Search This Blog

Tuesday, October 22, 2019

Sampling bias

From Wikipedia, the free encyclopedia

In statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population have a lower sampling probability than others. It results in a biased sample, a non-random sample of a population (or non-human factors) in which all individuals, or instances, were not equally likely to have been selected. If this is not accounted for, results can be erroneously attributed to the phenomenon under study rather than to the method of sampling.

Medical sources sometimes refer to sampling bias as ascertainment bias. Ascertainment bias has basically the same definition, but is still sometimes classified as a separate type of bias.

Distinction from selection bias

Sampling bias is mostly classified as a subtype of selection bias, sometimes specifically termed sample selection bias, but some classify it as a separate type of bias. A distinction, albeit not universally accepted, of sampling bias is that it undermines the external validity of a test (the ability of its results to be generalized to the entire population), while selection bias mainly addresses internal validity for differences or similarities found in the sample at hand. In this sense, errors occurring in the process of gathering the sample or cohort cause sampling bias, while errors in any process thereafter cause selection bias.

However, selection bias and sampling bias are often used synonymously.

Types

  • Selection from a specific real area. For example, a survey of high school students to measure teenage use of illegal drugs will be a biased sample because it does not include home-schooled students or dropouts. A sample is also biased if certain members are underrepresented or overrepresented relative to others in the population. For example, a "man on the street" interview which selects people who walk by a certain location is going to have an overrepresentation of healthy individuals who are more likely to be out of the home than individuals with a chronic illness. This may be an extreme form of biased sampling, because certain members of the population are totally excluded from the sample (that is, they have zero probability of being selected).
  • Self-selection bias, which is possible whenever the group of people being studied has any form of control over whether to participate (as current standards of human-subject research ethics require for many real-time and some longitudinal forms of study). Participants' decision to participate may be correlated with traits that affect the study, making the participants a non-representative sample. For example, people who have strong opinions or substantial knowledge may be more willing to spend time answering a survey than those who do not. Another example is online and phone-in polls, which are biased samples because the respondents are self-selected. Those individuals who are highly motivated to respond, typically individuals who have strong opinions, are overrepresented, and individuals that are indifferent or apathetic are less likely to respond. This often leads to a polarization of responses with extreme perspectives being given a disproportionate weight in the summary. As a result, these types of polls are regarded as unscientific.
  • Pre-screening of trial participants, or advertising for volunteers within particular groups. For example, a study to "prove" that smoking does not affect fitness might recruit at the local fitness center, but advertise for smokers during the advanced aerobics class, and for non-smokers during the weight loss sessions.
  • Exclusion bias results from exclusion of particular groups from the sample, e.g. exclusion of subjects who have recently migrated into the study area (this may occur when newcomers are not available in a register used to identify the source population). Excluding subjects who move out of the study area during follow-up is rather equivalent of dropout or nonresponse, a selection bias in that it rather affects the internal validity of the study.
  • Healthy user bias, when the study population is likely healthier than the general population. For example, someone in poor health is unlikely to have a job as manual laborer.
  • Berkson's fallacy, when the study population is selected from a hospital and so is less healthy than the general population. This can result in a spurious negative correlation between diseases: a hospital patient without diabetes is more likely to have another given disease such as cholecystitis, since they must have had some reason to enter the hospital in the first place.
  • Overmatching, matching for an apparent confounder that actually is a result of the exposure. The control group becomes more similar to the cases in regard to exposure than does the general population.
  • Survivorship bias, in which only "surviving" subjects are selected, ignoring those that fell out of view. For example, using the record of current companies as an indicator of business climate or economy ignores the businesses that failed and no longer exist.
  • Malmquist bias, an effect in observational astronomy which leads to the preferential detection of intrinsically bright objects.

Symptom-based sampling

The study of medical conditions begins with anecdotal reports. By their nature, such reports only include those referred for diagnosis and treatment. A child who can't function in school is more likely to be diagnosed with dyslexia than a child who struggles but passes. A child examined for one condition is more likely to be tested for and diagnosed with other conditions, skewing comorbidity statistics. As certain diagnoses become associated with behavior problems or intellectual disability, parents try to prevent their children from being stigmatized with those diagnoses, introducing further bias. Studies carefully selected from whole populations are showing that many conditions are much more common and usually much milder than formerly believed.

