory of relativity states that the speed of light is invariant for all observers in any frame of reference; that is, it is always the same. Time dilation is a direct consequence of the invariance of the speed of light. Time dilation may be regarded in a limited sense as "time travel into the future": a person may use time dilation so that a small amount of proper time passes for them, while a large amount of proper time passes elsewhere. This can be achieved by traveling at relativistic speeds or through the effects of gravity.

For two identical clocks moving relative to each other without accelerating, each clock measures the other to be ticking slower. This is possible due to the relativity of simultaneity. However, the symmetry is broken if one clock accelerates, allowing for less proper time to pass for one clock than the other. The twin paradox describes this: one twin remains on Earth, while the other undergoes acceleration to relativistic speed as they travel into space, turn around, and travel back to Earth; the traveling twin ages less than the twin who stayed on Earth, because of the time dilation experienced during their acceleration. General relativity treats the effects of acceleration and the effects of gravity as equivalent, and shows that time dilation also occurs in gravity wells, with a clock deeper in the well ticking more slowly; this effect is taken into account when calibrating the clocks on the satellites of the Global Positioning System, and it could lead to significant differences in rates of aging for observers at different distances from a large gravity well such as a black hole.

A time machine that utilizes this principle might be, for instance, a spherical shell with a diameter of 5 meters and the mass of Jupiter. A person at its center will travel forward in time at a rate four times that of distant observers. Squeezing the mass of a large planet into such a small structure is not expected to be within humanity's technological capabilities in the near future. With current technologies, it is only possible to cause a human traveler to age less than companions on Earth by a few milliseconds, the current record being about 20 milliseconds for the cosmonaut Sergei Krikalev.

Philosophy

Philosophers have discussed the nature of time since at least the time of ancient Greece; for example, Parmenides presented the view that time is an illusion. Centuries later, Isaac Newton supported the idea of absolute time, while his contemporary Gottfried Wilhelm Leibniz maintained that time is only a relation between events and it cannot be expressed independently. The latter approach eventually gave rise to the spacetime of relativity.

Presentism vs. eternalism

Many philosophers have argued that relativity implies eternalism, the idea that the past and future exist in a real sense, not only as changes that occurred or will occur to the present. Philosopher of science Dean Rickles disagrees with some qualifications, but notes that "the consensus among philosophers seems to be that special and general relativity are incompatible with presentism." Some philosophers view time as a dimension equal to spatial dimensions, that future events are "already there" in the same sense different places exist, and that there is no objective flow of time; however, this view is disputed.

The bar and ring paradox is an example of the relativity of simultaneity. Both ends of the bar pass through the ring simultaneously in the rest frame of the ring (left), but the ends of the bar pass one after the other in the rest frame of the bar (right).
 
Presentism is a school of philosophy that holds that the future and the past exist only as changes that occurred or will occur to the present, and they have no real existence of their own. In this view, time travel is impossible because there is no future or past to travel to. Keller and Nelson have argued that even if past and future objects do not exist, there can still be definite truths about past and future events, and thus it is possible that a future truth about a time traveler deciding to travel back to the present date could explain the time traveler's actual appearance in the present; these views are contested by some authors.

Presentism in classical spacetime deems that only the present exists; this is not reconcilable with special relativity, shown in the following example: Alice and Bob are simultaneous observers of event O. For Alice, some event E is simultaneous with O, but for Bob, event E is in the past or future. Therefore, Alice and Bob disagree about what exists in the present, which contradicts classical presentism. "Here-now presentism" attempts to reconcile this by only acknowledging the time and space of a single point; this is unsatisfactory because objects coming and going from the "here-now" alternate between real and unreal, in addition to the lack of a privileged "here-now" that would be the "real" present. "Relativized presentism" acknowledges that there are infinite frames of reference, each of them has a different set of simultaneous events, which makes it impossible to distinguish a single "real" present, and hence either all events in time are real—blurring the difference between presentism and eternalism—or each frame of reference exists in its own reality. Options for presentism in special relativity appear to be exhausted, but Gödel and others suspect presentism may be valid for some forms of general relativity. Generally, the idea of absolute time and space is considered incompatible with general relativity; there is no universal truth about the absolute position of events which occur at different times, and thus no way to determine which point in space at one time is at the universal "same position" at another time, and all coordinate systems are on equal footing as given by the principle of diffeomorphism invariance.

The grandfather paradox

A common objection to the idea of traveling back in time is put forth in the grandfather paradox or the argument of auto-infanticide. If one were able to go back in time, inconsistencies and contradictions would ensue if the time traveler were to change anything; there is a contradiction if the past becomes different from the way it is. The paradox is commonly described with a person who travels to the past and kills their own grandfather, prevents the existence of their father or mother, and therefore their own existence. Philosophers question whether these paradoxes make time travel impossible. Some philosophers answer the paradoxes by arguing that it might be the case that backward time travel could be possible but that it would be impossible to actually change the past in any way, an idea similar to the proposed Novikov self-consistency principle in physics.

Ontological paradox

Compossibility

According to the philosophical theory of compossibility, what can happen, for example in the context of time travel, must be weighed against the context of everything relating to the situation. If the past is a certain way, it's not possible for it to be any other way. What can happen when a time traveler visits the past is limited to what did happen, in order to prevent logical contradictions.

Self-consistency principle

The Novikov self-consistency principle, named after Igor Dmitrievich Novikov, states that any actions taken by a time traveler or by an object that travels back in time were part of history all along, and therefore it is impossible for the time traveler to "change" history in any way. The time traveler's actions may be the cause of events in their own past though, which leads to the potential for circular causation, sometimes called a predestination paradox, ontological paradox, or bootstrap paradox. The term bootstrap paradox was popularized by Robert A. Heinlein's story "By His Bootstraps". The Novikov self-consistency principle proposes that the local laws of physics in a region of spacetime containing time travelers cannot be any different from the local laws of physics in any other region of spacetime.

The philosopher Kelley L. Ross argues in "Time Travel Paradoxes" that in a scenario involving a physical object whose world-line or history forms a closed loop in time there can be a violation of the second law of thermodynamics. Ross uses "Somewhere in Time" as an example of such an ontological paradox, where a watch is given to a person, and 60 years later the same watch is brought back in time and given to the same character. Ross states that entropy of the watch will increase, and the watch carried back in time will be more worn with each repetition of its history. The second law of thermodynamics is understood by modern physicists to be a statistical law, so decreasing entropy or non-increasing entropy are not impossible, just improbable. Additionally, entropy statistically increases in systems which are isolated, so non-isolated systems, such as an object, that interact with the outside world, can become less worn and decrease in entropy, and it's possible for an object whose world-line forms a closed loop to be always in the same condition in the same point of its history.

Daniel Greenberger and Karl Svozil proposed that quantum theory gives a model for time travel where the past must be self-consistent.

In fiction

Time travel themes in science fiction and the media can generally be grouped into three categories: immutable timeline; mutable timeline; and alternate histories, as in the interacting-many-worlds interpretation. Frequently in fiction, timeline is used to refer to all physical events in history, so that in time travel stories where events can be changed, the time traveler is described as creating a new or altered timeline. This usage is distinct from the use of the term timeline to refer to a type of chart that illustrates a particular series of events, and the concept is also distinct from a world line, a term from Einstein's theory of relativity which refers to the entire history of a single object.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...