Search This Blog

Monday, April 8, 2019

Homology (biology)

From Wikipedia, the free encyclopedia

The principle of homology: The biological relationships (shown by colours) of the bones in the forelimbs of vertebrates were used by Charles Darwin as an argument in favor of evolution.
 
In biology, homology is the existence of shared ancestry between a pair of structures, or genes, in different taxa. A common example of homologous structures is the forelimbs of vertebrates, where the wings of bats, the arms of primates, the front flippers of whales and the forelegs of dogs and horses are all derived from the same ancestral tetrapod structure. Evolutionary biology explains homologous structures adapted to different purposes as the result of descent with modification from a common ancestor. The term was first applied to biology in a non-evolutionary context by the anatomist Richard Owen in 1843. Homology was later explained by Charles Darwin's theory of evolution in 1859, but had been observed before this, from Aristotle onwards, and it was explicitly analysed by Pierre Belon in 1555. 

In developmental biology, organs that developed in the embryo in the same manner and from similar origins, such as from matching primordia in successive segments of the same animal, are serially homologous. Examples include the legs of a centipede, the maxillary palp and labial palp of an insect, and the spinous processes of successive vertebrae in a vertebral column. Male and female reproductive organs are homologous if they develop from the same embryonic tissue, as do the ovaries and testicles of mammals including humans.

Sequence homology between protein or DNA sequences is similarly defined in terms of shared ancestry. Two segments of DNA can have shared ancestry because of either a speciation event (orthologs) or a duplication event (paralogs). Homology among proteins or DNA is inferred from their sequence similarity. Significant similarity is strong evidence that two sequences are related by divergent evolution from a common ancestor. Alignments of multiple sequences are used to discover the homologous regions. 

Homology remains controversial in animal behaviour, but there is suggestive evidence that, for example, dominance hierarchies are homologous across the primates.

History

Pierre Belon systematically compared the skeletons of birds and humans in his Book of Birds (1555).
 
Homology was noticed by Aristotle (c. 350 BC), and was explicitly analysed by Pierre Belon in his 1555 Book of Birds, where he systematically compared the skeletons of birds and humans. The pattern of similarity was interpreted as part of the static great chain of being through the mediaeval and early modern periods: it was not then seen as implying evolutionary change. In the German Naturphilosophie tradition, homology was of special interest as demonstrating unity in nature. In 1790, Goethe stated his foliar theory in his essay "Metamorphosis of Plants", showing that flower part are derived from leaves. The serial homology of limbs was described late in the 18th century. The French zoologist Etienne Geoffroy Saint-Hilaire showed in 1818 in his theorie d'analogue ("theory of homologues") that structures were shared between fishes, reptiles, birds, and mammals. When Geoffroy went further and sought homologies between Georges Cuvier's embranchements, such as vertebrates and molluscs, his claims triggered the 1830 Cuvier-Geoffroy debate. Geoffroy stated the principle of connections, namely that what is important is the relative position of different structures and their connections to each other. The Estonian embryologist Karl Ernst von Baer stated what are now called von Baer's laws in 1828, noting that related animals begin their development as similar embryos and then diverge: thus, animals in the same family are more closely related and diverge later than animals which are only in the same order and have fewer homologies. von Baer's theory recognises that each taxon (such as a family) has distinctive shared features, and that embryonic development parallels the taxonomic hierarchy: not the same as recapitulation theory. The term "homology" was first used in biology by the anatomist Richard Owen in 1843 when studying the similarities of vertebrate fins and limbs, defining it as the "same organ in different animals under every variety of form and function", and contrasting it with the matching term "analogy" which he used to describe different structures with the same function. Owen codified 3 main criteria for determining if features were homologous: position, development, and composition. In 1859, Charles Darwin explained homologous structures as meaning that the organisms concerned shared a body plan from a common ancestor, and that taxa were branches of a single tree of life.

Definition

The front wings of beetles have evolved into elytra, hard wing-cases.
 
Dragonflies have the ancient insect body plan with two pairs of wings.
 
The hind wings of Dipteran flies such as this cranefly have evolved divergently to form small club-like halteres.
 
The two pairs of wings of ancestral insects are represented by homologous structures in modern insects — elytra, wings, and halteres.
 
The word homology, coined in about 1656, is derived from the Greek ὁμόλογος homologos from ὁμός homos "same" and λόγος logos "relation".

Biological structures or sequences in different taxa are homologous if they are derived from a common ancestor. Homology thus implies divergent evolution. For example, many insects (such as dragonflies) possess two pairs of flying wings. In beetles, the first pair of wings has evolved into a pair of hard wing covers, while in Dipteran flies the second pair of wings has evolved into small halteres used for balance.

Similarly, the forelimbs of ancestral vertebrates have evolved into the front flippers of whales, the wings of birds, the running forelegs of dogs, deer, and horses, the short forelegs of frogs and lizards, and the grasping hands of primates including humans. The same major forearm bones (humerus, radius, and ulna) are found in fossils of lobe-finned fish such as Eusthenopteron.

Homology vs analogy

Sycamore maple fruits have wings analogous but not homologous to a bird's.

The opposite of homologous organs are analogous organs which do similar jobs in two taxa that were not present in their most recent common ancestor but rather evolved separately. For example, the wings of insects and birds evolved independently in widely separated groups, and converged functionally to support powered flight, so they are analogous. Similarly, the wings of a sycamore maple seed and the wings of a bird are analogous but not homologous, as they develop from quite different structures. A structure can be homologous at one level, but only analogous at another. Pterosaur, bird and bat wings are analogous as wings, but homologous as forelimbs because the organ served as a forearm (not a wing) in the last common ancestor of tetrapods, and evolved in different ways in the three groups. Thus, in the pterosaurs, the "wing" involves both the forelimb and the hindlimb. Analogy is called homoplasy in cladistics, and convergent or parallel evolution in evolutionary biology.