Truncate selection in pedigree studies

Simple pedigree example of sampling bias
 
Geneticists are limited in how they can obtain data from human populations. As an example, consider a human characteristic. We are interested in deciding if the characteristic is inherited as a simple Mendelian trait. Following the laws of Mendelian inheritance, if the parents in a family do not have the characteristic, but carry the allele for it, they are carriers (e.g. a non-expressive heterozygote). In this case their children will each have a 25% chance of showing the characteristic. The problem arises because we can't tell which families have both parents as carriers (heterozygous) unless they have a child who exhibits the characteristic. The description follows the textbook by Sutton.

The figure shows the pedigrees of all the possible families with two children when the parents are carriers (Aa).
  • Nontruncate selection. In a perfect world we should be able to discover all such families with a gene including those who are simply carriers. In this situation the analysis would be free from ascertainment bias and the pedigrees would be under "nontruncate selection" In practice, most studies identify, and include, families in a study based upon them having affected individuals.
  • Truncate selection. When afflicted individuals have an equal chance of being included in a study this is called truncate selection, signifying the inadvertent exclusion (truncation) of families who are carriers for a gene. Because selection is performed on the individual level, families with two or more affected children would have a higher probability of becoming included in the study.
  • Complete truncate selection is a special case where each family with an affected child has an equal chance of being selected for the study.
The probabilities of each of the families being selected is given in the figure, with the sample frequency of affected children also given. In this simple case, the researcher will look for a frequency of ​47 or ​58 for the characteristic, depending on the type of truncate selection used.

The caveman effect

An example of selection bias is called the "caveman effect". Much of our understanding of prehistoric peoples comes from caves, such as cave paintings made nearly 40,000 years ago. If there had been contemporary paintings on trees, animal skins or hillsides, they would have been washed away long ago. Similarly, evidence of fire pits, middens, burial sites, etc. are most likely to remain intact to the modern era in caves. Prehistoric people are associated with caves because that is where the data still exists, not necessarily because most of them lived in caves for most of their lives.

Problems due to sampling bias

Sampling bias is problematic because it is possible that a statistic computed of the sample is systematically erroneous. Sampling bias can lead to a systematic over- or under-estimation of the corresponding parameter in the population. Sampling bias occurs in practice as it is practically impossible to ensure perfect randomness in sampling. If the degree of misrepresentation is small, then the sample can be treated as a reasonable approximation to a random sample. Also, if the sample does not differ markedly in the quantity being measured, then a biased sample can still be a reasonable estimate. 

The word bias has a strong negative connotation. Indeed, biases sometimes come from deliberate intent to mislead or other scientific fraud. In statistical usage, bias merely represents a mathematical property, no matter if it is deliberate or unconscious or due to imperfections in the instruments used for observation. While some individuals might deliberately use a biased sample to produce misleading results, more often, a biased sample is just a reflection of the difficulty in obtaining a truly representative sample, or ignorance of the bias in their process of measurement or analysis. An example of how ignorance of a bias can exist is in the widespread use of a ratio (a.k.a. fold change) as a measure of difference in biology. Because it is easier to achieve a large ratio with two small numbers with a given difference, and relatively more difficult to achieve a large ratio with two large numbers with a larger difference, large significant differences may be missed when comparing relatively large numeric measurements. Some have called this a 'demarcation bias' because the use of a ratio (division) instead of a difference (subtraction) removes the results of the analysis from science into pseudoscience.

Some samples use a biased statistical design which nevertheless allows the estimation of parameters. The U.S. National Center for Health Statistics, for example, deliberately oversamples from minority populations in many of its nationwide surveys in order to gain sufficient precision for estimates within these groups. These surveys require the use of sample weights (see later on) to produce proper estimates across all ethnic groups. Provided that certain conditions are met (chiefly that the weights are calculated and used correctly) these samples permit accurate estimation of population parameters.

Historical examples

Example of biased sample: as of June 2008 55% of web browsers (Internet Explorer) in use did not pass the Acid2 test. Due to the nature of the test, the sample consisted mostly of web developers.
 
