Search This Blog

Wednesday, May 9, 2018

Mach's principle

From Wikipedia, the free encyclopedia

In theoretical physics, particularly in discussions of gravitation theories, Mach's principle (or Mach's conjecture[1]) is the name given by Einstein to an imprecise hypothesis often credited to the physicist and philosopher Ernst Mach. The idea is that the existence of absolute rotation (the distinction of local inertial frames vs. rotating reference frames) is determined by the large-scale distribution of matter, as exemplified by this anecdote:[2]
You are standing in a field looking at the stars. Your arms are resting freely at your side, and you see that the distant stars are not moving. Now start spinning. The stars are whirling around you and your arms are pulled away from your body. Why should your arms be pulled away when the stars are whirling? Why should they be dangling freely when the stars don't move?
Mach's principle says that this is not a coincidence—that there is a physical law that relates the motion of the distant stars to the local inertial frame. If you see all the stars whirling around you, Mach suggests that there is some physical law which would make it so you would feel a centrifugal force. There are a number of rival formulations of the principle. It is often stated in vague ways, like "mass out there influences inertia here". A very general statement of Mach's principle is "local physical laws are determined by the large-scale structure of the universe".[3]

This concept was a guiding factor in Einstein's development of the general theory of relativity. Einstein realized that the overall distribution of matter would determine the metric tensor, which tells you which frame is rotationally stationary. Frame-dragging and conservation of gravitational angular momentum makes this into a true statement in the general theory in certain solutions. But because the principle is so vague, many distinct statements can be (and have been) made that would qualify as a Mach principle, and some of these are false. The Gödel rotating universe is a solution of the field equations that is designed to disobey Mach's principle in the worst possible way. In this example, the distant stars seem to be revolving faster and faster as one moves further away. This example doesn't completely settle the question, because it has closed timelike curves.

History

The basic idea also appears before Mach's time, in the writings of George Berkeley.[4] The book Absolute or Relative Motion? (1896) by Benedict Friedländer and his brother Immanuel contained ideas similar to Mach's principle.[page needed]

Einstein's use of the principle

There is a fundamental issue in relativity theory. If all motion is relative, how can we measure the inertia of a body? We must measure the inertia with respect to something else. But what if we imagine a particle completely on its own in the universe? We might hope to still have some notion of its state of motion. Mach's principle is sometimes interpreted as the statement that such a particle's state of motion has no meaning in that case.

In Mach's words, the principle is embodied as follows:[5]
[The] investigator must feel the need of... knowledge of the immediate connections, say, of the masses of the universe. There will hover before him as an ideal insight into the principles of the whole matter, from which accelerated and inertial motions will result in the same way.
Albert Einstein seemed to view Mach's principle as something along the lines of:[6]
...inertia originates in a kind of interaction between bodies...
In this sense, at least some of Mach's principles are related to philosophical holism. Mach's suggestion can be taken as the injunction that gravitation theories should be relational theories. Einstein brought the principle into mainstream physics while working on general relativity. Indeed, it was Einstein who first coined the phrase Mach's principle. There is much debate as to whether Mach really intended to suggest a new physical law since he never states it explicitly.

The writing in which Einstein found inspiration from Mach was "The Science of Mechanics", where the philosopher criticized Newton's idea of absolute space, in particular the argument that Newton gave sustaining the existence of an advantaged reference system: what is commonly called "Newton's bucket argument".

In his Philosophiae Naturalis Principia Mathematica, Newton tried to demonstrate that one can always decide if one is rotating with respect to the absolute space, measuring the apparent forces that arise only when an absolute rotation is performed. If a bucket is filled with water, and made to rotate, initially the water remains still, but then, gradually, the walls of the vessel communicate their motion to the water, making it curve and climb up the borders of the bucket, because of the centrifugal forces produced by the rotation. Newton says that this thought experiment demonstrates that the centrifugal forces arise only when the water is in rotation with respect to the absolute space (represented here by the earth's reference frame, or better, the distant stars); instead, when the bucket was rotating with respect to the water no centrifugal forces were produced, this indicating that the latter was still with respect to the absolute space.

