Search This Blog

Friday, October 26, 2018

DNA damage (naturally occurring)

From Wikipedia, the free encyclopedia

DNA damage is distinctly different from mutation, although both are types of error in DNA. DNA damage is an abnormal chemical structure in DNA, while a mutation is a change in the sequence of standard base pairs. DNA damages cause changes in the structure of the genetic material and prevents the replication mechanism from functioning and performing properly.
 
DNA damage and mutation have different biological consequences. While most DNA damages can undergo DNA repair, such repair is not 100% efficient. Un-repaired DNA damages accumulate in non-replicating cells, such as cells in the brains or muscles of adult mammals and can cause aging. In replicating cells, such as cells lining the colon, errors occur upon replication past damages in the template strand of DNA or during repair of DNA damages. These errors can give rise to mutations or epigenetic alterations. Both of these types of alteration can be replicated and passed on to subsequent cell generations. These alterations can change gene function or regulation of gene expression and possibly contribute to progression to cancer.

Throughout the cell cycle there are various checkpoints to ensure the cell is in good condition to progress to mitosis. The three main checkpoints are at G1/s, G2/m, and at the spindle assembly checkpoint regulating progression through anaphase. G1 and G2 checkpoints involve scanning for damaged DNA. During S phase the cell is more vulnerable to DNA damage than any other part of the cell cycle. G2 checkpoint checks for damaged DNA and DNA replication completeness. DNA damage is an alteration in the chemical structure of DNA, such as a break in a strand of DNA, a base missing from the backbone of DNA, or a chemically changed base as 8-OHdG. DNA damage can occur naturally or via environmental factors. The DNA damage response (DDR) is a complex signal transduction pathway which recognizes when DNA is damaged and initiates the cellular response to the damage.

Types

Damage to DNA that occurs naturally can result from metabolic or hydrolytic processes. Metabolism releases compounds that damage DNA including reactive oxygen species, reactive nitrogen species, reactive carbonyl species, lipid peroxidation products and alkylating agents, among others, while hydrolysis cleaves chemical bonds in DNA. Naturally occurring oxidative DNA damages arise at least 10,000 times per cell per day in humans and 50,000 times or more per cell per day in rats, as documented below.

Oxidative DNA damage can produce more than 20 types of altered bases as well as single strand breaks.

Other types of endogeneous DNA damages, given below with their frequencies of occurrence, include depurinations, depyrimidinations, double-strand breaks, O6-methylguanines and cytosine deamination.

DNA can be damaged via environmental factors as well. Environmental agents such as UV light, ionizing radiation, and genotoxic chemicals. Replication forks can be stalled due to damaged DNA and double strand breaks are also a form of DNA damage.

Frequencies

The list below, from reference, shows some frequencies with which new naturally occurring DNA damages arise per day, due to endogenous cellular processes.
  • Oxidative damages
    • Humans, per cell per day
      • 10,000
        11,500
        2,800 specific damages 8-oxoGua, 8-oxodG plus 5-HMUra
        2,800 specific damages 8-oxoGua, 8-oxodG plus 5-HMUra
    • Rats, per cell per day
      • 74,000
        86,000
        100,000
    • Mice, per cell per day
      • 34,000 specific damages 8-oxoGua, 8-oxodG plus 5-HMUra
        47,000 specific damages oxo8dG in mouse liver
        28,000 specific damages 8-oxoGua, 8-oxodG, 5-HMUra
  • Depurinations
    • Mammalian cells, per cell per day
      • 2,000 to 10,000
        9,000
        12,000
        13,920
  • Depyrimidinations
    • Mammalian cells, per cell per day
      • 600
        696
  • Single-strand breaks
    • Mammalian cells, per cell per day
      • 55,200
  • Double-strand breaks
    • Human cells, per cell cycle
      • 10
        50
  • O6-methylguanines
    • Mammalian cells, per cell per day
      • 3,120
  • Cytosine deamination
    • Mammalian cells, per cell per day
      • 192
Another important endogenous DNA damage is M1dG, short for (3-(2'-deoxy-beta-D-erythro-pentofuranosyl)-pyrimido[1,2-a]-purin-10(3H)-one). The excretion in urine (likely reflecting rate of occurrence) of M1dG may be as much as 1,000-fold lower than that of 8-oxodG. However, a more important measure may be the steady-state level in DNA, reflecting both rate of occurrence and rate of DNA repair. The steady-state level of M1dG is higher than that of 8-oxodG. This points out that some DNA damages produced at a low rate may be difficult to repair and remain in DNA at a high steady-state level. Both M1dG and 8-oxodG are mutagenic.

Steady-state levels

Steady-state levels of DNA damages represent the balance between formation and repair. More than 100 types of oxidative DNA damage have been characterized, and 8-oxodG constitutes about 5% of the steady state oxidative damages in DNA. Helbock et al. estimated that there were 24,000 steady state oxidative DNA adducts per cell in young rats and 66,000 adducts per cell in old rats. This reflects the accumulation of DNA damage with age. DNA damage accumulation with age is further described in DNA damage theory of aging.

Swenberg et al. measured average amounts of selected steady state endogenous DNA damages in mammalian cells. The seven most common damages they evaluated are shown in Table 1.

Table 1. Steady-state amounts of endogenous DNA damages
Endogenous lesions Number per cell
Abasic sites 30,000
N7-(2-hydroxethyl)guanine (7HEG) 3,000
8-hydroxyguanine 2,400
7-(2-oxoethyl)guanine 1,500
Formaldehyde adducts 960
Acrolein-deoxyguanine 120
Malondialdehyde-deoxyguanine 60

Evaluating steady-state damages in specific tissues of the rat, Nakamura and Swenberg indicated that the number of abasic sites varied from about 50,000 per cell in liver, kidney and lung to about 200,000 per cell in the brain.

Repair of damaged DNA

In the presence of DNA damage, the cell can either repair the damage or induce cell death if the damage is beyond repair.

Types

The seven main types of DNA repair and one pathway of damage tolerance, the lesions they address, and the accuracy of the repair (or tolerance) are shown in this table. For a brief description of the steps in repair see DNA repair mechanisms or see each individual pathway.
Major pathways of DNA repair and one tolerance mechanism
Repair pathway Lesions Accuracy
Base excision repair corrects DNA damage from oxidation, deamination and alkylation, also single-strand breaks accurate
Nucleotide excision repair oxidative endogenous lesions such as cyclopurine, sunlight induced thymine dimers (cyclobutane dimers and pyrimidine (6-4) pyrimidone photoproducts) accurate
Homologous recombinational repair double-strand breaks in the mid-S phase or mid-G2 phase of the cell cycle accurate
Non-homologous end joining double-strand breaks if cells are in the G0 phase. the G1 phase or the G2 phase of the cell cycle somewhat inaccurate
Microhomology-mediated end joining or alt-End joining double-strand breaks in the S phase of the cell cycle always inaccurate
DNA mismatch repair base substitution mismatches and insertion-deletion mismatches generated during DNA replication accurate
Direct reversal (MGMT and AlkB) 6-O-methylguanine is reversed to guanine by MGMT, some other methylated bases are demethylated by AlkB accurate
Translesion synthesis DNA damage tolerance process that allows the DNA replication machinery to replicate past DNA lesions may be inaccurate

Aging and cancer

 
DNA damage in non-replicating cells, if not repaired and
accumulated can lead to aging. DNA damage in replicating
cells, if not repaired can lead to either apoptosis or to cancer.