A classic example of a biased sample and the misleading results it produced occurred in 1936. In the early days of opinion polling, the American Literary Digest magazine collected over two million postal surveys and predicted that the Republican candidate in the U.S. presidential election, Alf Landon, would beat the incumbent president, Franklin Roosevelt, by a large margin. The result was the exact opposite. The Literary Digest survey represented a sample collected from readers of the magazine, supplemented by records of registered automobile owners and telephone users. This sample included an over-representation of individuals who were rich, who, as a group, were more likely to vote for the Republican candidate. In contrast, a poll of only 50 thousand citizens selected by George Gallup's organization successfully predicted the result, leading to the popularity of the Gallup poll

Another classic example occurred in the 1948 presidential election. On election night, the Chicago Tribune printed the headline DEWEY DEFEATS TRUMAN, which turned out to be mistaken. In the morning the grinning president-elect, Harry S. Truman, was photographed holding a newspaper bearing this headline. The reason the Tribune was mistaken is that their editor trusted the results of a phone survey. Survey research was then in its infancy, and few academics realized that a sample of telephone users was not representative of the general population. Telephones were not yet widespread, and those who had them tended to be prosperous and have stable addresses. (In many cities, the Bell System telephone directory contained the same names as the Social Register). In addition, the Gallup poll that the Tribune based its headline on was over two weeks old at the time of the printing.

Statistical corrections for a biased sample

If entire segments of the population are excluded from a sample, then there are no adjustments that can produce estimates that are representative of the entire population. But if some groups are underrepresented and the degree of underrepresentation can be quantified, then sample weights can correct the bias. However, the success of the correction is limited to the selection model chosen. If certain variables are missing the methods used to correct the bias could be inaccurate.

For example, a hypothetical population might include 10 million men and 10 million women. Suppose that a biased sample of 100 patients included 20 men and 80 women. A researcher could correct for this imbalance by attaching a weight of 2.5 for each male and 0.625 for each female. This would adjust any estimates to achieve the same expected value as a sample that included exactly 50 men and 50 women, unless men and women differed in their likelihood of taking part in the survey.

Selection bias

From Wikipedia, the free encyclopedia
 
Selection bias is the bias introduced by the selection of individuals, groups or data for analysis in such a way that proper randomization is not achieved, thereby ensuring that the sample obtained is not representative of the population intended to be analyzed. It is sometimes referred to as the selection effect. The phrase "selection bias" most often refers to the distortion of a statistical analysis, resulting from the method of collecting samples. If the selection bias is not taken into account, then some conclusions of the study may be false.

Types

There are many types of possible selection bias, including:

Sampling bias

Sampling bias is systematic error due to a non-random sample of a population, causing some members of the population to be less likely to be included than others, resulting in a biased sample, defined as a statistical sample of a population (or non-human factors) in which all participants are not equally balanced or objectively represented. It is mostly classified as a subtype of selection bias, sometimes specifically termed sample selection bias, but some classify it as a separate type of bias.

A distinction of sampling bias (albeit not a universally accepted one) is that it undermines the external validity of a test (the ability of its results to be generalized to the rest of the population), while selection bias mainly addresses internal validity for differences or similarities found in the sample at hand. In this sense, errors occurring in the process of gathering the sample or cohort cause sampling bias, while errors in any process thereafter cause selection bias.

Examples of sampling bias include self-selection, pre-screening of trial participants, discounting trial subjects/tests that did not run to completion and migration bias by excluding subjects who have recently moved into or out of the study area.

Time interval

  • Early termination of a trial at a time when its results support the desired conclusion.
  • A trial may be terminated early at an extreme value (often for ethical reasons), but the extreme value is likely to be reached by the variable with the largest variance, even if all variables have a similar mean.

Exposure

  • Susceptibility bias
    • Clinical susceptibility bias, when one disease predisposes for a second disease, and the treatment for the first disease erroneously appears to predispose to the second disease. For example, postmenopausal syndrome gives a higher likelihood of also developing endometrial cancer, so estrogens given for the postmenopausal syndrome may receive a higher than actual blame for causing endometrial cancer.
    • Protopathic bias, when a treatment for the first symptoms of a disease or other outcome appear to cause the outcome. It is a potential bias when there is a lag time from the first symptoms and start of treatment before actual diagnosis. It can be mitigated by lagging, that is, exclusion of exposures that occurred in a certain time period before diagnosis.
    • Indication bias, a potential mixup between cause and effect when exposure is dependent on indication, e.g. a treatment is given to people in high risk of acquiring a disease, potentially causing a preponderance of treated people among those acquiring the disease. This may cause an erroneous appearance of the treatment being a cause of the disease.

Data

  • Partitioning (dividing) data with knowledge of the contents of the partitions, and then analyzing them with tests designed for blindly chosen partitions.
  • Post hoc alteration of data inclusion based on arbitrary or subjective reasons, including:
    • Cherry picking, which actually is not selection bias, but confirmation bias, when specific subsets of data are chosen to support a conclusion (e.g. citing examples of plane crashes as evidence of airline flight being unsafe, while ignoring the far more common example of flights that complete safely.)
    • Rejection of bad data on (1) arbitrary grounds, instead of according to previously stated or generally agreed criteria or (2) discarding "outliers" on statistical grounds that fail to take into account important information that could be derived from "wild" observations.