In cladistics

Specialised terms are used in taxonomic research. Primary homology is a researcher's initial hypothesis based on similar structure or anatomical connections, suggesting that a character state in two or more taxa share is shared due to common ancestry. Primary homology may be conceptually broken down further: we may consider all of the states of the same character as "homologous" parts of a single, unspecified, transformation series. This has been referred to as topographical correspondence. For example, in an aligned DNA sequence matrix, all of the A, G, C, T or implied gaps at a given nucleotide site are homologous in this way. Character state identity is the hypothesis that the particular condition in two or more taxa is "the same" as far as our character coding scheme is concerned. Thus, two Adenines at the same aligned nucleotide site are hypothesized to be homologous unless that hypothesis is subsequently contradicted by other evidence. Secondary homology is implied by parsimony analysis, where a character state that arises only once on a tree is taken to be homologous. As implied in this definition, many cladists consider secondary homology to be synonymous with synapomorphy, a shared derived character or trait state that distinguishes a clade from other organisms.

Shared ancestral character states, symplesiomorphies, represent either synapomorphies of a more inclusive group, or complementary states (often absences) that unite no natural group of organisms. For example, the presence of wings is a synapomorphy for pterygote insects, but a symplesiomorphy for holometabolous insects. Absence of wings in non-pterygote insects and other organisms is a complementary symplesiomorphy that unites no group (for example, absence of wings provides no evidence of common ancestry of silverfish, spiders and annelid worms). On the other hand, absence (or secondary loss) of wings is a synapomorphy for fleas. Patterns such as these lead many cladists to consider the concept of homology and the concept of synapomorphy to be equivalent. It should be noted that some cladists follow the pre-cladistic definition of homology of Haas and Simpson, and view both synapomorphies and symplesiomorphies as homologous character states.

In different taxa

pax6 alterations result in similar changes to eye morphology and function across a wide range of taxa.
 
Homologies provide the fundamental basis for all biological classification, although some may be highly counter-intuitive. For example, deep homologies like the pax6 genes that control the development of the eyes of vertebrates and arthropods were unexpected, as the organs are anatomically dissimilar and appeared to have evolved entirely independently.

In arthropods

The embryonic body segments (somites) of different arthropods taxa have diverged from a simple body plan with many similar appendages which are serially homologous, into a variety of body plans with fewer segments equipped with specialised appendages. The homologies between these have been discovered by comparing genes in evolutionary developmental biology.

Somite
(body
segment)
Trilobite
(Trilobitomorpha)
Acadoparadoxides sp 4343.JPG
Spider
(Chelicerata)
Araneus quadratus MHNT.jpg
Centipede
(Myriapoda)
Scolopendridae - Scolopendra cingulata.jpg
Insect
(Hexapoda)
Cerf-volant MHNT Dos.jpg
Shrimp
(Crustacea)
GarneleCrystalRed20.jpg
1 antennae chelicerae (jaws and fangs) antennae antennae 1st antennae
2 1st legs pedipalps - - 2nd antennae
3 2nd legs 1st legs mandibles mandibles mandibles (jaws)
4 3rd legs 2nd legs 1st maxillae 1st maxillae 1st maxillae
5 4th legs 3rd legs 2nd maxillae 2nd maxillae 2nd maxillae
6 5th legs 4th legs collum (no legs) 1st legs 1st legs
7 6th legs - 1st legs 2nd legs 2nd legs
8 7th legs - 2nd legs 3rd legs 3rd legs
9 8th legs - 3rd legs - 4th legs
10 9th legs - 4th legs - 5th legs

Among insects, the stinger of the female honey bee is a modified ovipositor, homologous with ovipositors in other insects such as the Orthoptera, Hemiptera, and those Hymenoptera without stingers.

In mammals

The three small bones in the middle ear of mammals including humans, the malleus, incus, and stapes, are today used to transmit sound from the eardrum to the inner ear. The malleus and incus develop in the embryo from structures that form jaw bones (the quadrate and the articular) in lizards, and in fossils of lizard-like ancestors of mammals. Both lines of evidence show that these bones are homologous, sharing a common ancestor.

Among the many homologies in mammal reproductive systems, ovaries and testicles are homologous.

Rudimentary organs such as the human tailbone, now much reduced from their functional state, are readily understood as signs of evolution, the explanation being that they were cut down by natural selection from functioning organs when their functions were no longer needed, but make no sense at all if species are considered to be fixed. The tailbone is homologous to the tails of other primates.

In plants

Leaves, stems, and roots

In many plants, defensive or storage structures are made by modifications of the development of primary leaves, stems, and roots. Leaves are variously modified from photosynthetic structures to form the insect-trapping pitchers of pitcher plants, the insect-trapping jaws of Venus flytrap, and the spines of cactuses, all homologous.

Primary organs Defensive structures Storage structures
Leaves Spines Swollen leaves (e.g. succulents)
Stems Thorns Tubers (e.g. potato), rhizomes (e.g. ginger), fleshy stems (e.g. cacti)
Roots - Root tubers (e.g. sweet potato), taproot (e.g. carrot)

Certain compound leaves of flowering plants are partially homologous both to leaves and shoots, because their development has evolved from a genetic mosaic of leaf and shoot development.

Flower parts

The ABC model of flower development. Class A genes affect sepals and petals, class B genes affect petals and stamens, class C genes affect stamens and carpels. In two specific whorls of the floral meristem, each class of organ identity genes is switched on.

The four types of flower parts, namely carpels, stamens, petals, and sepals, are homologous with and derived from leaves, as Goethe correctly noted in 1790. The development of these parts through a pattern of gene expression in the growing zones (meristems) is described by the ABC model of flower development. Each of the four types of flower parts is serially repeated in concentric whorls, controlled by a small number of genes acting in various combinations. Thus, A genes working alone result in sepal formation; A and B together produce petals; B and C together create stamens; C alone produces carpels. When none of the genes are active, leaves are formed. Two more groups of genes, D to form ovules and E for the floral whorls, complete the model. The genes are evidently ancient, as old as the flowering plants themselves.