The schematic diagram indicates the roles of insufficient DNA repair in aging and cancer, and the role of apoptosis in cancer prevention. An excess of naturally occurring DNA damage, due to inherited deficiencies in particular DNA repair enzymes, can cause premature aging or increased risk for cancer. On the other hand, the ability to trigger apoptosis in the presence of excess un-repaired DNA damage is critical for prevention of cancer.

Apoptosis and cancer prevention

DNA repair proteins are often activated or induced when DNA has sustained damage. However, excessive DNA damage can initiate apoptosis (i.e., programmed cell death) if the level of DNA damage exceeds the repair capacity. Apoptosis can prevent cells with excess DNA damage from undergoing mutagenesis and progression to cancer.

Inflammation is often caused by infection, such as with hepatitis B virus (HBV), hepatitis C virus (HCV) or Helicobacter pylori). Chronic inflammation is also a central characteristic of obesity. Such inflammation causes oxidative DNA damage. This is due to the induction of reactive oxygen species (ROS) by various intracellular inflammatory mediators. HBV and HCV infections, in particular, cause 10,000-fold and 100,000-fold increases in intracellular ROS production, respectively. Inflammation-induced ROS that cause DNA damage can trigger apoptosis, but may also cause cancer if repair and apoptotic processes are insufficiently protective.

Bile acids, stored in the gall bladder, are released into the small intestine in response to fat in the diet. Higher levels of fat cause greater release. Bile acids cause DNA damage, including oxidative DNA damage, double-strand DNA breaks, aneuploidy and chromosome breakage. High-normal levels of the bile acid deoxycholic acid cause apoptosis in human colon cells, but may also lead to colon cancer if repair and apoptotic defenses are insufficient.

Apoptosis serves as a safeguard mechanism against tumorigenesis. It prevents the increased mutagenesis that excess DNA damage could cause, upon replication.

At least 17 DNA repair proteins, distributed among five DNA repair pathways, have a "dual role" in response to DNA damage. With moderate levels of DNA damage, these proteins initiate or contribute to DNA repair. However, when excessive levels of DNA damage are present, they trigger apoptosis.

DNA damage response

The packaging of eukaryotic DNA into chromatin is a barrier to all DNA-based processes that require enzyme action. For most DNA repair processes the chromatin must be remodeled. In eukaryotes, ATP dependent chromatin remodeling complexes and histone-modifying enzymes are two factors that act to accomplish this remodeling process after DNA damage occurs. Further DNA repair steps, involving multiple enzymes, usually follow. Some of the first responses to DNA damage, with their timing, are described below. More complete descriptions of the DNA repair pathways are presented in articles describing each pathway. At least 169 enzymes are involved in DNA repair pathways.

Base excision repair

Oxidized bases in DNA are produced in cells treated with Hoechst dye followed by micro-irradiation with 405 nm light. Such oxidized bases can be repaired by base excision repair.

When the 405 nm light is focused along a narrow line within the nucleus of a cell, about 2.5 seconds after irradiation the chromatin remodeling enzyme Alc1 achieves half-maximum recruitment onto the irradiated micro-line. The line of chromatin that was irradiated then relaxes, expanding side-to-side over the next 60 seconds.

Within 6 seconds of the irradiation with 405 nm light there is half-maximum recruitment of OGG1 to the irradiated line. OGG1 is an enzyme that removes the oxidative DNA damage 8-oxo-dG from DNA. Removal of 8-oxo-dG, during base excision repair, occurs with a half-life of 11 minutes.

Nucleotide excision repair

Ultraviolet (UV) light induces the formation of DNA damages including pyrimidine dimers (such as thymine dimers) and 6,4 photoproducts. These types of "bulky" damages are repaired by nucleotide excision repair.

After irradiation with UV light, DDB2, in a complex with DDB1, the ubiquitin ligase protein CUL4A and the RING finger protein ROC1, associates with sites of damage within chromatin. Half-maximum association occurs in 40 seconds. PARP1 also associates within this period. The PARP1 protein attaches to both DDB1 and DDB2 and then PARylates (creates a poly-ADP ribose chain) on DDB2 that attracts the DNA remodeling protein ALC1. ALC1 relaxes chromatin at sites of UV damage to DNA. In addition, the ubiquitin E3 ligase complex DDB1-CUL4A carries out ubiquitination of the core histones H2A, H3, and H4 as well as the repair protein XPC which has been attracted to the site of the DNA damage. XPC, upon ubiquitination, is activated and initiates the nucleotide excision repair pathway. Somewhat later, at 30 minutes after UV damage, the INO80 chromatin remodeling complex is recruited to the site of the DNA damage, and this coincides with the binding of further nucleotide excision repair proteins, including ERCC1.

Homologous recombinational repair

Double-strand breaks (DSBs) at specific sites can be induced by transfecting cells with a plasmid encoding I-SceI endonuclease (a homing endonuclease). Multiple DSBs can be induced by irradiating sensitized cells (labeled with 5'-bromo-2'-deoxyuridine and with Hoechst dye) with 780 nm light. These DSBs can be repaired by the accurate homologous recombinational repair or by the less accurate non-homologous end joining repair pathway. Here we describe the early steps in homologus recombinational repair (HRR).

After treating cells to introduce DSBs, the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites with half-maximum recruitment in well under a second. SIRT6 at the site is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to a DNA break site and for efficient repair of DSBs. PARP1 protein starts to appear at DSBs in less than a second, with half maximum accumulation within 1.6 seconds after the damage occurs. This then allows half maximum recruitment of the DNA repair enzymes MRE11 within 13 seconds and NBS1 within 28 seconds. MRE11 and NBS1 carry out early steps of the HRR pathway.

γH2AX, the phosphorylated form of H2AX is also involved in early steps of DSB repair. The histone variant H2AX constitutes about 10% of the H2A histones in human chromatin. γH2AX (H2AX phosphorylated on serine 139) can be detected as soon as 20 seconds after irradiation of cells (with DNA double-strand break formation), and half maximum accumulation of γH2AX occurs in one minute. The extent of chromatin with phosphorylated γH2AX is about two million base pairs at the site of a DNA double-strand break.[73] γH2AX does not, itself, cause chromatin decondensation, but within 30 seconds of irradiation, RNF8 protein can be detected in association with γH2AX. RNF8 mediates extensive chromatin decondensation, through its subsequent interaction with CHD4, a component of the nucleosome remodeling and deacetylase complex NuRD.