Mach, in his book, says that the bucket experiment only demonstrates that when the water is in rotation with respect to the bucket no centrifugal forces are produced, and that we cannot know how the water would behave if in the experiment the bucket's walls were increased in depth and width until they became leagues big. In Mach's idea this concept of absolute motion should be substituted with a total relativism in which every motion, uniform or accelerated, has sense only in reference to other bodies (i.e., one cannot simply say that the water is rotating, but must specify if it's rotating with respect to the vessel or to the earth). In this view, the apparent forces that seem to permit discrimination between relative and "absolute" motions should only be considered as an effect of the particular asymmetry that there is in our reference system between the bodies which we consider in motion, that are small (like buckets), and the bodies that we believe are still (the earth and distant stars), that are overwhelmingly bigger and heavier than the former. This same thought had been expressed by the philosopher George Berkeley in his De Motu. It is then not clear, in the passages from Mach just mentioned, if the philosopher intended to formulate a new kind of physical action between heavy bodies. This physical mechanism should determine the inertia of bodies, in a way that the heavy and distant bodies of our universe should contribute the most to the inertial forces. More likely, Mach only suggested a mere "redescription of motion in space as experiences that do not invoke the term space".[7] What is certain is that Einstein interpreted Mach's passage in the former way, originating a long-lasting debate.

Most physicists believe Mach's principle was never developed into a quantitative physical theory that would explain a mechanism by which the stars can have such an effect. It was never made clear by Mach himself exactly what his principle was.[8] Although Einstein was intrigued and inspired by Mach's principle, Einstein's formulation of the principle is not a fundamental assumption of general relativity.

Mach's principle in general relativity

Because intuitive notions of distance and time no longer apply, what exactly is meant by "Mach's principle" in general relativity is even less clear than in Newtonian physics and at least 21 formulations of Mach's principle are possible, some being considered more strongly Machian than others.[9] A relatively weak formulation is the assertion that the motion of matter in one place should affect which frames are inertial in another.

Einstein—before completing his development of the general theory of relativity—found an effect which he interpreted as being evidence of Mach's principle. We assume a fixed background for conceptual simplicity, construct a large spherical shell of mass, and set it spinning in that background. The reference frame in the interior of this shell will precess with respect to the fixed background. This effect is known as the Lense–Thirring effect. Einstein was so satisfied with this manifestation of Mach's principle that he wrote a letter to Mach expressing this:
it... turns out that inertia originates in a kind of interaction between bodies, quite in the sense of your considerations on Newton's pail experiment... If one rotates [a heavy shell of matter] relative to the fixed stars about an axis going through its center, a Coriolis force arises in the interior of the shell; that is, the plane of a Foucault pendulum is dragged around (with a practically unmeasurably small angular velocity).[6]
The Lense–Thirring effect certainly satisfies the very basic and broad notion that "matter there influences inertia here"[10] The plane of the pendulum would not be dragged around if the shell of matter were not present, or if it were not spinning. As for the statement that "inertia originates in a kind of interaction between bodies", this too could be interpreted as true in the context of the effect.

More fundamental to the problem, however, is the very existence of a fixed background, which Einstein describes as "the fixed stars". Modern relativists see the imprints of Mach's principle in the initial-value problem. Essentially, we humans seem to wish to separate spacetime into slices of constant time. When we do this, Einstein's equations can be decomposed into one set of equations, which must be satisfied on each slice, and another set, which describe how to move between slices. The equations for an individual slice are elliptic partial differential equations. In general, this means that only part of the geometry of the slice can be given by the scientist, while the geometry everywhere else will then be dictated by Einstein's equations on the slice.[clarification needed]

In the context of an asymptotically flat spacetime, the boundary conditions are given at infinity. Heuristically, the boundary conditions for an asymptotically flat universe define a frame with respect to which inertia has meaning. By performing a Lorentz transformation on the distant universe, of course, this inertia can also be transformed.

A stronger form of Mach's principle applies in Wheeler–Mach–Einstein spacetimes, which require spacetime to be spatially compact and globally hyperbolic. In such universes Mach's principle can be stated as the distribution of matter and field energy-momentum (and possibly other information) at a particular moment in the universe determines the inertial frame at each point in the universe (where "a particular moment in the universe" refers to a chosen Cauchy surface).[11]

There have been other attempts to formulate a theory that is more fully Machian, such as the Brans–Dicke theory and the Hoyle–Narlikar theory of gravity, but most physicists argue that none have been fully successful. At an exit poll of experts, held in Tübingen in 1993, when asked the question "Is general relativity perfectly Machian?", 3 respondents replied "yes", and 22 replied "no". To the question "Is general relativity with appropriate boundary conditions of closure of some kind very Machian?" the result was 14 "yes" and 7 "no".[12]