Developmental biology

The Cretaceous snake Pachyrhachis problematicus had hind legs (circled).
 
Developmental biology can identify homologous structures that arose from the same tissue in embryogenesis. For example, adult snakes have no legs, but their early embryos have limb-buds for hind legs, which are soon lost as the embryos develop. The implication that the ancestors of snakes had hind legs is confirmed by fossil evidence: the Cretaceous snake Pachyrhachis problematicus had hind legs complete with hip bones (ilium, pubis, ischium), thigh bone (femur), leg bones (tibia, fibula) and foot bones (calcaneum, astragalus) as in tetrapods with legs today.

Sequence homology

A multiple sequence alignment of mammalian histone H1 proteins. Alignment positions conserved across all five species analysed are highlighted in grey. Positions with conservative, semi-conservative, and non-conservative amino acid replacements are indicated.
 
As with anatomical structures, sequence homology between protein or DNA sequences is defined in terms of shared ancestry. Two segments of DNA can have shared ancestry because of either a speciation event (orthologs) or a duplication event (paralogs). Homology among proteins or DNA is typically inferred from their sequence similarity. Significant similarity is strong evidence that two sequences are related by divergent evolution of a common ancestor. Alignments of multiple sequences are used to indicate which regions of each sequence are homologous.

Homologous sequences are orthologous if they are descended from the same ancestral sequence separated by a speciation event: when a species diverges into two separate species, the copies of a single gene in the two resulting species are said to be orthologous. The term "ortholog" was coined in 1970 by the molecular evolutionist Walter Fitch.

Homologous sequences are paralogous if they were created by a duplication event within the genome. For gene duplication events, if a gene in an organism is duplicated to occupy two different positions in the same genome, then the two copies are paralogous. Paralogous genes often belong to the same species. They can shape the structure of whole genomes and thus explain genome evolution to a large extent. Examples include the Homeobox (Hox) genes in animals. These genes not only underwent gene duplications within chromosomes but also whole genome duplications. As a result, Hox genes in most vertebrates are spread across multiple chromosomes: the HoxA–D clusters are the best studied.

Dominance hierarchy behaviour, as in these weeper capuchin monkeys, may be homologous across the primates.

In behaviour

It has been suggested that some behaviours might be homologous, based either on sharing across related taxa or on common origins of the behaviour in an individual's development, though this remains controversial. For example, D. W. Rajecki and Randall C. Flanery, using data on humans and on nonhuman primates, argue that patterns of behaviour in dominance hierarchies are homologous across the primates.

Astrobiology (updated)

From Wikipedia, the free encyclopedia

Nucleic acids may not be the only biomolecules in the Universe capable of coding for life processes.
 
Astrobiology, formerly known as exobiology, is an interdisciplinary scientific field concerned with the origins, early evolution, distribution, and future of life in the universe. Astrobiology considers the question of whether extraterrestrial life exists, and how humans can detect it if it does.

Astrobiology makes use of molecular biology, biophysics, biochemistry, chemistry, astronomy, physical cosmology, exoplanetology and geology to investigate the possibility of life on other worlds and help recognize biospheres that might be different from that on Earth. The origin and early evolution of life is an inseparable part of the discipline of astrobiology. Astrobiology concerns itself with interpretation of existing scientific data, and although speculation is entertained to give context, astrobiology concerns itself primarily with hypotheses that fit firmly into existing scientific theories

This interdisciplinary field encompasses research on the origin of planetary systems, origins of organic compounds in space, rock-water-carbon interactions, abiogenesis on Earth, planetary habitability, research on biosignatures for life detection, and studies on the potential for life to adapt to challenges on Earth and in outer space.

Biochemistry may have begun shortly after the Big Bang, 13.8 billion years ago, during a habitable epoch when the Universe was only 10–17 million years old. According to the panspermia hypothesis, microscopic life—distributed by meteoroids, asteroids and other small Solar System bodies—may exist throughout the universe. According to research published in August 2015, very large galaxies may be more favorable to the creation and development of habitable planets than such smaller galaxies as the Milky Way. Nonetheless, Earth is the only place in the universe humans know to harbor life. Estimates of habitable zones around other stars, sometimes referred to as "Goldilocks zones," along with the discovery of hundreds of extrasolar planets and new insights into extreme habitats here on Earth, suggest that there may be many more habitable places in the universe than considered possible until very recently.

Current studies on the planet Mars by the Curiosity and Opportunity rovers are searching for evidence of ancient life as well as plains related to ancient rivers or lakes that may have been habitable. The search for evidence of habitability, taphonomy (related to fossils), and organic molecules on the planet Mars is now a primary NASA and ESA objective. 

Even if extraterrestrial life is never discovered, the interdisciplinary nature of astrobiology, and the cosmic and evolutionary perspectives engendered by it, may still result in a range of benefits here on Earth.

Overview

The term was first proposed by the Russian (Soviet) astronomer Gavriil Tikhov in 1953. Astrobiology is etymologically derived from the Greek ἄστρον, astron, "constellation, star"; βίος, bios, "life"; and -λογία, -logia, study. The synonyms of astrobiology are diverse; however, the synonyms were structured in relation to the most important sciences implied in its development: astronomy and biology. A close synonym is exobiology from the Greek Έξω, "external"; Βίος, bios, "life"; and λογία, -logia, study. The term exobiology was coined by molecular biologist and Nobel Prize winner Joshua Lederberg. Exobiology is considered to have a narrow scope limited to search of life external to Earth, whereas subject area of astrobiology is wider and investigates the link between life and the universe, which includes the search for extraterrestrial life, but also includes the study of life on Earth, its origin, evolution and limits. 

It is not known whether life elsewhere in the universe would utilize cell structures like those found on Earth. (Chloroplasts within plant cells shown here.)
 
Another term used in the past is xenobiology, ("biology of the foreigners") a word used in 1954 by science fiction writer Robert Heinlein in his work The Star Beast. The term xenobiology is now used in a more specialized sense, to mean "biology based on foreign chemistry", whether of extraterrestrial or terrestrial (possibly synthetic) origin. Since alternate chemistry analogs to some life-processes have been created in the laboratory, xenobiology is now considered as an extant subject.