Pause for DNA repair

After rapid chromatin remodeling, cell cycle checkpoints may be activated to allow DNA repair to be completed before the cell cycle progresses. First, two kinases, ATM and ATR are activated within 5 or 6 minutes after DNA is damaged. This is followed by phosphorylation of the cell cycle checkpoint protein Chk1, initiating its function, about 10 minutes after DNA is damaged.

Role of ATR and ATM

Most damage can be repaired without triggering the damage response system, however more complex damage activates ATR and ATM, key protein kinases in the damage response system. DNA damage inhibits M-CDKs which are a key component of progression into Mitosis.

In all eukaryotic cells, ATR and ATM are protein kinases that detect DNA damage. They bind to DNA damaged sites and activate Chk1, Chk2, and, in animal cells, p53. Together, these proteins make up the DNA damage response system. Some DNA damage does not require the recruitment of ATR and ATM, it is only difficult and extensive damage that requires ATR and ATM. ATM and ATR are required for NHEJ, HR, ICL repair, and NER, as well as replication fork stability during unperturbed DNA replication and in response to replication blocks.

ATR is recruited for different forms of damage such as nucleotide damage, stalled replication forks and double strand breaks. ATM is specifically for the damage response to double strand breaks. The MRN complex (composed of Mre11, Rad50, and Nbs1) form immediately at the site of double strand break. This MRN complex recruits ATM to the site of damage. ATR and ATM phosphorylate various proteins that contribute to the damage repair system. The binding of ATR and ATM to damage sites on DNA lead to the recruitment of Chk1 and Chk2. These protein kinases send damage signals to the cell cycle control system to delay the progression of the cell cycle.

Chk1 and Chk2 functions

Chk1 leads to the production of DNA repair enzymes. Chk2 leads to reversible cell cycle arrest. Chk2 as well as ATR/ATM can activate p53 which leads to permanent cell cycle arrest or apoptosis.

p53 role in DNA damage repair system

When there is too much damage, apoptosis is triggered in order to protect the organism from potentially harmful cells.7 p53, also known as a tumor suppressor gene, is a major regulatory protein in the DNA damage response system which binds directly to the promoters of its target genes. p53 acts primarily at the G1 checkpoint (controlling the G1 to S transition), where it blocks cell cycle progression. Activation of p53 can trigger cell death or permanent cell cycle arrest. p53 can also activate certain repair pathways such was NER.

Regulation of p53

In the absence of DNA damage, p53 is regulated by Mdm2 and constantly degraded. When there is DNA damage, Mdm2 is phosphorylated, most likely caused by ATM. The phosphorylation of Mdm2 leads to a reduction in the activity of Mdm2, thus preventing the degradation of p53. Normal, undamaged cell, usually has low levels of p53 while cells under stress and DNA damage, will have high levels of p53.

p53 serves as transcription factor for bax and p21

p53 serves as a transcription factors for both bax, a proapoptotic protein as well as p21, a CDK inhibitor. CDK Inhibitors result in cell cycle arrest. Arresting the cell provides the cell time to repair the damage, and if the damage is irreparable, p53 recruits bax to trigger apoptosis.

DDR and p53 role in cancer

p53 is a major key player in the growth of cancerous cells. Damaged DNA cells with mutated p53 are at a higher risk of becoming cancerous. Common chemotherapy treatments are genotoxic. These treatments are ineffective in cancer tumor that have mutated p53 since they do not have a functioning p53 to either arrest or kill the damaged cell.

A major problem for life

One indication that DNA damages are a major problem for life is that DNA repair processes, to cope with DNA damages, have been found in all cellular organisms in which DNA repair has been investigated. For example, in bacteria, a regulatory network aimed at repairing DNA damages (called the SOS response in Escherichia coli) has been found in many bacterial species. E. coli RecA, a key enzyme in the SOS response pathway, is the defining member of a ubiquitous class of DNA strand-exchange proteins that are essential for homologous recombination, a pathway that maintains genomic integrity by repairing broken DNA. Genes homologous to RecA and to other central genes in the SOS response pathway are found in almost all the bacterial genomes sequenced to date, covering a large number of phyla, suggesting both an ancient origin and a widespread occurrence of recombinational repair of DNA damage. Eukaryotic recombinases that are homologues of RecA are also widespread in eukaryotic organisms. For example, in fission yeast and humans, RecA homologues promote duplex-duplex DNA-strand exchange needed for repair of many types of DNA lesions.

Another indication that DNA damages are a major problem for life is that cells make large investments in DNA repair processes. As pointed out by Hoeijmakers, repairing just one double-strand break could require more than 10,000 ATP molecules, as used in signaling the presence of the damage, the generation of repair foci, and the formation (in humans) of the RAD51 nucleofilament (an intermediate in homologous recombinational repair). (RAD51 is a homologue of bacterial RecA.) If the structural modification occurs during the G1 phase of DNA replication, the G1-S checkpoint arrests or postpones the furtherance of the cell cycle before the product enters the S phase.

Consequences

Differentiated somatic cells of adult mammals generally replicate infrequently or not at all. Such cells, including, for example, brain neurons and muscle myocytes, have little or no cell turnover. Non-replicating cells do not generally generate mutations due to DNA damage-induced errors of replication. These non-replicating cells do not commonly give rise to cancer, but they do accumulate DNA damages with time that likely contribute to aging. In a non-replicating cell, a single-strand break or other type of damage in the transcribed strand of DNA can block RNA polymerase II catalysed transcription. This would interfere with the synthesis of the protein coded for by the gene in which the blockage occurred.

Brasnjevic et al. summarized the evidence showing that single-strand breaks accumulate with age in the brain (though accumulation differed in different regions of the brain) and that single-strand breaks are the most frequent steady-state DNA damages in the brain. As discussed above, these accumulated single-strand breaks would be expected to block transcription of genes. Consistent with this, as reviewed by Hetman et al., 182 genes were identified and shown to have reduced transcription in the brains of individuals older than 72 years, compared to transcription in the brains of those less than 43 years old. When 40 particular proteins were evaluated in a muscle of rats, the majority of the proteins showed significant decreases during aging from 18 months (mature rat) to 30 months (aged rat) of age.

Another type of DNA damage, the double strand break, was shown to cause cell death (loss of cells) through apoptosis. This type of DNA damage would not accumulate with age, since once a cell was lost through apoptosis, its double strand damage would be lost with it. Thus, damaged DNA segments undermine the DNA replication machinery because these altered sequences of DNA cannot be utilized as true templates to produce copies of one's genetic material.