Studies

  • Selection of which studies to include in a meta-analysis (see also combinatorial meta-analysis).
  • Performing repeated experiments and reporting only the most favorable results, perhaps relabelling lab records of other experiments as "calibration tests", "instrumentation errors" or "preliminary surveys".
  • Presenting the most significant result of a data dredge as if it were a single experiment (which is logically the same as the previous item, but is seen as much less dishonest).

Attrition

Attrition bias is a kind of selection bias caused by attrition (loss of participants), discounting trial subjects/tests that did not run to completion. It is closely related to the survivorship bias, where only the subjects that "survived" a process are included in the analysis or the failure bias, where only the subjects that "failed" a process are included. It includes dropout, nonresponse (lower response rate), withdrawal and protocol deviators. It gives biased results where it is unequal in regard to exposure and/or outcome. For example, in a test of a dieting program, the researcher may simply reject everyone who drops out of the trial, but most of those who drop out are those for whom it was not working. Different loss of subjects in intervention and comparison group may change the characteristics of these groups and outcomes irrespective of the studied intervention.

Observer selection

Philosopher Nick Bostrom has argued that data are filtered not only by study design and measurement, but by the necessary precondition that there has to be someone doing a study. In situations where the existence of the observer or the study is correlated with the data, observation selection effects occur, and anthropic reasoning is required.

An example is the past impact event record of Earth: if large impacts cause mass extinctions and ecological disruptions precluding the evolution of intelligent observers for long periods, no one will observe any evidence of large impacts in the recent past (since they would have prevented intelligent observers from evolving). Hence there is a potential bias in the impact record of Earth. Astronomical existential risks might similarly be underestimated due to selection bias, and an anthropic correction has to be introduced.

Mitigation

In the general case, selection biases cannot be overcome with statistical analysis of existing data alone, though Heckman correction may be used in special cases. An assessment of the degree of selection bias can be made by examining correlations between exogenous (background) variables and a treatment indicator. However, in regression models, it is correlation between unobserved determinants of the outcome and unobserved determinants of selection into the sample which bias estimates, and this correlation between unobservables cannot be directly assessed by the observed determinants of treatment.

Related issues

Selection bias is closely related to:
  • publication bias or reporting bias, the distortion produced in community perception or meta-analyses by not publishing uninteresting (usually negative) results, or results which go against the experimenter's prejudices, a sponsor's interests, or community expectations.
  • confirmation bias, the general tendency of humans to give more attention to whatever confirms our pre-existing perspective; or specifically in experimental science, the distortion produced by experiments that are designed to seek confirmatory evidence instead of trying to disprove the hypothesis.
  • exclusion bias, results from applying different criteria to cases and controls in regards to participation eligibility for a study/different variables serving as basis for exclusion.

Regression toward the mean

From Wikipedia, the free encyclopedia
 
Galton's experimental setup (Fig.8)
 
In statistics, regression toward (or to) the mean is the phenomenon that arises if a random variable is extreme on its first measurement but closer to the mean or average on its second measurement and if it is extreme on its second measurement but closer to the average on its first. To avoid making incorrect inferences, regression toward the mean must be considered when designing scientific experiments and interpreting data. Historically, what is now called regression toward the mean has also been called reversion to the mean and reversion to mediocrity.

The conditions under which regression toward the mean occurs depend on the way the term is mathematically defined. The British polymath Sir Francis Galton first observed the phenomenon in the context of simple linear regression of data points. Galton developed the following model: pellets fall through a quincunx to form a normal distribution centered directly under their entrance point. These pellets might then be released down into a second gallery corresponding to a second measurement. Galton then asked the reverse question: "From where did these pellets come?"
The answer was not 'on average directly above'. Rather it was 'on average, more towards the middle', for the simple reason that there were more pellets above it towards the middle that could wander left than there were in the left extreme that could wander to the right, inwards.
As a less restrictive approach, regression towards the mean can be defined for any bivariate distribution with identical marginal distributions. Two such definitions exist. One definition accords closely with the common usage of the term "regression towards the mean". Not all such bivariate distributions show regression towards the mean under this definition. However, all such bivariate distributions show regression towards the mean under the other definition.