While it is an emerging and developing field, the question of whether life exists elsewhere in the universe is a verifiable hypothesis and thus a valid line of scientific inquiry. Though once considered outside the mainstream of scientific inquiry, astrobiology has become a formalized field of study. Planetary scientist David Grinspoon calls astrobiology a field of natural philosophy, grounding speculation on the unknown, in known scientific theory. NASA's interest in exobiology first began with the development of the U.S. Space Program. In 1959, NASA funded its first exobiology project, and in 1960, NASA founded an Exobiology Program, which is now one of four main elements of NASA's current Astrobiology Program. In 1971, NASA funded the search for extraterrestrial intelligence (SETI) to search radio frequencies of the electromagnetic spectrum for interstellar communications transmitted by extraterrestrial life outside the Solar System. NASA's Viking missions to Mars, launched in 1976, included three biology experiments designed to look for metabolism of present life on Mars

In June 2014, the John W. Kluge Center of the Library of Congress held a seminar focusing on astrobiology. Panel members (L to R) Robin Lovin, Derek Malone-France, and Steven J. Dick
 
Advancements in the fields of astrobiology, observational astronomy and discovery of large varieties of extremophiles with extraordinary capability to thrive in the harshest environments on Earth, have led to speculation that life may possibly be thriving on many of the extraterrestrial bodies in the universe. A particular focus of current astrobiology research is the search for life on Mars due to this planet's proximity to Earth and geological history. There is a growing body of evidence to suggest that Mars has previously had a considerable amount of water on its surface, water being considered an essential precursor to the development of carbon-based life.

Missions specifically designed to search for current life on Mars were the Viking program and Beagle 2 probes. The Viking results were inconclusive, and Beagle 2 failed minutes after landing. A future mission with a strong astrobiology role would have been the Jupiter Icy Moons Orbiter, designed to study the frozen moons of Jupiter—some of which may have liquid water—had it not been cancelled. In late 2008, the Phoenix lander probed the environment for past and present planetary habitability of microbial life on Mars, and researched the history of water there.

The European Space Agency's astrobiology roadmap from 2016, identified five main research topics, and specifies several key scientific objectives for each topic. The five research topics are: 1) Origin and evolution of planetary systems; 2) Origins of organic compounds in space; 3) Rock-water-carbon interactions, organic synthesis on Earth, and steps to life; 4) Life and habitability; 5) Biosignatures as facilitating life detection.

In November 2011, NASA launched the Mars Science Laboratory mission carrying the Curiosity rover, which landed on Mars at Gale Crater in August 2012. The Curiosity rover is currently probing the environment for past and present planetary habitability of microbial life on Mars. On 9 December 2013, NASA reported that, based on evidence from Curiosity studying Aeolis Palus, Gale Crater contained an ancient freshwater lake which could have been a hospitable environment for microbial life.

The European Space Agency is currently collaborating with the Russian Federal Space Agency (Roscosmos) and developing the ExoMars astrobiology rover, which is to be launched in July 2020. Meanwhile, NASA is developing the Mars 2020 astrobiology rover and sample cacher for a later return to Earth.

Methodology

Planetary habitability

When looking for life on other planets like Earth, some simplifying assumptions are useful to reduce the size of the task of the astrobiologist. One is the informed assumption that the vast majority of life forms in our galaxy are based on carbon chemistries, as are all life forms on Earth. Carbon is well known for the unusually wide variety of molecules that can be formed around it. Carbon is the fourth most abundant element in the universe and the energy required to make or break a bond is at just the appropriate level for building molecules which are not only stable, but also reactive. The fact that carbon atoms bond readily to other carbon atoms allows for the building of extremely long and complex molecules

The presence of liquid water is an assumed requirement, as it is a common molecule and provides an excellent environment for the formation of complicated carbon-based molecules that could eventually lead to the emergence of life. Some researchers posit environments of water-ammonia mixtures as possible solvents for hypothetical types of biochemistry.

A third assumption is to focus on planets orbiting Sun-like stars for increased probabilities of planetary habitability. Very large stars have relatively short lifetimes, meaning that life might not have time to emerge on planets orbiting them. Very small stars provide so little heat and warmth that only planets in very close orbits around them would not be frozen solid, and in such close orbits these planets would be tidally "locked" to the star. The long lifetimes of red dwarfs could allow the development of habitable environments on planets with thick atmospheres. This is significant, as red dwarfs are extremely common.

Since Earth is the only planet known to harbor life, there is no evident way to know if any of these simplifying assumptions are correct.

Communication attempts

The illustration on the Pioneer plaque
 
Research on communication with extraterrestrial intelligence (CETI) focuses on composing and deciphering messages that could theoretically be understood by another technological civilization. Communication attempts by humans have included broadcasting mathematical languages, pictorial systems such as the Arecibo message and computational approaches to detecting and deciphering 'natural' language communication. The SETI program, for example, uses both radio telescopes and optical telescopes to search for deliberate signals from an extraterrestrial intelligence

While some high-profile scientists, such as Carl Sagan, have advocated the transmission of messages, scientist Stephen Hawking warned against it, suggesting that aliens might simply raid Earth for its resources and then move on.

Elements of astrobiology

Astronomy

Artist's impression of the extrasolar planet OGLE-2005-BLG-390Lb orbiting its star 20,000 light-years from Earth; this planet was discovered with gravitational microlensing.
 
The NASA Kepler mission, launched in March 2009, searches for extrasolar planets.
 
Most astronomy-related astrobiology research falls into the category of extrasolar planet (exoplanet) detection, the hypothesis being that if life arose on Earth, then it could also arise on other planets with similar characteristics. To that end, a number of instruments designed to detect Earth-sized exoplanets have been considered, most notably NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin programs, both of which have been cancelled. NASA launched the Kepler mission in March 2009, and the French Space Agency launched the COROT space mission in 2006. There are also several less ambitious ground-based efforts underway. 