RAD genes and the cell cycle response to DNA damage in Saccharomyces cerevisiae

When DNA is damaged, the cell responds in various ways to fix the damage and minimize the effects on the cell. One such response, specifically in eukaryotic cells, is to delay cell division—the cell becomes arrested for some time in the G2 phase before progressing through the rest of the cell cycle. Various studies have been conducted to elucidate the purpose of this G2 arrest that is induced by DNA damage. Researchers have found that cells that are prematurely forced out of the delay have lower cell viability and higher rates of damaged chromosomes compared with cells that are able to undergo a full G2 arrest, suggesting that the purpose of the delay is to give the cell time to repair damaged chromosomes before continuing with the cell cycle. This ensures the proper functioning of mitosis.

Various species of animals exhibit similar mechanisms of cellular delay in response to DNA damage, which can be caused by exposure to x-irradiation. The budding yeast Saccharomyces cerevisiae has specifically been studied because progression through the cell cycle can be followed via nuclear morphology with ease. By studying Saccharomyces cerevisiae, researchers have been able to learn more about radiation-sensitive (RAD) genes, and the effect that RAD mutations may have on the typical cellular DNA damaged-induced delay response. Specifically, the RAD9 gene plays a crucial role in detecting DNA damage and arresting the cell in G2 until the damage is repaired.

Through extensive experiments, researchers have been able to illuminate the role that the RAD genes play in delaying cell division in response to DNA damage. When wild-type, growing cells are exposed to various levels of x-irradiation over a given time frame, and then analyzed with a microcolony assay, differences in the cell cycle response can be observed based on which genes are mutated in the cells. For instance, while unirradiated cells will progress normally through the cell cycle, cells that are exposed to x-irradiation either permanently arrest (become inviable) or delay in the G2 phase before continuing to divide in mitosis, further corroborating the idea that the G2 delay is crucial for DNA repair. However, rad strains, which are deficient in DNA repair, exhibit a markedly different response. For instance, rad52 cells, which cannot repair double-stranded DNA breaks, tend to permanently arrest in G2 when exposed to even very low levels of x-irradiation, and rarely end up progressing through the later stages of the cell cycle. This is because the cells cannot repair DNA damage and thus do not enter mitosis. Various other rad mutants exhibit similar responses when exposed to x-irradiation.

However, the rad9 strain exhibits an entirely different effect. These cells fail to delay in the G2 phase when exposed to x-irradiation, and end up progressing through the cell cycle unperturbed, before dying. This suggests that the RAD9 gene, unlike the other RAD genes, plays a crucial role in initiating G2 arrest. To further investigate these findings, the cell cycles of double mutant strains have been analyzed. A mutant rad52 rad9 strain—which is both defective in DNA repair and G2 arrest—fails to undergo cell cycle arrest when exposed to x-irradiation. This suggests that even if DNA damage cannot be repaired, if RAD9 is not present, the cell cycle will not delay. Thus, unrepaired DNA damage is the signal that tells RAD9 to halt division and arrest the cell cycle in G2. Furthermore, there is a dose-dependent response; as the levels of x-irradiation—and subsequent DNA damage—increase, more cells, regardless of the mutations they have, become arrested in G2.

Another, and perhaps more helpful way to visualize this effect is to look at photomicroscopy slides. Initially, slides of RAD+ and rad9 haploid cells in the exponential phase of growth show simple, single cells, that are indistinguishable from each other. However, the slides look much different after being exposed to x-irradiation for 10 hours. The RAD+ slides now show RAD+ cells existing primarily as two-budded microcolonies, suggesting that cell division has been arrested. In contrast, the rad9 slides show the rad9 cells existing primarily as 3 to 8 budded colonies, and they appear smaller than the RAD+ cells. This is further evidence that the mutant RAD cells continued to divide and are deficient in G2 arrest.

However, there is evidence that although the RAD9 gene is necessary to induce G2 arrest in response to DNA damage, giving the cell time to repair the damage, it does not actually play a direct role in repairing DNA. When rad9 cells are artificially arrested in G2 with MBC, a microtubule poison that prevents cellular division, and then treated with x-irradiation, the cells are able to repair their DNA and eventually progress through the cell cycle, dividing into viable cells. Thus, the RAD9 gene plays no role in actually repairing damaged DNA—it simply senses damaged DNA and responds by delaying cell division. The delay, then, is mediated by a control mechanism, rather than the physical damaged DNA.

On the other hand, it is possible that there are backup mechanisms that fill the role of RAD9 when it is not present. In fact, some studies have found that RAD9 does indeed play a critical role in DNA repair. In one study, rad9 mutant and normal cells in the exponential phase of growth were exposed to UV-irradiation and synchronized in specific phases of the cell cycle. After being incubated to permit DNA repair, the extent of pyrimidine dimerization (which is indicative of DNA damage) was assessed using sensitive primer extension techniques. It was found that the removal of DNA photolesions was much less efficient in rad9 mutant cells than normal cells, providing evidence that RAD9 is involved in DNA repair. Thus, the role of RAD9 in repairing DNA damage remains unclear.

Regardless, it is clear that RAD9 is necessary to sense DNA damage and halt cell division. RAD9 has been suggested to possess 3’ to 5’ exonuclease activity, which is perhaps why it plays a role in detecting DNA damage. When DNA is damaged, it is hypothesized that RAD9 forms a complex with RAD1 and HUS1, and this complex is recruited to sites of DNA damage. It is in this way that RAD9 is able to exert its effects.

Although the function of RAD9 has primarily been studied in the budding yeast Saccharomyces cerevisiae, many of the cell cycle control mechanisms are similar between species. Thus, we can conclude that RAD9 likely plays a critical role in the DNA damage response in humans as well.

DNA damage theory of aging

From Wikipedia, the free encyclopedia

The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of naturally occurring DNA damages. Damage in this context is a DNA alteration that has an abnormal structure. Although both mitochondrial and nuclear DNA damage can contribute to aging, nuclear DNA is the main subject of this analysis. Nuclear DNA damage can contribute to aging either indirectly (by increasing apoptosis or cellular senescence) or directly (by increasing cell dysfunction).

Several review articles have shown that deficient DNA repair, allowing greater accumulation of DNA damages, causes premature aging; and that increased DNA repair facilitates greater longevity. Mouse models of nucleotide-excision–repair syndromes reveal a striking correlation between the degree to which specific DNA repair pathways are compromised and the severity of accelerated aging, strongly suggesting a causal relationship. Human populations studies show that single-nucleotide polymorphisms in DNA repair genes, causing up-regulation of their expression, correlate with increases in longevity. Lombard et al. compiled a lengthy list of mouse mutational models with pathologic features of premature aging, all caused by different DNA repair defects. Freitas and de Magalhães presented a comprehensive review and appraisal of the DNA damage theory of aging, including a detailed analysis of many forms of evidence linking DNA damage to aging. As an example, they described a study showing that centenarians of 100 to 107 years of age had higher levels of two DNA repair enzymes, PARP1 and Ku70, than general-population old individuals of 69 to 75 years of age. Their analysis supported the hypothesis that improved DNA repair leads to longer life span. Overall, they concluded that while the complexity of responses to DNA damage remains only partly understood, the idea that DNA damage accumulation with age is the primary cause of aging remains an intuitive and powerful one.