Jeremy Siegel uses the term "return to the mean" to describe a financial time series in which "returns can be very unstable in the short run but very stable in the long run." More quantitatively, it is one in which the standard deviation of average annual returns declines faster than the inverse of the holding period, implying that the process is not a random walk, but that periods of lower returns are systematically followed by compensating periods of higher returns, as is the case in many seasonal businesses, for example.

Conceptual background

Consider a simple example: a class of students takes a 100-item true/false test on a subject. Suppose that all students choose randomly on all questions. Then, each student's score would be a realization of one of a set of independent and identically distributed random variables, with an expected mean of 50. Naturally, some students will score substantially above 50 and some substantially below 50 just by chance. If one takes only the top scoring 10% of the students and gives them a second test on which they again choose randomly on all items, the mean score would again be expected to be close to 50. Thus the mean of these students would "regress" all the way back to the mean of all students who took the original test. No matter what a student scores on the original test, the best prediction of their score on the second test is 50.

If choosing answers to the test questions was not random – i.e. if there were no luck (good or bad) or random guessing involved in the answers supplied by the students – then all students would be expected to score the same on the second test as they scored on the original test, and there would be no regression toward the mean.

Most realistic situations fall between these two extremes: for example, one might consider exam scores as a combination of skill and luck. In this case, the subset of students scoring above average would be composed of those who were skilled and had not especially bad luck, together with those who were unskilled, but were extremely lucky. On a retest of this subset, the unskilled will be unlikely to repeat their lucky break, while the skilled will have a second chance to have bad luck. Hence, those who did well previously are unlikely to do quite as well in the second test even if the original cannot be replicated.

The following is an example of this second kind of regression toward the mean. A class of students takes two editions of the same test on two successive days. It has frequently been observed that the worst performers on the first day will tend to improve their scores on the second day, and the best performers on the first day will tend to do worse on the second day. The phenomenon occurs because student scores are determined in part by underlying ability and in part by chance. For the first test, some will be lucky, and score more than their ability, and some will be unlucky and score less than their ability. Some of the lucky students on the first test will be lucky again on the second test, but more of them will have (for them) average or below average scores. Therefore, a student who was lucky on the first test is more likely to have a worse score on the second test than a better score. Similarly, students who score less than the mean on the first test will tend to see their scores increase on the second test.

Other examples

If your favorite sports team won the championship last year, what does that mean for their chances for winning next season? To the extent this result is due to skill (the team is in good condition, with a top coach, etc.), their win signals that it is more likely they will win again next year. But the greater the extent this is due to luck (other teams embroiled in a drug scandal, favorable draw, draft picks turned out to be productive, etc.), the less likely it is they will win again next year.

If one medical trial suggests that a particular drug or treatment is outperforming all other treatments for a condition, then in a second trial it is more likely that the outperforming drug or treatment will perform closer to the mean.

If a business organisation has a highly profitable quarter, despite the underlying reasons for its performance being unchanged, it is likely to do less well the next quarter.

If the country's GDP jumps in one quarter it is likely not to do as well in the next.

Baseball players who hit well in their rookie season are likely to do worse their 2nd; the "Sophomore slump".

History

The concept of regression comes from genetics and was popularized by Sir Francis Galton during the late 19th century with the publication of Regression towards mediocrity in hereditary stature. Galton observed that extreme characteristics (e.g., height) in parents are not passed on completely to their offspring. Rather, the characteristics in the offspring regress towards a mediocre point (a point which has since been identified as the mean). By measuring the heights of hundreds of people, he was able to quantify regression to the mean, and estimate the size of the effect. Galton wrote that, "the average regression of the offspring is a constant fraction of their respective mid-parental deviations". This means that the difference between a child and its parents for some characteristic is proportional to its parents' deviation from typical people in the population. If its parents are each two inches taller than the averages for men and women, then, on average, the offspring will be shorter than its parents by some factor (which, today, we would call one minus the regression coefficient) times two inches. For height, Galton estimated this coefficient to be about 2/3: the height of an individual will measure around a midpoint that is two thirds of the parents' deviation from the population average. 

Galton coined the term "regression" to describe an observable fact in the inheritance of multi-factorial quantitative genetic traits: namely that the offspring of parents who lie at the tails of the distribution will tend to lie closer to the centre, the mean, of the distribution. He quantified this trend, and in doing so invented linear regression analysis, thus laying the groundwork for much of modern statistical modelling. Since then, the term "regression" has taken on a variety of meanings, and it may be used by modern statisticians to describe phenomena of sampling bias which have little to do with Galton's original observations in the field of genetics.