The goal of these missions is not only to detect Earth-sized planets, but also to directly detect light from the planet so that it may be studied spectroscopically. By examining planetary spectra, it would be possible to determine the basic composition of an extrasolar planet's atmosphere and/or surface. Given this knowledge, it may be possible to assess the likelihood of life being found on that planet. A NASA research group, the Virtual Planet Laboratory, is using computer modeling to generate a wide variety of virtual planets to see what they would look like if viewed by TPF or Darwin. It is hoped that once these missions come online, their spectra can be cross-checked with these virtual planetary spectra for features that might indicate the presence of life. 

An estimate for the number of planets with intelligent communicative extraterrestrial life can be gleaned from the Drake equation, essentially an equation expressing the probability of intelligent life as the product of factors such as the fraction of planets that might be habitable and the fraction of planets on which life might arise:
where:
  • N = The number of communicative civilizations
  • R* = The rate of formation of suitable stars (stars such as our Sun)
  • fp = The fraction of those stars with planets (current evidence indicates that planetary systems may be common for stars like the Sun)
  • ne = The number of Earth-sized worlds per planetary system
  • fl = The fraction of those Earth-sized planets where life actually develops
  • fi = The fraction of life sites where intelligence develops
  • fc = The fraction of communicative planets (those on which electromagnetic communications technology develops)
  • L = The "lifetime" of communicating civilizations
However, whilst the rationale behind the equation is sound, it is unlikely that the equation will be constrained to reasonable limits of error any time soon. The problem with the formula is that it is not usable to generate or support hypotheses because it contains factors that can never be verified. The first term, R*, number of stars, is generally constrained within a few orders of magnitude. The second and third terms, fp, stars with planets and fe, planets with habitable conditions, are being evaluated for the star's neighborhood. Drake originally formulated the equation merely as an agenda for discussion at the Green Bank conference, but some applications of the formula had been taken literally and related to simplistic or pseudoscientific arguments. Another associated topic is the Fermi paradox, which suggests that if intelligent life is common in the universe, then there should be obvious signs of it. 

Another active research area in astrobiology is planetary system formation. It has been suggested that the peculiarities of the Solar System (for example, the presence of Jupiter as a protective shield) may have greatly increased the probability of intelligent life arising on our planet.

Biology

Hydrothermal vents are able to support extremophile bacteria on Earth and may also support life in other parts of the cosmos.
 
Biology cannot state that a process or phenomenon, by being mathematically possible, has to exist forcibly in an extraterrestrial body. Biologists specify what is speculative and what is not. The discovery of extremophiles, organisms able to survive in extreme environments, became a core research element for astrobiologists, as they are important to understand four areas in the limits of life in planetary context: the potential for panspermia, forward contamination due to human exploration ventures, planetary colonization by humans, and the exploration of extinct and extant extraterrestrial life.

Until the 1970s, life was thought to be entirely dependent on energy from the Sun. Plants on Earth's surface capture energy from sunlight to photosynthesize sugars from carbon dioxide and water, releasing oxygen in the process that is then consumed by oxygen-respiring organisms, passing their energy up the food chain. Even life in the ocean depths, where sunlight cannot reach, was thought to obtain its nourishment either from consuming organic detritus rained down from the surface waters or from eating animals that did. The world's ability to support life was thought to depend on its access to sunlight. However, in 1977, during an exploratory dive to the Galapagos Rift in the deep-sea exploration submersible Alvin, scientists discovered colonies of giant tube worms, clams, crustaceans, mussels, and other assorted creatures clustered around undersea volcanic features known as black smokers. These creatures thrive despite having no access to sunlight, and it was soon discovered that they comprise an entirely independent ecosystem. Although most of these multicellular lifeforms need dissolved oxygen (produced by oxygenic photosynthesis) for their aerobic cellular respiration and thus are not completely independent from sunlight by themselves, the basis for their food chain is a form of bacterium that derives its energy from oxidization of reactive chemicals, such as hydrogen or hydrogen sulfide, that bubble up from the Earth's interior. Other lifeforms entirely decoupled from the energy from sunlight are green sulphur bacteria which are capturing geothermal light for anoxygenic photosynthesis or bacteria running chemolithoautotrophy based on the radioactive decay of uranium. This chemosynthesis revolutionized the study of biology and astrobiology by revealing that life need not be sun-dependent; it only requires water and an energy gradient in order to exist.

Biologists have found extremophiles that thrive in ice, boiling water, acid, alkali, the water core of nuclear reactors, salt crystals, toxic waste and in a range of other extreme habitats that were previously thought to be inhospitable for life. This opened up a new avenue in astrobiology by massively expanding the number of possible extraterrestrial habitats. Characterization of these organisms, their environments and their evolutionary pathways, is considered a crucial component to understanding how life might evolve elsewhere in the universe. For example, some organisms able to withstand exposure to the vacuum and radiation of outer space include the lichen fungi Rhizocarpon geographicum and Xanthoria elegans, the bacterium Bacillus safensis, Deinococcus radiodurans, Bacillus subtilis, yeast Saccharomyces cerevisiae, seeds from Arabidopsis thaliana ('mouse-ear cress'), as well as the invertebrate animal Tardigrade. While tardigrades are not considered true extremophiles, they are considered extremotolerant microorganisms that have contributed to the field of astrobiology. Their extreme radiation tolerance and presence of DNA protection proteins may provide answers as to whether life can survive away from the protection of the Earth's atmosphere.

Jupiter's moon, Europa, and Saturn's moon, Enceladus, are now considered the most likely locations for extant extraterrestrial life in the Solar System due to their subsurface water oceans where radiogenic and tidal heating enables liquid water to exist.