In humans and other mammals, DNA damage occurs frequently and DNA repair processes have evolved to compensate. In estimates made for mice, DNA lesions occur on average 25 to 115 times per minute in each cell, or about 36,000 to 160,000 per cell per day. Some DNA damage may remain in any cell despite the action of repair processes. The accumulation of unrepaired DNA damage is more prevalent in certain types of cells, particularly in non-replicating or slowly replicating cells, such as cells in the brain, skeletal and cardiac muscle.

DNA damage and mutation

8-Hydroxydeoxyguanosine

To understand the DNA damage theory of aging it is important to distinguish between DNA damage and mutation, the two major types of errors that occur in DNA. Damage and mutation are fundamentally different. DNA damage is any physical abnormality in the DNA, such as single and double strand breaks, 8-hydroxydeoxyguanosine residues and polycyclic aromatic hydrocarbon adducts. DNA damage can be recognized by enzymes, and thus can be correctly repaired using the complementary undamaged sequence in a homologous chromosome if it is available for copying. If a cell retains DNA damage, transcription of a gene can be prevented and thus translation into a protein will also be blocked. Replication may also be blocked and/or the cell may die. Descriptions of reduced function, characteristic of aging and associated with accumulation of DNA damage, are given later in this article.

In contrast to DNA damage, a mutation is a change in the base sequence of the DNA. A mutation cannot be recognized by enzymes once the base change is present in both DNA strands, and thus a mutation cannot be repaired. At the cellular level, mutations can cause alterations in protein function and regulation. Mutations are replicated when the cell replicates. In a population of cells, mutant cells will increase or decrease in frequency according to the effects of the mutation on the ability of the cell to survive and reproduce. Although distinctly different from each other, DNA damages and mutations are related because DNA damages often cause errors of DNA synthesis during replication or repair and these errors are a major source of mutation.

Given these properties of DNA damage and mutation, it can be seen that DNA damages are a special problem in non-dividing or slowly dividing cells, where unrepaired damages will tend to accumulate over time. On the other hand, in rapidly dividing cells, unrepaired DNA damages that do not kill the cell by blocking replication will tend to cause replication errors and thus mutation. The great majority of mutations that are not neutral in their effect are deleterious to a cell’s survival. Thus, in a population of cells comprising a tissue with replicating cells, mutant cells will tend to be lost. However, infrequent mutations that provide a survival advantage will tend to clonally expand at the expense of neighboring cells in the tissue. This advantage to the cell is disadvantageous to the whole organism, because such mutant cells can give rise to cancer. Thus DNA damages in frequently dividing cells, because they give rise to mutations, are a prominent cause of cancer. In contrast, DNA damages in infrequently dividing cells are likely a prominent cause of aging.

The first person to suggest that DNA damage, as distinct from mutation, is the primary cause of aging was Alexander in 1967. By the early 1980s there was significant experimental support for this idea in the literature. By the early 1990s experimental support for this idea was substantial, and furthermore it had become increasingly evident that oxidative DNA damage, in particular, is a major cause of aging.

In a series of articles from 1970 to 1977, PV Narasimh Acharya, Phd. (1924–1993) theorized and presented evidence that cells undergo "irreparable DNA damage," whereby DNA crosslinks occur when both normal cellular repair processes fail and cellular apoptosis does not occur. Specifically, Acharya noted that double-strand breaks and a "cross-linkage joining both strands at the same point is irreparable because neither strand can then serve as a template for repair. The cell will die in the next mitosis or in some rare instances, mutate."

Age-associated accumulation of DNA damage and decline in gene expression

In tissues composed of non- or infrequently replicating cells, DNA damage can accumulate with age and lead either to loss of cells, or, in surviving cells, loss of gene expression. Accumulated DNA damage is usually measured directly. Numerous studies of this type have indicated that oxidative damage to DNA is particularly important. The loss of expression of specific genes can be detected at both the mRNA level and protein level.

Brain

The adult brain is composed in large part of terminally differentiated non-dividing neurons. Many of the conspicuous features of aging reflect a decline in neuronal function. Accumulation of DNA damage with age in the mammalian brain has been reported during the period 1971 to 2008 in at least 29 studies. This DNA damage includes the oxidized nucleoside 8-oxo-2'-deoxyguanosine (8-oxo-dG), single- and double-strand breaks, DNA-protein crosslinks and malondialdehyde adducts (reviewed in Bernstein et al.). Increasing DNA damage with age has been reported in the brains of the mouse, rat, gerbil, rabbit, dog, and human.

Rutten et al. showed that single-strand breaks accumulate in the mouse brain with age. Young 4-day-old rats have about 3,000 single-strand breaks and 156 double-strand breaks per neuron, whereas in rats older than 2 years the level of damage increases to about 7,400 single-strand breaks and 600 double-strand breaks per neuron. Sen et al. showed that DNA damages which block the polymerase chain reaction in rat brain accumulate with age. Swain and Rao observed marked increases in several types of DNA damages in aging rat brain, including single-strand breaks, double-strand breaks and modified bases (8-OHdG and uracil). Wolf et al. also showed that the oxidative DNA damage 8-OHdG accumulates in rat brain with age. Similarly, it was shown that as humans age from 48–97 years, 8-OHdG accumulates in the brain.

Lu et al. studied the transcriptional profiles of the human frontal cortex of individuals ranging from 26 to 106 years of age. This led to the identification of a set of genes whose expression was altered after age 40. These genes play central roles in synaptic plasticity, vesicular transport and mitochondrial function. In the brain, promoters of genes with reduced expression have markedly increased DNA damage. In cultured human neurons, these gene promoters are selectively damaged by oxidative stress. Thus Lu et al. concluded that DNA damage may reduce the expression of selectively vulnerable genes involved in learning, memory and neuronal survival, initiating a program of brain aging that starts early in adult life.

Muscle

Muscle strength, and stamina for sustained physical effort, decline in function with age in humans and other species. Skeletal muscle is a tissue composed largely of multinucleated myofibers, elements that arise from the fusion of mononucleated myoblasts. Accumulation of DNA damage with age in mammalian muscle has been reported in at least 18 studies since 1971. We will mention here only two of the more recent studies in rodents plus one in humans. Hamilton et al. reported that the oxidative DNA damage 8-OHdG accumulates in heart and skeletal muscle (as well as in brain, kidney and liver) of both mouse and rat with age. In humans, increases in 8-OHdG with age were reported for skeletal muscle. Catalase is an enzyme that removes hydrogen peroxide, a reactive oxygen species, and thus limits oxidative DNA damage. In mice, when catalase expression is increased specifically in mitochondria, oxidative DNA damage (8-OHdG) in skeletal muscle is decreased and lifespan is increased by about 20%. These findings suggest that mitochondria are a significant source of the oxidative damages contributing to aging.