However, Einstein was convinced that a valid theory of gravity would necessarily have to include the relativity of inertia:

Variations in the statement of the principle

The broad notion that "mass there influences inertia here" has been expressed in several forms. Hermann Bondi and Joseph Samuel have listed eleven distinct statements that can be called Mach principles, labelled by Mach0 through Mach10.[13] Though their list is not necessarily exhaustive, it does give a flavor for the variety possible.
  • Mach0: The universe, as represented by the average motion of distant galaxies, does not appear to rotate relative to local inertial frames.
  • Mach1: Newton’s gravitational constant G is a dynamical field.
  • Mach2: An isolated body in otherwise empty space has no inertia.
  • Mach3: Local inertial frames are affected by the cosmic motion and distribution of matter.
  • Mach4: The universe is spatially closed.
  • Mach5: The total energy, angular and linear momentum of the universe are zero.
  • Mach6: Inertial mass is affected by the global distribution of matter.
  • Mach7: If you take away all matter, there is no more space.
  • Mach8: {\displaystyle \Omega \ {\stackrel {\text{def}}{=}}\ 4\pi \rho GT^{2}} is a definite number, of order unity, where \rho is the mean density of matter in the universe, and T is the Hubble time.
  • Mach9: The theory contains no absolute elements.
  • Mach10: Overall rigid rotations and translations of a system are unobservable.

Equivalence principle

From Wikipedia, the free encyclopedia

In the theory of general relativity, the equivalence principle is any of several related concepts dealing with the equivalence of gravitational and inertial mass, and to Albert Einstein's observation that the gravitational "force" as experienced locally while standing on a massive body (such as the Earth) is the same as the pseudo-force experienced by an observer in a non-inertial (accelerated) frame of reference.

Einstein's statement of the equality of inertial and gravitational mass

A little reflection will show that the law of the equality of the inertial and gravitational mass is equivalent to the assertion that the acceleration imparted to a body by a gravitational field is independent of the nature of the body. For Newton's equation of motion in a gravitational field, written out in full, it is:
(Inertial mass) \cdot (Acceleration)  = (Intensity of the gravitational field) \cdot (Gravitational mass).
It is only when there is numerical equality between the inertial and gravitational mass that the acceleration is independent of the nature of the body.[1][2]

Development of gravitation theory

During the Apollo 15 mission in 1971, astronaut David Scott showed that Galileo was right: acceleration is the same for all bodies subject to gravity on the Moon, even for a hammer and a feather.

Something like the equivalence principle emerged in the early 17th century, when Galileo expressed experimentally that the acceleration of a test mass due to gravitation is independent of the amount of mass being accelerated.

Kepler, using Galileo's discoveries, showed knowledge of the equivalence principle by accurately describing what would occur if the moon were stopped in its orbit and dropped towards Earth. This can be deduced without knowing if or in what manner gravity decreases with distance, but requires assuming the equivalency between gravity and inertia.
If two stones were placed in any part of the world near each other, and beyond the sphere of influence of a third cognate body, these stones, like two magnetic needles, would come together in the intermediate point, each approaching the other by a space proportional to the comparative mass of the other. If the moon and earth were not retained in their orbits by their animal force or some other equivalent, the earth would mount to the moon by a fifty-fourth part of their distance, and the moon fall towards the earth through the other fifty-three parts, and they would there meet, assuming, however, that the substance of both is of the same density.
— Kepler, "Astronomia Nova", 1609[3]
The 1/54 ratio is Kepler's estimate of the Moon–Earth mass ratio, based on their diameters. The accuracy of his statement can be deduced by using Newton's inertia law F=ma and Galileo's gravitational observation that distance {\displaystyle D=(1/2)at^{2}}. Setting these accelerations equal for a mass is the equivalence principle. Noting the time to collision for each mass is the same gives Kepler's statement that Dmoon/DEarth=MEarth/Mmoon, without knowing the time to collision or how or if the acceleration force from gravity is a function of distance.

Newton's gravitational theory simplified and formalized Galileo's and Kepler's ideas by recognizing Kepler's "animal force or some other equivalent" beyond gravity and inertia were not needed, deducing from Kepler's planetary laws how gravity reduces with distance.