The origin of life, known as abiogenesis, distinct from the evolution of life, is another ongoing field of research. Oparin and Haldane postulated that the conditions on the early Earth were conducive to the formation of organic compounds from inorganic elements and thus to the formation of many of the chemicals common to all forms of life we see today. The study of this process, known as prebiotic chemistry, has made some progress, but it is still unclear whether or not life could have formed in such a manner on Earth. The alternative hypothesis of panspermia is that the first elements of life may have formed on another planet with even more favorable conditions (or even in interstellar space, asteroids, etc.) and then have been carried over to Earth—the panspermia hypothesis.

The cosmic dust permeating the universe contains complex organic compounds ("amorphous organic solids with a mixed aromatic-aliphatic structure") that could be created naturally, and rapidly, by stars. Further, a scientist suggested that these compounds may have been related to the development of life on Earth and said that, "If this is the case, life on Earth may have had an easier time getting started as these organics can serve as basic ingredients for life."

More than 20% of the carbon in the universe may be associated with polycyclic aromatic hydrocarbons (PAHs), possible starting materials for the formation of life. PAHs seem to have been formed shortly after the Big Bang, are widespread throughout the universe, and are associated with new stars and exoplanets. PAHs are subjected to interstellar medium conditions and are transformed through hydrogenation, oxygenation and hydroxylation, to more complex organics – "a step along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively".

Astroecology

Astroecology concerns the interactions of life with space environments and resources, in planets, asteroids and comets. On a larger scale, astroecology concerns resources for life about stars in the galaxy through the cosmological future. Astroecology attempts to quantify future life in space, addressing this area of astrobiology. 

Experimental astroecology investigates resources in planetary soils, using actual space materials in meteorites. The results suggest that Martian and carbonaceous chondrite materials can support bacteria, algae and plant (asparagus, potato) cultures, with high soil fertilities. The results support that life could have survived in early aqueous asteroids and on similar materials imported to Earth by dust, comets and meteorites, and that such asteroid materials can be used as soil for future space colonies.

On the largest scale, cosmoecology concerns life in the universe over cosmological times. The main sources of energy may be red giant stars and white and red dwarf stars, sustaining life for 1020 years. Astroecologists suggest that their mathematical models may quantify the potential amounts of future life in space, allowing a comparable expansion in biodiversity, potentially leading to diverse intelligent life forms.

Astrogeology

Astrogeology is a planetary science discipline concerned with the geology of celestial bodies such as the planets and their moons, asteroids, comets, and meteorites. The information gathered by this discipline allows the measure of a planet's or a natural satellite's potential to develop and sustain life, or planetary habitability.

An additional discipline of astrogeology is geochemistry, which involves study of the chemical composition of the Earth and other planets, chemical processes and reactions that govern the composition of rocks and soils, the cycles of matter and energy and their interaction with the hydrosphere and the atmosphere of the planet. Specializations include cosmochemistry, biochemistry and organic geochemistry

The fossil record provides the oldest known evidence for life on Earth. By examining the fossil evidence, paleontologists are able to better understand the types of organisms that arose on the early Earth. Some regions on Earth, such as the Pilbara in Western Australia and the McMurdo Dry Valleys of Antarctica, are also considered to be geological analogs to regions of Mars, and as such, might be able to provide clues on how to search for past life on Mars

The various organic functional groups, composed of hydrogen, oxygen, nitrogen, phosphorus, sulfur, and a host of metals, such as iron, magnesium, and zinc, provide the enormous diversity of chemical reactions necessarily catalyzed by a living organism. Silicon, in contrast, interacts with only a few other atoms, and the large silicon molecules are monotonous compared with the combinatorial universe of organic macromolecules. Indeed, it seems likely that the basic building blocks of life anywhere will be similar those on Earth, in the generality if not in the detail. Although terrestrial life and life that might arise independently of Earth are expected to use many similar, if not identical, building blocks, they also are expected to have some biochemical qualities that are unique. If life has had a comparable impact elsewhere in the Solar System, the relative abundances of chemicals key for its survival – whatever they may be – could betray its presence. Whatever extraterrestrial life may be, its tendency to chemically alter its environment might just give it away.

Life in the Solar System

Europa, due to the ocean that exists under its icy surface, might host some form of microbial life.
 
People have long speculated about the possibility of life in settings other than Earth, however, speculation on the nature of life elsewhere often has paid little heed to constraints imposed by the nature of biochemistry. The likelihood that life throughout the universe is probably carbon-based is suggested by the fact that carbon is one of the most abundant of the higher elements. Only two of the natural atoms, carbon and silicon, are known to serve as the backbones of molecules sufficiently large to carry biological information. As the structural basis for life, one of carbon's important features is that unlike silicon, it can readily engage in the formation of chemical bonds with many other atoms, thereby allowing for the chemical versatility required to conduct the reactions of biological metabolism and propagation. 

Thought on where in the Solar System life might occur, was limited historically by the understanding that life relies ultimately on light and warmth from the Sun and, therefore, is restricted to the surfaces of planets. The four most likely candidates for life in the Solar System are the planet Mars, the Jovian moon Europa, and Saturn's moons Titan, and Enceladus.

Mars, Enceladus and Europa are considered likely candidates in the search for life primarily because they may have underground liquid water, a molecule essential for life as we know it for its use as a solvent in cells. Water on Mars is found frozen in its polar ice caps, and newly carved gullies recently observed on Mars suggest that liquid water may exist, at least transiently, on the planet's surface. At the Martian low temperatures and low pressure, liquid water is likely to be highly saline. As for Europa, liquid water likely exists beneath the moon's icy outer crust. This water may be warmed to a liquid state by volcanic vents on the ocean floor, but the primary source of heat is probably tidal heating. On 11 December 2013, NASA reported the detection of "clay-like minerals" (specifically, phyllosilicates), often associated with organic materials, on the icy crust of Europa. The presence of the minerals may have been the result of a collision with an asteroid or comet according to the scientists.