Protein synthesis and protein degradation decline with age in skeletal and heart muscle, as would be expected, since DNA damage blocks gene transcription. In a recent study Piec et al. found numerous changes in protein expression in rat skeletal muscle with age, including lower levels of several proteins related to myosin and actin. Force is generated in striated muscle by the interactions between myosin thick filaments and actin thin filaments.

Liver

Liver hepatocytes do not ordinarily divide and appear to be terminally differentiated, but they retain the ability to proliferate when injured. With age, the mass of the liver decreases, blood flow is reduced, metabolism is impaired, and alterations in microcirculation occur. At least 21 studies have reported an increase in DNA damage with age in liver. For instance, Helbock et al. estimated that the steady state level of oxidative DNA base alterations increased from 24,000 per cell in the liver of young rats to 66,000 per cell in the liver of old rats.

Kidney

In kidney, changes with age include reduction in both renal blood flow and glomerular filtration rate, and impairment in the ability to concentrate urine and to conserve sodium and water. DNA damages, particularly oxidative DNA damages, increase with age (at least 8 studies). For instance Hashimoto et al. showed that 8-OHdG accumulates in rat kidney DNA with age.

Long-lived stem cells

Tissue-specific stem cells produce differentiated cells through a series of increasingly more committed progenitor intermediates. In hematopoiesis (blood cell formation), the process begins with long-term hematopoietic stem cells that self-renew and also produce progeny cells that upon further replication go through a series of stages leading to differentiated cells without self-renewal capacity. In mice, deficiencies in DNA repair appear to limit the capacity of hematopoietic stem cells to proliferate and self-renew with age. Sharpless and Depinho reviewed evidence that hematopoietic stem cells, as well as stem cells in other tissues, undergo intrinsic aging. They speculated that stem cells grow old, in part, as a result of DNA damage. DNA damage may trigger signalling pathways, such as apoptosis, that contribute to depletion of stem cell stocks. This has been observed in several cases of accelerated aging and may occur in normal aging too.

A key aspect of hair loss with age is the aging of the hair follicle. Ordinarily, hair follicle renewal is maintained by the stem cells associated with each follicle. Aging of the hair follicle appears to be due to the DNA damage that accumulates in renewing stem cells during aging.

Mutation theories of aging

A popular idea, that has failed to gain significant experimental support, is the idea that mutation, as distinct from DNA damage, is the primary cause of aging. As discussed above, mutations tend to arise in frequently replicating cells as a result of errors of DNA synthesis when template DNA is damaged, and can give rise to cancer. However, in mice there is no increase in mutation in the brain with aging. Mice defective in a gene (Pms2) that ordinarily corrects base mispairs in DNA have about a 100-fold elevated mutation frequency in all tissues, but do not appear to age more rapidly. On the other hand, mice defective in one particular DNA repair pathway show clear premature aging, but do not have elevated mutation.

One variation of the idea that mutation is the basis of aging, that has received much attention, is that mutations specifically in mitochondrial DNA are the cause of aging. Several studies have shown that mutations accumulate in mitochondrial DNA in infrequently replicating cells with age. DNA polymerase gamma is the enzyme that replicates mitochondrial DNA. A mouse mutant with a defect in this DNA polymerase is only able to replicate its mitochondrial DNA inaccurately, so that it sustains a 500-fold higher mutation burden than normal mice. These mice showed no clear features of rapidly accelerated aging. Overall, the observations discussed in this section indicate that mutations are not the primary cause of aging.

Dietary restriction

In rodents, caloric restriction slows aging and extends lifespan. At least 4 studies have shown that caloric restriction reduces 8-OHdG damages in various organs of rodents. One of these studies showed that caloric restriction reduced accumulation of 8-OHdG with age in rat brain, heart and skeletal muscle, and in mouse brain, heart, kidney and liver. More recently, Wolf et al. showed that dietary restriction reduced accumulation of 8-OHdG with age in rat brain, heart, skeletal muscle, and liver. Thus reduction of oxidative DNA damage is associated with a slower rate of aging and increased lifespan.

Inherited defects that cause premature aging

If DNA damage is the underlying cause of aging, it would be expected that humans with inherited defects in the ability to repair DNA damages should age at a faster pace than persons without such a defect. Numerous examples of rare inherited conditions with DNA repair defects are known. Several of these show multiple striking features of premature aging, and others have fewer such features. Perhaps the most striking premature aging conditions are Werner syndrome (mean lifespan 47 years), Huchinson-Gilford Progeria (mean lifespan 13 years), and Cockayne syndrome (mean lifespan 13 years).

Werner syndrome is due to an inherited defect in an enzyme (a helicase and exonuclease) that acts in base excision repair of DNA (e.g. see Harrigan et al.[48]).

Hutchinson-Guilford Progeria is due to a defect in Lamin A protein which forms a scaffolding within the cell nucleus to organize chromatin and is needed for repair of double-strand breaks in DNA. A-type lamins promote genetic stability by maintaining levels of proteins that have key roles in the DNA repair processes of non-homologous end joining and homologous recombination. Mouse cells deficient for maturation of prelamin A show increased DNA damage and chromosome aberrations and are more sensitive to DNA damaging agents.

Cockayne Syndrome is due to a defect in a protein necessary for the repair process, transcription coupled nucleotide excision repair, which can remove damages, particularly oxidative DNA damages, that block transcription.

In addition to these three conditions, several other human syndromes, that also have defective DNA repair, show several features of premature aging. These include ataxia telangiectasia, Nijmegen breakage syndrome, some subgroups of xeroderma pigmentosum, trichothiodystrophy, Fanconi anemia, Bloom syndrome and Rothmund-Thomson syndrome.

Ku bound to DNA

In addition to human inherited syndromes, experimental mouse models with genetic defects in DNA repair show features of premature aging and reduced lifespan. In particular, mutant mice defective in Ku70, or Ku80, or double mutant mice deficient in both Ku70 and Ku80 exhibit early aging. The mean lifespans of the three mutant mouse strains were similar to each other, at about 37 weeks, compared to 108 weeks for the wild-type control. Six specific signs of aging were examined, and the three mutant mice were found to display the same aging signs as the control mice, but at a much earlier age. Cancer incidence was not increased in the mutant mice. Ku70 and Ku80 form the heterodimer Ku protein essential for the non-homologous end joining (NHEJ) pathway of DNA repair, active in repairing DNA double-strand breaks. This suggests an important role of NHEJ in longevity assurance.