The equivalence principle was properly introduced by Albert Einstein in 1907, when he observed that the acceleration of bodies towards the center of the Earth at a rate of 1g (g = 9.81 m/s2 being a standard reference of gravitational acceleration at the Earth's surface) is equivalent to the acceleration of an inertially moving body that would be observed on a rocket in free space being accelerated at a rate of 1g. Einstein stated it thus:
we [...] assume the complete physical equivalence of a gravitational field and a corresponding acceleration of the reference system.
— Einstein, 1907
That is, being on the surface of the Earth is equivalent to being inside a spaceship (far from any sources of gravity) that is being accelerated by its engines. The direction or vector of acceleration equivalence on the surface of the earth is "up" or directly opposite the center of the planet while the vector of acceleration in a spaceship is directly opposite from the mass ejected by its thrusters. From this principle, Einstein deduced that free-fall is inertial motion. Objects in free-fall do not experience being accelerated downward (e.g. toward the earth or other massive body) but rather weightlessness and no acceleration. In an inertial frame of reference bodies (and photons, or light) obey Newton's first law, moving at constant velocity in straight lines. Analogously, in a curved spacetime the world line of an inertial particle or pulse of light is as straight as possible (in space and time).[4] Such a world line is called a geodesic and from the point of view of the inertial frame is a straight line. This is why an accelerometer in free-fall doesn't register any acceleration; there isn't any.

As an example: an inertial body moving along a geodesic through space can be trapped into an orbit around a large gravitational mass without ever experiencing acceleration. This is possible because spacetime is radically curved in close vicinity to a large gravitational mass. In such a situation the geodesic lines bend inward around the center of the mass and a free-floating (weightless) inertial body will simply follow those curved geodesics into an elliptical orbit. An accelerometer on-board would never record any acceleration.

By contrast, in Newtonian mechanics, gravity is assumed to be a force. This force draws objects having mass towards the center of any massive body. At the Earth's surface, the force of gravity is counteracted by the mechanical (physical) resistance of the Earth's surface. So in Newtonian physics, a person at rest on the surface of a (non-rotating) massive object is in an inertial frame of reference. These considerations suggest the following corollary to the equivalence principle, which Einstein formulated precisely in 1911:
Whenever an observer detects the local presence of a force that acts on all objects in direct proportion to the inertial mass of each object, that observer is in an accelerated frame of reference.
Einstein also referred to two reference frames, K and K'. K is a uniform gravitational field, whereas K' has no gravitational field but is uniformly accelerated such that objects in the two frames experience identical forces:
We arrive at a very satisfactory interpretation of this law of experience, if we assume that the systems K and K' are physically exactly equivalent, that is, if we assume that we may just as well regard the system K as being in a space free from gravitational fields, if we then regard K as uniformly accelerated. This assumption of exact physical equivalence makes it impossible for us to speak of the absolute acceleration of the system of reference, just as the usual theory of relativity forbids us to talk of the absolute velocity of a system; and it makes the equal falling of all bodies in a gravitational field seem a matter of course.
— Einstein, 1911
This observation was the start of a process that culminated in general relativity. Einstein suggested that it should be elevated to the status of a general principle, which he called the "principle of equivalence" when constructing his theory of relativity:
As long as we restrict ourselves to purely mechanical processes in the realm where Newton's mechanics holds sway, we are certain of the equivalence of the systems K and K'. But this view of ours will not have any deeper significance unless the systems K and K' are equivalent with respect to all physical processes, that is, unless the laws of nature with respect to K are in entire agreement with those with respect to K'. By assuming this to be so, we arrive at a principle which, if it is really true, has great heuristic importance. For by theoretical consideration of processes which take place relatively to a system of reference with uniform acceleration, we obtain information as to the career of processes in a homogeneous gravitational field.
— Einstein, 1911
Einstein combined (postulated) the equivalence principle with special relativity to predict that clocks run at different rates in a gravitational potential, and light rays bend in a gravitational field, even before he developed the concept of curved spacetime.

So the original equivalence principle, as described by Einstein, concluded that free-fall and inertial motion were physically equivalent. This form of the equivalence principle can be stated as follows. An observer in a windowless room cannot distinguish between being on the surface of the Earth, and being in a spaceship in deep space accelerating at 1g. This is not strictly true, because massive bodies give rise to tidal effects (caused by variations in the strength and direction of the gravitational field) which are absent from an accelerating spaceship in deep space. The room, therefore, should be small enough that tidal effects can be neglected.