Though his mathematical analysis was correct, Galton's biological explanation for the regression phenomenon he observed is now known to be incorrect. He stated: "A child inherits partly from his parents, partly from his ancestors. Speaking generally, the further his genealogy goes back, the more numerous and varied will his ancestry become, until they cease to differ from any equally numerous sample taken at haphazard from the race at large." This is incorrect, since a child receives its genetic make-up exclusively from its parents. There is no generation-skipping in genetic material: any genetic material from earlier ancestors must have passed through the parents (though it may not have been expressed in them). The phenomenon is better understood if we assume that the inherited trait (e.g., height) is controlled by a large number of recessive genes. Exceptionally tall individuals must be homozygous for increased height mutations at a large proportion of these loci. But the loci which carry these mutations are not necessarily shared between two tall individuals, and if these individuals mate, their offspring will be on average homozygous for "tall" mutations on fewer loci than either of their parents. In addition, height is not entirely genetically determined, but also subject to environmental influences during development, which make offspring of exceptional parents even more likely to be closer to the average than their parents.

This population genetic phenomenon of regression to the mean is best thought of as a combination of a binomially distributed process of inheritance plus normally distributed environmental influences. In contrast, the term "regression to the mean" is now often used to describe the phenomenon by which an initial sampling bias may disappear as new, repeated, or larger samples display sample means that are closer to the true underlying population mean.

Importance

Regression toward the mean is a significant consideration in the design of experiments.

Take a hypothetical example of 1,000 individuals of a similar age who were examined and scored on the risk of experiencing a heart attack. Statistics could be used to measure the success of an intervention on the 50 who were rated at the greatest risk. The intervention could be a change in diet, exercise, or a drug treatment. Even if the interventions are worthless, the test group would be expected to show an improvement on their next physical exam, because of regression toward the mean. The best way to combat this effect is to divide the group randomly into a treatment group that receives the treatment, and a control group that does not. The treatment would then be judged effective only if the treatment group improves more than the control group. 

Alternatively, a group of disadvantaged children could be tested to identify the ones with most college potential. The top 1% could be identified and supplied with special enrichment courses, tutoring, counseling and computers. Even if the program is effective, their average scores may well be less when the test is repeated a year later. However, in these circumstances it may be considered unethical to have a control group of disadvantaged children whose special needs are ignored. A mathematical calculation for shrinkage can adjust for this effect, although it will not be as reliable as the control group method.

The effect can also be exploited for general inference and estimation. The hottest place in the country today is more likely to be cooler tomorrow than hotter, as compared to today. The best performing mutual fund over the last three years is more likely to see relative performance decline than improve over the next three years. The most successful Hollywood actor of this year is likely to have less gross than more gross for his or her next movie. The baseball player with the greatest batting average by the All-Star break is more likely to have a lower average than a higher average over the second half of the season.

Misunderstandings

The concept of regression toward the mean can be misused very easily. 

In the student test example above, it was assumed implicitly that what was being measured did not change between the two measurements. Suppose, however, that the course was pass/fail and students were required to score above 70 on both tests to pass. Then the students who scored under 70 the first time would have no incentive to do well, and might score worse on average the second time. The students just over 70, on the other hand, would have a strong incentive to study and concentrate while taking the test. In that case one might see movement away from 70, scores below it getting lower and scores above it getting higher. It is possible for changes between the measurement times to augment, offset or reverse the statistical tendency to regress toward the mean.

Statistical regression toward the mean is not a causal phenomenon. A student with the worst score on the test on the first day will not necessarily increase his score substantially on the second day due to the effect. On average, the worst scorers improve, but that is only true because the worst scorers are more likely to have been unlucky than lucky. To the extent that a score is determined randomly, or that a score has random variation or error, as opposed to being determined by the student's academic ability or being a "true value", the phenomenon will have an effect. A classic mistake in this regard was in education. The students that received praise for good work were noticed to do more poorly on the next measure, and the students who were punished for poor work were noticed to do better on the next measure. The educators decided to stop praising and keep punishing on this basis. Such a decision was a mistake, because regression toward the mean is not based on cause and effect, but rather on random error in a natural distribution around a mean.