Defects in DNA repair cause features of premature aging

Many authors have noted an association between defects in the DNA damage response and premature aging (see e.g.). If a DNA repair protein is deficient, unrepaired DNA damages tend to accumulate. Such accumulated DNA damages appear to cause features of premature aging (segmental progeria). Table 1 lists 18 DNA repair proteins which, when deficient, cause numerous features of premature aging.

Table 1. DNA repair proteins that, when deficient, cause features of accelerated aging (segmental progeria).
Protein Pathway Description
ATR Nucleotide excision repair deletion of ATR in adult mice leads to a number of disorders including hair loss and graying, kyphosis, osteoporosis, premature involution of the thymus, fibrosis of the heart and kidney and decreased spermatogenesis
DNA-PKcs Non-homologous end joining shorter lifespan, earlier onset of aging related pathologies; higher level of DNA damage persistence
ERCC1 Nucleotide excision repair, Interstrand cross link repair deficient transcription coupled NER with time-dependent accumulation of transcription-blocking damages; mouse life span reduced from 2.5 years to 5 months; Ercc1−/− mice are leukopenic and thrombocytopenic, and there is extensive adipose transformation of the bone marrow, hallmark features of normal aging in mice
ERCC2 (XPD) Nucleotide excision repair (also transcription as part of TFIIH) some mutations in ERCC2 cause Cockayne syndrome in which patients have segmental progeria with reduced stature, mental retardation, cachexia (loss of subcutaneous fat tissue), sensorineural deafness, retinal degeneration, and calcification of the central nervous system; other mutations in ERCC2 cause trichothiodystrophy in which patients have segmental progeria with brittle hair, short stature, progressive cognitive impairment and abnormal face shape; still other mutations in ERCC2 cause xeroderma pigmentosum (without a progeroid syndrome) and with extreme sun-mediated skin cancer predisposition
ERCC4 (XPF) Nucleotide excision repair, Interstrand cross link repair, Single-strand annealing, Microhomology-mediated end joining mutations in ERCC4 cause symptoms of accelerated aging that affect the neurologic, hepatobiliary, musculoskeletal, and hematopoietic systems, and cause an old, wizened appearance, loss of subcutaneous fat, liver dysfunction, vision and hearing loss, renal insufficiency, muscle wasting, osteopenia, kyphosis and cerebral atrophy
ERCC5 (XPG) Nucleotide excision repair, Homologous recombinational repair, Base excision repair mice with deficient ERCC5 show loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months
ERCC6 (Cockayne syndrome B or CS-B) Nucleotide excision repair [especially transcription coupled repair (TC-NER) and interstrand crosslink repair] premature aging features with shorter life span and photosensitivity, deficient transcription coupled NER with accumulation of unrepaired DNA damages, also defective repair of oxidatively generated DNA damages including 8-oxoguanine, 5-hydroxycytosine and cyclopurines
ERCC8 (Cockayne syndrome A or CS-A) Nucleotide excision repair [especially transcription coupled repair (TC-NER) and interstrand crosslink repair] premature aging features with shorter life span and photosensitivity, deficient transcription coupled NER with accumulation of unrepaired DNA damages, also defective repair of oxidatively generated DNA damages including 8-oxoguanine, 5-hydroxycytosine and cyclopurines
GTF2H5 (TTDA) Nucleotide excision repair deficiency causes trichothiodystrophy (TTD) a premature-ageing and neuroectodermal disease; humans with GTF2H5 mutations have a partially inactivated protein with retarded repair of 6-4-photoproducts
Ku70 Non-homologous end joining shorter lifespan, earlier onset of aging related pathologies; persistent foci of DNA double-strand break repair proteins
Ku80 Non-homologous end joining shorter lifespan, earlier onset of aging related pathologies; defective repair of spontaneous DNA damage
Lamin A Non-homologous end joining, Homologous recombination increased DNA damage and chromosome aberrations; progeria; aspects of premature aging; altered expression of numerous DNA repair factors
NRMT1 Nucleotide excision repair mutation in NRMT1 causes decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration
RECQL4 Base excision repair, Nucleotide excision repair, Homologous recombination, Non-homologous end joining mutations in RECQL4 cause Rothmund-Thomson syndrome, with alopecia, sparse eyebrows and lashes, cataracts and osteoporosis
SIRT6 Base excision repair, Nucleotide excision repair, Homologous recombination, Non-homologous end joining SIRT6-deficient mice develop profound lymphopenia, loss of subcutaneous fat and lordokyphosis, and these defects overlap with aging-associated degenerative processes
SIRT7 Non-homologous end joining mice defective in SIRT7 show phenotypic and molecular signs of accelerated aging such as premature pronounced curvature of the spine, reduced life span, and reduced non-homologous end joining
Werner syndrome helicase Homologous recombination, Non-homologous end joining,Base excision repair,Replication arrest recovery shorter lifespan, earlier onset of aging related pathologies, genome instability
ZMPSTE24 Homologous recombination lack of Zmpste24 prevents lamin A formation and causes progeroid phenotypes in mice and humans, increased DNA damage and chromosome aberrations, sensitivity to DNA-damaging agents and deficiency in homologous recombination

Increased DNA repair and extended longevity

Table 2 lists DNA repair proteins whose increased expression is connected to extended longevity.

Table 2. DNA repair proteins that, when highly- or over-expressed, cause (or are associated with) extended longevity.
ProteinPathwayDescription
NDRG1 Direct reversal long-lived Snell dwarf, GHRKO, and PAPPA-KO mice have increased expression of NDRG1; higher expression of NDRG1 can promote MGMT protein stability and enhanced DNA repair
NUDT1 (MTH1) Oxidized nucleotide removal degrades 8-oxodGTP; prevents the age-dependent accumulation of DNA 8-oxoguanine A transgenic mouse in which the human hMTH1 8-oxodGTPase is expressed, giving over-expression of hMTH1, increases the median lifespan of mice to 914 days vs. 790 days for wild-type mice. Mice with over-expressed hMTH1 have behavioral changes of reduced anxiety and enhanced investigation of environmental and social cues
PARP1 Base excision repair, Nucleotide excision repair, Microhomology-mediated end joining, Single-strand break repair PARP1 activity in blood cells of thirteen mammalian species (rat, guinea pig, rabbit, marmoset, sheep, pig, cattle, pigmy chimpanzee, horse, donkey, gorilla, elephant and man) correlates with maximum lifespan of the species.
SIRT1 Nucleotide excision repair, Homologous recombination, Non-homologous end joining Increased expression of SIRT1 in male mice extends the lifespan of mice fed a standard diet, accompanied by improvements in health, including enhanced motor coordination, performance, bone mineral density, and insulin sensitivity
SIRT6 Base excision repair, Nucleotide excision repair, Homologous recombination, Non-homologous end joining male, but not female, transgenic mice overexpressing Sirt6 have a significantly longer lifespan than wild-type mice

Lifespan in different mammalian species

Studies comparing DNA repair capacity in different mammalian species have shown that repair capacity correlates with lifespan. The initial study of this type, by Hart and Setlow, showed that the ability of skin fibroblasts of seven mammalian species to perform DNA repair after exposure to a DNA damaging agent correlated with lifespan of the species. The species studied were shrew, mouse, rat, hamster, cow, elephant and human. This initial study stimulated many additional studies involving a wide variety of mammalian species, and the correlation between repair capacity and lifespan generally held up. In one of the more recent studies, Burkle et al. studied the level of a particular enzyme, Poly ADP ribose polymerase, which is involved in repair of single-strand breaks in DNA. They found that the lifespan of 13 mammalian species correlated with the activity of this enzyme.