Although the equivalence principle guided the development of general relativity, it is not a founding principle of relativity but rather a simple consequence of the geometrical nature of the theory. In general relativity, objects in free-fall follow geodesics of spacetime, and what we perceive as the force of gravity is instead a result of our being unable to follow those geodesics of spacetime, because the mechanical resistance of matter prevents us from doing so.

Since Einstein developed general relativity, there was a need to develop a framework to test the theory against other possible theories of gravity compatible with special relativity. This was developed by Robert Dicke as part of his program to test general relativity. Two new principles were suggested, the so-called Einstein equivalence principle and the strong equivalence principle, each of which assumes the weak equivalence principle as a starting point. They only differ in whether or not they apply to gravitational experiments.

Another clarification needed is that the equivalence principle assumes a constant acceleration of 1g without considering the mechanics of generating 1g. If we do consider the mechanics of it, then we must assume the aforementioned windowless room has a fixed mass. Accelerating it at 1g means there is a constant force being applied, which = m*g where m is the mass of the windowless room along with its contents (including the observer). Now, if the observer jumps inside the room, an object lying freely on the floor will decrease in weight momentarily because the acceleration is going to decrease momentarily due to the observer pushing back against the floor in order to jump. The object will then gain weight while the observer is in the air and the resulting decreased mass of the windowless room allows greater acceleration; it will lose weight again when the observer lands and pushes once more against the floor; and it will finally return to its initial weight afterwards. To make all these effects equal those we would measure on a planet producing 1g, the windowless room must be assumed to have the same mass as that planet. Additionally, the windowless room must not cause its own gravity, otherwise the scenario changes even further. These are technicalities, clearly, but practical ones if we wish the experiment to demonstrate more or less precisely the equivalence of 1g gravity and 1g acceleration.

Modern usage

Three forms of the equivalence principle are in current use: weak (Galilean), Einsteinian, and strong.

The weak equivalence principle

The weak equivalence principle, also known as the universality of free fall or the Galilean equivalence principle can be stated in many ways. The strong EP includes (astronomic) bodies with gravitational binding energy[5] (e.g., 1.74 solar-mass pulsar PSR J1903+0327, 15.3% of whose separated mass is absent as gravitational binding energy[6]). The weak EP assumes falling bodies are bound by non-gravitational forces only. Either way:
The trajectory of a point mass in a gravitational field depends only on its initial position and velocity, and is independent of its composition and structure.
All test particles at the alike spacetime point, in a given gravitational field, will undergo the same acceleration, independent of their properties, including their rest mass.[7]
All local centers of mass free-fall (in vacuum) along identical (parallel-displaced, same speed) minimum action trajectories independent of all observable properties.
The vacuum world-line of a body immersed in a gravitational field is independent of all observable properties.
The local effects of motion in a curved spacetime (gravitation) are indistinguishable from those of an accelerated observer in flat spacetime, without exception.
Mass (measured with a balance) and weight (measured with a scale) are locally in identical ratio for all bodies (the opening page to Newton's Philosophiæ Naturalis Principia Mathematica, 1687).
Locality eliminates measurable tidal forces originating from a radial divergent gravitational field (e.g., the Earth) upon finite sized physical bodies. The "falling" equivalence principle embraces Galileo's, Newton's, and Einstein's conceptualization. The equivalence principle does not deny the existence of measurable effects caused by a rotating gravitating mass (frame dragging), or bear on the measurements of light deflection and gravitational time delay made by non-local observers.

Active, passive, and inertial masses

By definition of active and passive gravitational mass, the force on M_{1} due to the gravitational field of M_{0} is:
F_1 = \frac{M_0^\mathrm{act} M_1^\mathrm{pass}}{r^2}
Likewise the force on a second object of arbitrary mass2 due to the gravitational field of mass0 is:
F_2 = \frac{M_0^\mathrm{act}  M_2^\mathrm{pass}}{r^2}
By definition of inertial mass:
F = m^\mathrm{inert} a
If m_{1} and m_{2} are the same distance r from m_{0} then, by the weak equivalence principle, they fall at the same rate (i.e. their accelerations are the same)
a_1 = \frac{F_1}{m_1^\mathrm{inert}} = a_2 = \frac{F_2}{m_2^\mathrm{inert}}
Hence:
\frac{M_0^\mathrm{act} M_1^\mathrm{pass}}{r^2 m_1^\mathrm{inert}} = \frac{M_0^\mathrm{act}  M_2^\mathrm{pass}}{r^2 m_2^\mathrm{inert}}
Therefore:
\frac{M_1^\mathrm{pass}}{m_1^\mathrm{inert}} = \frac{M_2^\mathrm{pass}}{m_2^\mathrm{inert}}
In other words, passive gravitational mass must be proportional to inertial mass for all objects.