Another planetary body that could potentially sustain extraterrestrial life is Saturn's largest moon, Titan. Titan has been described as having conditions similar to those of early Earth. On its surface, scientists have discovered the first liquid lakes outside Earth, but these lakes seem to be composed of ethane and/or methane, not water. Some scientists think it possible that these liquid hydrocarbons might take the place of water in living cells different from those on Earth. After Cassini data was studied, it was reported on March 2008 that Titan may also have an underground ocean composed of liquid water and ammonia. Additionally, Saturn's moon Enceladus may have an ocean below its icy surface and, according to NASA scientists in May 2011, "is emerging as the most habitable spot beyond Earth in the Solar System for life as we know it". On 27 June 2018, astronomers reported the detection of complex macromolecular organics on Enceladus.

Measuring the ratio of hydrogen and methane levels on Mars may help determine the likelihood of life on Mars. According to the scientists, "...low H2/CH4 ratios (less than approximately 40) indicate that life is likely present and active." Other scientists have recently reported methods of detecting hydrogen and methane in extraterrestrial atmospheres.

Complex organic compounds of life, including uracil, cytosine and thymine, have been formed in a laboratory under outer space conditions, using starting chemicals such as pyrimidine, found in meteorites. Pyrimidine, like polycyclic aromatic hydrocarbons (PAHs), is the most carbon-rich chemical found in the universe.

Rare Earth hypothesis

The Rare Earth hypothesis postulates that multicellular life forms found on Earth may actually be more of a rarity than scientists assume. It provides a possible answer to the Fermi paradox which suggests, "If extraterrestrial aliens are common, why aren't they obvious?" It is apparently in opposition to the principle of mediocrity, assumed by famed astronomers Frank Drake, Carl Sagan, and others. The Principle of Mediocrity suggests that life on Earth is not exceptional, and it is more than likely to be found on innumerable other worlds.

Research

The systematic search for possible life outside Earth is a valid multidisciplinary scientific endeavor. However, hypotheses and predictions as to its existence and origin vary widely, and at the present, the development of hypotheses firmly grounded on science may be considered astrobiology's most concrete practical application. It has been proposed that viruses are likely to be encountered on other life-bearing planets and may be present even if there are no biological cells.

Research outcomes

What biosignatures does life produce?
 
As of 2019, no evidence of extraterrestrial life has been identified. Examination of the Allan Hills 84001 meteorite, which was recovered in Antarctica in 1984 and originated from Mars, is thought by David McKay, as well as few other scientists, to contain microfossils of extraterrestrial origin; this interpretation is controversial.

Asteroid(s) may have transported life to Earth.
 
Yamato 000593, the second largest meteorite from Mars, was found on Earth in 2000. At a microscopic level, spheres are found in the meteorite that are rich in carbon compared to surrounding areas that lack such spheres. The carbon-rich spheres may have been formed by biotic activity according to some NASA scientists.

On 5 March 2011, Richard B. Hoover, a scientist with the Marshall Space Flight Center, speculated on the finding of alleged microfossils similar to cyanobacteria in CI1 carbonaceous meteorites in the fringe Journal of Cosmology, a story widely reported on by mainstream media. However, NASA formally distanced itself from Hoover's claim. According to American astrophysicist Neil deGrasse Tyson: "At the moment, life on Earth is the only known life in the universe, but there are compelling arguments to suggest we are not alone."
Extreme environments on Earth
On 17 March 2013, researchers reported that microbial life forms thrive in the Mariana Trench, the deepest spot on the Earth. Other researchers reported that microbes thrive inside rocks up to 1,900 feet (580 m) below the sea floor under 8,500 feet (2,600 m) of ocean off the coast of the northwestern United States. According to one of the researchers, "You can find microbes everywhere—they're extremely adaptable to conditions, and survive wherever they are." These finds expand the potential habitability of certain niches of other planets.
Methane
In 2004, the spectral signature of methane (CH
4
) was detected in the Martian atmosphere by both Earth-based telescopes as well as by the Mars Express orbiter. Because of solar radiation and cosmic radiation, methane is predicted to disappear from the Martian atmosphere within several years, so the gas must be actively replenished in order to maintain the present concentration. On June 7, 2018, NASA announced a cyclical seasonal variation in atmospheric methane, which may be produced by geological or biological sources. The European ExoMars Trace Gas Orbiter is currently measuring and mapping the atmospheric methane.
Planetary systems
It is possible that some exoplanets may have moons with solid surfaces or liquid oceans that are hospitable. Most of the planets so far discovered outside the Solar System are hot gas giants thought to be inhospitable to life, so it is not yet known whether the Solar System, with a warm, rocky, metal-rich inner planet such as Earth, is of an aberrant composition. Improved detection methods and increased observation time will undoubtedly discover more planetary systems, and possibly some more like ours. For example, NASA's Kepler Mission seeks to discover Earth-sized planets around other stars by measuring minute changes in the star's light curve as the planet passes between the star and the spacecraft. Progress in infrared astronomy and submillimeter astronomy has revealed the constituents of other star systems.
Planetary habitability
Efforts to answer questions such as the abundance of potentially habitable planets in habitable zones and chemical precursors have had much success. Numerous extrasolar planets have been detected using the wobble method and transit method, showing that planets around other stars are more numerous than previously postulated. The first Earth-sized extrasolar planet to be discovered within its star's habitable zone is Gliese 581 c.

Extremophiles

Studying extremophiles is useful for understanding the possible origin of life on Earth as well as for finding the most likely candidates for future colonization of other planets. The aim is to detect those organisms that are able to survive space travel conditions and to maintain the proliferating capacity. The best candidates are extremophiles, since they have adapted to survive in different kind of extreme conditions in earth. During the course of evolution, extremophiles have developed different strategies to survive the different stress conditions of different extreme environments. These stress responses could also allow them to survive in harsh space conditions.

Thermophilic species G. thermantarcticus is a good example of a microorganism that could survive space travel. It is a bacterium of the spore-forming genus Bacillus. The formation of spores allows for it to survive extreme environments while still being able to restart cellular growth. It is capable of effectively protecting its DNA, membrane and proteins integrity in different extreme conditions (desiccation, temperatures up to -196 °C, UVC and C-ray radiation...). It is also able to repair the damage produced by space environment.