Although extreme individual measurements regress toward the mean, the second sample of measurements will be no closer to the mean than the first. Consider the students again. Suppose the tendency of extreme individuals is to regress 10% of the way toward the mean of 80, so a student who scored 100 the first day is expected to score 98 the second day, and a student who scored 70 the first day is expected to score 71 the second day. Those expectations are closer to the mean than the first day scores. But the second day scores will vary around their expectations; some will be higher and some will be lower. In addition, individuals that measure very close to the mean should expect to move away from the mean. The effect is the exact reverse of regression toward the mean, and exactly offsets it. So for extreme individuals, we expect the second score to be closer to the mean than the first score, but for all individuals, we expect the distribution of distances from the mean to be the same on both sets of measurements.

Related to the point above, regression toward the mean works equally well in both directions. We expect the student with the highest test score on the second day to have done worse on the first day. And if we compare the best student on the first day to the best student on the second day, regardless of whether it is the same individual or not, there is a tendency to regress toward the mean going in either direction. We expect the best scores on both days to be equally far from the mean.

Regression fallacies

Many phenomena tend to be attributed to the wrong causes when regression to the mean is not taken into account. 

An extreme example is Horace Secrist's 1933 book The Triumph of Mediocrity in Business, in which the statistics professor collected mountains of data to prove that the profit rates of competitive businesses tend toward the average over time. In fact, there is no such effect; the variability of profit rates is almost constant over time. Secrist had only described the common regression toward the mean. One exasperated reviewer, Harold Hotelling, likened the book to "proving the multiplication table by arranging elephants in rows and columns, and then doing the same for numerous other kinds of animals".

The calculation and interpretation of "improvement scores" on standardized educational tests in Massachusetts probably provides another example of the regression fallacy. In 1999, schools were given improvement goals. For each school, the Department of Education tabulated the difference in the average score achieved by students in 1999 and in 2000. It was quickly noted that most of the worst-performing schools had met their goals, which the Department of Education took as confirmation of the soundness of their policies. However, it was also noted that many of the supposedly best schools in the Commonwealth, such as Brookline High School (with 18 National Merit Scholarship finalists) were declared to have failed. As in many cases involving statistics and public policy, the issue is debated, but "improvement scores" were not announced in subsequent years and the findings appear to be a case of regression to the mean.

The psychologist Daniel Kahneman, winner of the 2002 Nobel Memorial Prize in Economic Sciences, pointed out that regression to the mean might explain why rebukes can seem to improve performance, while praise seems to backfire.


To put Kahneman's story in simple terms, when one makes a severe mistake, their performance will later usually return to average level anyway. This will seem as an improvement and as "proof" of a belief that it is better to criticize than to praise (held especially by anyone who is willing to criticize at that "low" moment). In the contrary situation, when one happens to perform high above average, their performance will also tend to return to the average level later on; the change will be perceived as a deterioration and any initial praise following the first performance as a cause of that deterioration. Just because criticizing or praising precedes the regression toward the mean, the act of criticizing or of praising is falsely attributed causality. The regression fallacy is also explained in Rolf Dobelli's The Art of Thinking Clearly

UK law enforcement policies have encouraged the visible siting of static or mobile speed cameras at accident blackspots. This policy was justified by a perception that there is a corresponding reduction in serious road traffic accidents after a camera is set up. However, statisticians have pointed out that, although there is a net benefit in lives saved, failure to take into account the effects of regression to the mean results in the beneficial effects being overstated.

Statistical analysts have long recognized the effect of regression to the mean in sports; they even have a special name for it: the "sophomore slump". For example, Carmelo Anthony of the NBA's Denver Nuggets had an outstanding rookie season in 2004. It was so outstanding, in fact, that he could not possibly be expected to repeat it: in 2005, Anthony's numbers had dropped from his rookie season. The reasons for the "sophomore slump" abound, as sports are all about adjustment and counter-adjustment, but luck-based excellence as a rookie is as good a reason as any. Regression to the mean in sports performance may also be the reason for the apparent "Sports Illustrated cover jinx" and the "Madden Curse". John Hollinger has an alternate name for the phenomenon of regression to the mean: the "fluke rule", while Bill James calls it the "Plexiglas Principle".

Because popular lore has focused on regression toward the mean as an account of declining performance of athletes from one season to the next, it has usually overlooked the fact that such regression can also account for improved performance. For example, if one looks at the batting average of Major League Baseball players in one season, those whose batting average was above the league mean tend to regress downward toward the mean the following year, while those whose batting average was below the mean tend to progress upward toward the mean the following year.