Furthermore, by Newton's third law of motion:
F_1 = \frac{M_0^\mathrm{act} M_1^\mathrm{pass}}{r^2}
must be equal and opposite to
F_0 = \frac{M_1^\mathrm{act}  M_0^\mathrm{pass}}{r^2}
It follows that:
\frac{M_0^\mathrm{act}}{M_0^\mathrm{pass}} = \frac{M_1^\mathrm{act}}{M_1^\mathrm{pass}}
In other words, passive gravitational mass must be proportional to active gravitational mass for all objects.

The dimensionless Eötvös-parameter \eta(A,B) is the difference of the ratios of gravitational and inertial masses divided by their average for the two sets of test masses "A" and "B."
\eta(A,B)=2\frac{ \left(\frac{m_g}{m_i}\right)_A-\left(\frac{m_g}{m_i}\right)_B }{\left(\frac{m_g}{m_i}\right)_A+\left(\frac{m_g}{m_i}\right)_B}

Tests of the weak equivalence principle

Tests of the weak equivalence principle are those that verify the equivalence of gravitational mass and inertial mass. An obvious test is dropping different objects, ideally in a vacuum environment, e.g., inside the Fallturm Bremen drop tower.

Researcher Year Method Result
John Philoponus 6th century Said that by observation, two balls of very different weights will fall at nearly the same speed no detectable difference
Simon Stevin[8] ~1586 Dropped lead balls of different masses off the Delft churchtower no detectable difference
Galileo Galilei ~1610 Rolling balls of varying weight down inclined planes to slow the speed so that it was measurable no detectable difference
Isaac Newton ~1680 Measure the period of pendulums of different mass but identical length difference is less than 1 part in 103
Friedrich Wilhelm Bessel 1832 Measure the period of pendulums of different mass but identical length no measurable difference
Loránd Eötvös 1908 Measure the torsion on a wire, suspending a balance beam, between two nearly identical masses under the acceleration of gravity and the rotation of the Earth difference is 10±2 part in 109 (H2O/Cu)[9]
Roll, Krotkov and Dicke 1964 Torsion balance experiment, dropping aluminum and gold test masses |\eta(\mathrm{Al},\mathrm{Au})|=(1.3\pm1.0)\times10^{-11}[10]
David Scott 1971 Dropped a falcon feather and a hammer at the same time on the Moon no detectable difference (not a rigorous experiment, but very dramatic being the first lunar one[11])
Braginsky and Panov 1971 Torsion balance, aluminum and platinum test masses, measuring acceleration towards the Sun difference is less than 1 part in 1012
Eöt-Wash group 1987– Torsion balance, measuring acceleration of different masses towards the Earth, Sun and galactic center, using several different kinds of masses \eta(\text{Earth},\text{Be-Ti})=(0.3 \pm 1.8)\times 10^{-13}[12]

See:[13]
Year Investigator Sensitivity Method
500? Philoponus[14] "small" Drop Tower
1585 Stevin[15] 5×10−2 Drop Tower
1590? Galileo[16] 2×10−2 Pendulum, Drop Tower
1686 Newton[17] 10−3 Pendulum
1832 Bessel[18] 2×10−5 Pendulum
1908 (1922) Eötvös[19] 2×10−9 Torsion Balance
1910 Southerns[20] 5×10−6 Pendulum
1918 Zeeman[21] 3×10−8 Torsion Balance
1923 Potter[22] 3×10−6 Pendulum
1935 Renner[23] 2×10−9 Torsion Balance
1964 Dicke, Roll, Krotkov[10] 3x10−11 Torsion Balance
1972 Braginsky, Panov[24] 10−12 Torsion Balance
1976 Shapiro, et al.[25] 10−12 Lunar Laser Ranging
1981 Keiser, Faller[26] 4×10−11 Fluid Support
1987 Niebauer, et al.[27] 10−10 Drop Tower
1989 Stubbs, et al.[28] 10−11 Torsion Balance
1990 Adelberger, Eric G.; et al.[29] 10−12 Torsion Balance
1999 Baessler, et al.[30] 5x10−14 Torsion Balance
cancelled? MiniSTEP 10−17 Earth Orbit
2016 MICROSCOPE 10−16 Earth Orbit
2015? Reasenberg/SR-POEM[31] 2×10−17 vacuum free fall