By understanding how extremophilic organisms can survive the Earth's extreme environments, we can also understand how microorganisms could have survived space travel and how the panspermia hypothesis could be possible.

Missions

Research into the environmental limits of life and the workings of extreme ecosystems is ongoing, enabling researchers to better predict what planetary environments might be most likely to harbor life. Missions such as the Phoenix lander, Mars Science Laboratory, ExoMars, Mars 2020 rover to Mars, and the Cassini probe to Saturn's moons aim to further explore the possibilities of life on other planets in the Solar System.
Viking program
Carl Sagan posing with a model of the Viking Lander.
 
The two Viking landers each carried four types of biological experiments to the surface of Mars in the late 1970s. These were the only Mars landers to carry out experiments looking specifically for metabolism by current microbial life on Mars. The landers used a robotic arm to collect soil samples into sealed test containers on the craft. The two landers were identical, so the same tests were carried out at two places on Mars' surface; Viking 1 near the equator and Viking 2 further north. The result was inconclusive, and is still disputed by some scientists.
Beagle 2
Replica of the 33.2 kg Beagle-2 lander
 
Mars Science Laboratory rover concept artwork
 
Beagle 2 was an unsuccessful British Mars lander that formed part of the European Space Agency's 2003 Mars Express mission. Its primary purpose was to search for signs of life on Mars, past or present. Although it landed safely, it was unable to correctly deploy its solar panels and telecom antenna.
EXPOSE
EXPOSE is a multi-user facility mounted in 2008 outside the International Space Station dedicated to astrobiology. EXPOSE was developed by the European Space Agency (ESA) for long-term spaceflights that allow exposure of organic chemicals and biological samples to outer space in low Earth orbit.
Mars Science Laboratory
The Mars Science Laboratory (MSL) mission landed the Curiosity rover that is currently in operation on Mars. It was launched 26 November 2011, and landed at Gale Crater on 6 August 2012. Mission objectives are to help assess Mars' habitability and in doing so, determine whether Mars is or has ever been able to support life, collect data for a future human mission, study Martian geology, its climate, and further assess the role that water, an essential ingredient for life as we know it, played in forming minerals on Mars.
Tanpopo
The Tanpopo mission is an orbital astrobiology experiment investigating the potential interplanetary transfer of life, organic compounds, and possible terrestrial particles in the low Earth orbit. The purpose is to assess the panspermia hypothesis and the possibility of natural interplanetary transport of microbial life as well as prebiotic organic compounds. Early mission results show evidence that some clumps of microorganism can survive for at least one year in space. This may support the idea that clumps greater than 0.5 millimeters of microorganisms could be one way for life to spread from planet to planet.
ExoMars rover
ExoMars rover model
 
ExoMars rover is a robotic mission to Mars to search for possible biosignatures of Martian life, past or present. This astrobiological mission is currently under development by the European Space Agency (ESA) in partnership with the Russian Federal Space Agency (Roscosmos); it is planned for a 2018 launch.
Mars 2020
Mars 2020 rover mission is under development by NASA for a launch in 2020. It will investigate environments on Mars relevant to astrobiology, investigate its surface geological processes and history, including the assessment of its past habitability and potential for preservation of biosignatures and biomolecules within accessible geological materials. The Science Definition Team is proposing the rover collect and package at least 31 samples of rock cores and soil for a later mission to bring back for more definitive analysis in laboratories on Earth. The rover could make measurements and technology demonstrations to help designers of a human expedition understand any hazards posed by Martian dust and demonstrate how to collect carbon dioxide (CO2), which could be a resource for making molecular oxygen (O2) and rocket fuel.
Europa Clipper
Europa Clipper is a mission planned by NASA for a 2025 launch that will conduct detailed reconnaissance of Jupiter's moon Europa and will investigate whether its internal ocean could harbor conditions suitable for life. It will also aid in the selection of future landing sites.

Proposed concepts

Icebreaker Life
Icebreaker Life is a lander mission that proposed for NASA's Discovery Program for the 2021 launch opportunity, but it was not selected for development. It would have had a stationary lander that would be a near copy of the successful 2008 Phoenix and it would have carried an upgraded astrobiology scientific payload, including a 1-meter-long core drill to sample ice-cemented ground in the northern plains to conduct a search for organic molecules and evidence of current or past life on Mars. One of the key goals of the Icebreaker Life mission is to test the hypothesis that the ice-rich ground in the polar regions has significant concentrations of organics due to protection by the ice from oxidants and radiation.
Journey to Enceladus and Titan
Journey to Enceladus and Titan (JET) is an astrobiology mission concept to assess the habitability potential of Saturn's moons Enceladus and Titan by means of an orbiter.
Enceladus Life Finder
Enceladus Life Finder (ELF) is a proposed astrobiology mission concept for a space probe intended to assess the habitability of the internal aquatic ocean of Enceladus, Saturn's sixth-largest moon.
Life Investigation For Enceladus
Life Investigation For Enceladus (LIFE) is a proposed astrobiology sample-return mission concept. The spacecraft would enter into Saturn orbit and enable multiple flybys through Enceladus' icy plumes to collect icy plume particles and volatiles and return them to Earth on a capsule. The spacecraft may sample Enceladus' plumes, the E ring of Saturn, and the upper atmosphere of Titan.
Oceanus
Oceanus is an orbiter proposed in 2017 for the New Frontiers mission #4. It would travel to the moon of Saturn, Titan, to assess its habitability. Oceanus' objectives are to reveal Titan's organic chemistry, geology, gravity, topography, collect 3D reconnaissance data, catalog the organics and determine where they may interact with liquid water.
Explorer of Enceladus and Titan
Explorer of Enceladus and Titan (E2T) is an orbiter mission concept that would investigate the evolution and habitability of the Saturnian satellites Enceladus and Titan. The mission concept was proposed in 2017 by the European Space Agency.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...