Other statistical phenomena

Regression toward the mean simply says that, following an extreme random event, the next random event is likely to be less extreme. In no sense does the future event "compensate for" or "even out" the previous event, though this is assumed in the gambler's fallacy (and the variant law of averages). Similarly, the law of large numbers states that in the long term, the average will tend towards the expected value, but makes no statement about individual trials. For example, following a run of 10 heads on a flip of a fair coin (a rare, extreme event), regression to the mean states that the next run of heads will likely be less than 10, while the law of large numbers states that in the long term, this event will likely average out, and the average fraction of heads will tend to 1/2. By contrast, the gambler's fallacy incorrectly assumes that the coin is now "due" for a run of tails to balance out.

Definition for simple linear regression of data points

This is the definition of regression toward the mean that closely follows Sir Francis Galton's original usage.

Suppose there are n data points {yi, xi}, where i = 1, 2, …, n. We want to find the equation of the regression line, i.e. the straight line
which would provide a "best" fit for the data points. (Note that a straight line may not be the appropriate regression curve for the given data points.) Here the "best" will be understood as in the least-squares approach: such a line that minimizes the sum of squared residuals of the linear regression model. In other words, numbers α and β solve the following minimization problem:
Find , where
Using calculus it can be shown that the values of α and β that minimize the objective function Q are
where rxy is the sample correlation coefficient between x and y, sx is the standard deviation of x, and sy is correspondingly the standard deviation of y. Horizontal bar over a variable means the sample average of that variable. For example:
 

Substituting the above expressions for and into yields fitted values
which yields
This shows the role rxy plays in the regression line of standardized data points.

If −1 < rxy < 1, then we say that the data points exhibit regression toward the mean. In other words, if linear regression is the appropriate model for a set of data points whose sample correlation coefficient is not perfect, then there is regression toward the mean. The predicted (or fitted) standardized value of y is closer to its mean than the standardized value of x is to its mean.

Definitions for bivariate distribution with identical marginal distributions

Restrictive definition

Let X1, X2 be random variables with identical marginal distributions with mean μ. In this formalization, the bivariate distribution of X1 and X2 is said to exhibit regression toward the mean if, for every number c > μ, we have
μ ≤ E[X2 | X1 = c] < c,
with the reverse inequalities holding for c < μ.

The following is an informal description of the above definition. Consider a population of widgets. Each widget has two numbers, X1 and X2 (say, its left span (X1 ) and right span (X2)). Suppose that the probability distributions of X1 and X2 in the population are identical, and that the means of X1 and X2 are both μ. We now take a random widget from the population, and denote its X1 value by c. (Note that c may be greater than, equal to, or smaller than μ.) We have no access to the value of this widget's X2 yet. Let d denote the expected value of X2 of this particular widget. (i.e. Let d denote the average value of X2 of all widgets in the population with X1=c.) If the following condition is true:
Whatever the value c is, d lies between μ and c (i.e. d is closer to μ than c is),
then we say that X1 and X2 show regression toward the mean

This definition accords closely with the current common usage, evolved from Galton's original usage, of the term "regression toward the mean." It is "restrictive" in the sense that not every bivariate distribution with identical marginal distributions exhibits regression toward the mean (under this definition).

Theorem

If a pair (XY) of random variables follows a bivariate normal distribution, then the conditional mean E(Y|X) is a linear function of X. The correlation coefficient r between X and Y, along with the marginal means and variances of X and Y, determines this linear relationship:
where E[X] and E[Y] are the expected values of X and Y, respectively, and σx and σy are the standard deviations of X and Y, respectively. 

Hence the conditional expected value of Y, given that X is t standard deviations above its mean (and that includes the case where it's below its mean, when t < 0), is rt standard deviations above the mean of Y. Since |r| ≤ 1, Y is no farther from the mean than X is, as measured in the number of standard deviations.

Hence, if 0 ≤ r < 1, then (XY) shows regression toward the mean (by this definition).

General definition

The following definition of reversion toward the mean has been proposed by Samuels as an alternative to the more restrictive definition of regression toward the mean above.

Let X1, X2 be random variables with identical marginal distributions with mean μ. In this formalization, the bivariate distribution of X1 and X2 is said to exhibit reversion toward the mean if, for every number c, we have
μ ≤ E[X2 | X1 > c] < E[X1 | X1 > c], and
μ ≥ E[X2 | X1 < c] > E[X1 | X1 < c]
This definition is "general" in the sense that every bivariate distribution with identical marginal distributions exhibits reversion toward the mean.

Personality theories of addiction

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Personality_theories_of_addiction ...