Experiments are still being performed at the University of Washington which have placed limits on the differential acceleration of objects towards the Earth, the Sun and towards dark matter in the galactic center. Future satellite experiments[32]STEP (Satellite Test of the Equivalence Principle), Galileo Galilei, and MICROSCOPE (MICROSatellite à traînée Compensée pour l'Observation du Principe d'Équivalence) – will test the weak equivalence principle in space, to much higher accuracy.

With the first successful production of antimatter, in particular anti-hydrogen, a new approach to test the weak equivalence principle has been proposed. Experiments to compare the gravitational behavior of matter and antimatter are currently being developed.[33]

Proposals that may lead to a quantum theory of gravity such as string theory and loop quantum gravity predict violations of the weak equivalence principle because they contain many light scalar fields with long Compton wavelengths, which should generate fifth forces and variation of the fundamental constants. Heuristic arguments suggest that the magnitude of these equivalence principle violations could be in the 10−13 to 10−18 range.[34] Currently envisioned tests of the weak equivalence principle are approaching a degree of sensitivity such that non-discovery of a violation would be just as profound a result as discovery of a violation. Non-discovery of equivalence principle violation in this range would suggest that gravity is so fundamentally different from other forces as to require a major reevaluation of current attempts to unify gravity with the other forces of nature. A positive detection, on the other hand, would provide a major guidepost towards unification.[34]

The Einstein equivalence principle

What is now called the "Einstein equivalence principle" states that the weak equivalence principle holds, and that:[35]
The outcome of any local non-gravitational experiment in a freely falling laboratory is independent of the velocity of the laboratory and its location in spacetime.
Here "local" has a very special meaning: not only must the experiment not look outside the laboratory, but it must also be small compared to variations in the gravitational field, tidal forces, so that the entire laboratory is freely falling. It also implies the absence of interactions with "external" fields other than the gravitational field.[citation needed]

The principle of relativity implies that the outcome of local experiments must be independent of the velocity of the apparatus, so the most important consequence of this principle is the Copernican idea that dimensionless physical values such as the fine-structure constant and electron-to-proton mass ratio must not depend on where in space or time we measure them. Many physicists believe that any Lorentz invariant theory that satisfies the weak equivalence principle also satisfies the Einstein equivalence principle.

Schiff's conjecture suggests that the weak equivalence principle implies the Einstein equivalence principle, but it has not been proven. Nonetheless, the two principles are tested with very different kinds of experiments. The Einstein equivalence principle has been criticized as imprecise, because there is no universally accepted way to distinguish gravitational from non-gravitational experiments (see for instance Hadley[36] and Durand[37]).

Tests of the Einstein equivalence principle

In addition to the tests of the weak equivalence principle, the Einstein equivalence principle can be tested by searching for variation of dimensionless constants and mass ratios. The present best limits on the variation of the fundamental constants have mainly been set by studying the naturally occurring Oklo natural nuclear fission reactor, where nuclear reactions similar to ones we observe today have been shown to have occurred underground approximately two billion years ago. These reactions are extremely sensitive to the values of the fundamental constants.

Constant Year Method Limit on fractional change
proton gyromagnetic factor 1976 astrophysical 10−1
weak interaction constant 1976 Oklo 10−2
fine structure constant 1976 Oklo 10−7
electronproton mass ratio 2002 quasars 10−4

There have been a number of controversial attempts to constrain the variation of the strong interaction constant. There have been several suggestions that "constants" do vary on cosmological scales. The best known is the reported detection of variation (at the 10−5 level) of the fine-structure constant from measurements of distant quasars, see Webb et al.[38] Other researchers dispute these findings. Other tests of the Einstein equivalence principle are gravitational redshift experiments, such as the Pound–Rebka experiment which test the position independence of experiments.