The DNA repair transcriptomes of the liver of humans, naked mole-rats and mice were compared. The maximum lifespans of humans, naked mole-rat, and mouse are respectively ~120, 30 and 3 years. The longer-lived species, humans and naked mole rats expressed DNA repair genes, including core genes in several DNA repair pathways, at a higher level than did mice. In addition, several DNA repair pathways in humans and naked mole-rats were up-regulated compared with mouse. These findings suggest that increased DNA repair facilitates greater longevity.

Over the past decade, a series of papers have shown that the mitochondrial DNA (mtDNA) base composition correlates with animal species maximum life span. The mitochondrial DNA base composition is though to reflect its nucleotide-specific (guanine, cytosine, thymidine and adenine) different mutation rates (i.e., accumulation of guanine in the mitochondrial DNA of an animal species is due to low guanine mutation rate in the mitochondria of that species).

Centenarians

Lymphoblastoid cell lines established from blood samples of humans who lived past 100 years (centenarians) have significantly higher activity of the DNA repair protein Poly (ADP-ribose) polymerase (PARP) than cell lines from younger individuals (20 to 70 years old). 

The lymphocytic cells of centenarians have characteristics typical of cells from young people, both in their capability of priming the mechanism of repair after H2O2 sublethal oxidative DNA damage and in their PARP capacity.

Menopause

As women age, they experience a decline in reproductive performance leading to menopause. This decline is tied to a decline in the number of ovarian follicles. Although 6 to 7 million oocytes are present at mid-gestation in the human ovary, only about 500 (about 0.05%) of these ovulate, and the rest are lost. The decline in ovarian reserve appears to occur at an increasing rate with age, and leads to nearly complete exhaustion of the reserve by about age 51. As ovarian reserve and fertility decline with age, there is also a parallel increase in pregnancy failure and meiotic errors resulting in chromosomally abnormal conceptions.

Titus et al. have proposed an explanation for the decline in ovarian reserve with age. They showed that as women age, double-strand breaks accumulate in the DNA of their primordial follicles. Primordial follicles are immature primary oocytes surrounded by a single layer of granulosa cells. An enzyme system is present in oocytes that normally accurately repairs DNA double-strand breaks. This repair system is referred to as homologous recombinational repair, and it is especially active during meiosis. Titus et al. also showed that expression of four key DNA repair genes that are necessary for homologous recombinational repair (BRCA1, MRE11, Rad51 and ATM) decline in oocytes with age. This age-related decline in ability to repair double-strand damages can account for the accumulation of these damages, which then likely contributes to the decline in ovarian reserve.

Women with an inherited mutation in the DNA repair gene BRCA1 undergo menopause prematurely, suggesting that naturally occurring DNA damages in oocytes are repaired less efficiently in these women, and this inefficiency leads to early reproductive failure. Genomic data from about 70,000 women were analyzed to identify protein-coding variation associated with age at natural menopause. Pathway analyses identified a major association with DNA damage response genes, particularly those expressed during meiosis and including a common coding variant in the BRCA1 gene.

Atherosclerosis

The most important risk factor for cardiovascular problems is chronological aging. Several research groups have reviewed evidence for a key role of DNA damage in vascular aging.

Atherosclerotic plaque contains vascular smooth muscle cells, macrophages and endothelial cells and these have been found to accumulate 8-oxoG, a common type of oxidative DNA damage. DNA strand breaks also increased in atherosclerotic plaques, thus linking DNA damage to plaque formation.

Werner syndrome (WS), a premature aging condition in humans, is caused by a genetic defect in a RecQ helicase that is employed in several DNA repair processes. WS patients develop a substantial burden of atherosclerotic plaques in their coronary arteries and aorta. These findings link excessive unrepaired DNA damage to premature aging and early atherosclerotic plaque development.

DNA damage and the epigenetic clock

Endogenous, naturally occurring DNA damages are frequent, and in humans include an average of about 10,000 oxidative damages per day and 50 double-strand DNA breaks per cell cycle.

Several reviews summarize evidence that the methylation enzyme DNMT1 is recruited to sites of oxidative DNA damage. Recruitment of DNMT1 leads to DNA methylation at the promoters of genes to inhibit transcription during repair. In addition, the 2018 review describes recruitment of DNMT1 during repair of DNA double-strand breaks. DNMT1 localization results in increased DNA methylation near the site of recombinational repair, associated with altered expression of the repaired gene. In general, repair-associated hyper-methylated promoters are restored to their former methylation level after DNA repair is complete. However, these reviews also indicate that transient recruitment of epigenetic modifiers can occasionally result in subsequent stable epigenetic alterations and gene silencing after DNA repair has been completed.

In human and mouse DNA, cytosine followed by guanine (CpG) is the least frequent dinucleotide, making up less than 1% of all dinucleotides (see CG suppression). At most CpG sites cytosine is methylated to form 5-methylcytosine. As indicated in the article CpG site, in mammals, 70% to 80% of CpG cytosines are methylated. However, in vertebrates there are CpG islands, about 300 to 3,000 base pairs long, with interspersed DNA sequences that deviate significantly from the average genomic pattern by being CpG-rich. These CpG islands are predominantly nonmethylated. In humans, about 70% of promoters located near the transcription start site of a gene (proximal promoters) contain a CpG island (see CpG islands in promoters). If the initially nonmethylated CpG sites in a CpG island become largely methylated, this causes stable silencing of the associated gene.

For humans, after adulthood is reached and during subsequent aging, the majority of CpG sequences slowly lose methylation (called epigenetic drift). However, the CpG islands that control promoters tend to gain methylation with age. The gain of methylation at CpG islands in promoter regions is correlated with age, and has been used to create an epigenetic clock (see article Epigenetic clock).
There may be some relationship between the epigenetic clock and epigenetic alterations accumulating after DNA repair. Both unrepaired DNA damage accumulated with age and accumulated methylation of CpG islands would silence genes in which they occur, interfere with protein expression, and contribute to the aging phenotype.

Brønsted–Lowry acid–base theory

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Br%C3%B8nsted%E2%80%93Lowry_acid%E2%80%93base_theory The B...