The strong equivalence principle

The strong equivalence principle suggests the laws of gravitation are independent of velocity and location. In particular,
The gravitational motion of a small test body depends only on its initial position in spacetime and velocity, and not on its constitution.
and
The outcome of any local experiment (gravitational or not) in a freely falling laboratory is independent of the velocity of the laboratory and its location in spacetime.
The first part is a version of the weak equivalence principle that applies to objects that exert a gravitational force on themselves, such as stars, planets, black holes or Cavendish experiments. The second part is the Einstein equivalence principle (with the same definition of "local"), restated to allow gravitational experiments and self-gravitating bodies. The freely-falling object or laboratory, however, must still be small, so that tidal forces may be neglected (hence "local experiment").

This is the only form of the equivalence principle that applies to self-gravitating objects (such as stars), which have substantial internal gravitational interactions. It requires that the gravitational constant be the same everywhere in the universe and is incompatible with a fifth force. It is much more restrictive than the Einstein equivalence principle.

The strong equivalence principle suggests that gravity is entirely geometrical by nature (that is, the metric alone determines the effect of gravity) and does not have any extra fields associated with it. If an observer measures a patch of space to be flat, then the strong equivalence principle suggests that it is absolutely equivalent to any other patch of flat space elsewhere in the universe. Einstein's theory of general relativity (including the cosmological constant) is thought to be the only theory of gravity that satisfies the strong equivalence principle. A number of alternative theories, such as Brans–Dicke theory, satisfy only the Einstein equivalence principle.

Tests of the strong equivalence principle

The strong equivalence principle can be tested by searching for a variation of Newton's gravitational constant G over the life of the universe, or equivalently, variation in the masses of the fundamental particles. A number of independent constraints, from orbits in the solar system and studies of big bang nucleosynthesis have shown that G cannot have varied by more than 10%.

Thus, the strong equivalence principle can be tested by searching for fifth forces (deviations from the gravitational force-law predicted by general relativity). These experiments typically look for failures of the inverse-square law (specifically Yukawa forces or failures of Birkhoff's theorem) behavior of gravity in the laboratory. The most accurate tests over short distances have been performed by the Eöt-Wash group. A future satellite experiment, SEE (Satellite Energy Exchange), will search for fifth forces in space and should be able to further constrain violations of the strong equivalence principle. Other limits, looking for much longer-range forces, have been placed by searching for the Nordtvedt effect, a "polarization" of solar system orbits that would be caused by gravitational self-energy accelerating at a different rate from normal matter. This effect has been sensitively tested by the Lunar Laser Ranging Experiment. Other tests include studying the deflection of radiation from distant radio sources by the sun, which can be accurately measured by very long baseline interferometry. Another sensitive test comes from measurements of the frequency shift of signals to and from the Cassini spacecraft. Together, these measurements have put tight limits on Brans–Dicke theory and other alternative theories of gravity.

In 2014, astronomers discovered a stellar triple system including a millisecond pulsar PSR J0337+1715 and two white dwarfs orbiting it. The system will provide them a chance to test the strong equivalence principle in a strong gravitational field.[39]

Challenges

One challenge to the equivalence principle is the Brans–Dicke theory. Self-creation cosmology is a modification of the Brans–Dicke theory. The Fredkin Finite Nature Hypothesis is an even more radical challenge to the equivalence principle and has even fewer supporters.

In August 2010, researchers from the University of New South Wales, Swinburne University of Technology, and Cambridge University published a paper titled "Evidence for spatial variation of the fine structure constant", whose tentative conclusion is that, "qualitatively, [the] results suggest a violation of the Einstein Equivalence Principle, and could infer a very large or infinite universe, within which our 'local' Hubble volume represents a tiny fraction."[40]

In his book Einstein's Mistakes, pages 226-227, Hans C. Ohanian describes several situations which falsify Einstein's Equivalence Principle. Inertial accelerative effects are analogous to, but not equivalent to, gravitational effects. Ohanian cites Ehrenfest for this same opinion.

Explanations

Dutch physicist and string theorist Erik Verlinde has generated a self-contained, logical derivation of the equivalence principle based on the starting assumption of a holographic universe. Given this situation, gravity would not be a true fundamental force as is currently thought but instead an "emergent property" related to entropy. Verlinde's entropic gravity theory apparently leads naturally to the correct observed strength of dark energy; previous failures to explain its incredibly small magnitude have been called by such people as cosmologist Michael Turner (who is credited as having coined the term "dark energy") as "the greatest embarrassment in the history of theoretical physics".[41] However, it should be noted that these ideas are far from settled and still very controversial.

Experiments

Personality theories of addiction

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Personality_theories_of_addiction ...