Search This Blog

Sunday, March 21, 2021

Methane

From Wikipedia, the free encyclopedia

Methane
Stereo, skeletal formula of methane with some measurements added
Ball and stick model of methane
Spacefill model of methane
Names
Preferred IUPAC name
Methane
Systematic IUPAC name
Carbane (never recommended)
Other names
  • Marsh gas
  • Natural gas
  • Carbon tetrahydride
  • Hydrogen carbide
Identifiers
3D model (JSmol)
3DMet
1718732
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.739 Edit this at Wikidata
EC Number
  • 200-812-7
59
KEGG
MeSH Methane
RTECS number
  • PA1490000
UNII
UN number 1971


Properties
CH4
Molar mass 16.043 g·mol−1
Appearance Colorless gas
Odor Odorless
Density
  • 0.657 kg·m−3 (gas, 25 °C, 1 atm)
  • 0.717 kg·m−3 (gas, 0 °C, 1 atm)
  • 422.8 g·L−1 (liquid, −162 °C)
Melting point −182.456 °C (−296.421 °F; 90.694 K)
Boiling point −161.5 °C (−258.7 °F; 111.6 K)
Critical point (T, P) 190.56 K, 4.5992 MPa
22.7 mg·L−1
Solubility Soluble in ethanol, diethyl ether, benzene, toluene, methanol, acetone and insoluble in water
log P 1.09
14 nmol·Pa−1·kg−1
Conjugate acid Methanium
Conjugate base Methyl anion
−17.4×10−6 cm3·mol−1
Structure
Td
Tetrahedron
0 D
Thermochemistry
35.7 J·(K·mol)−1
186.3 J·(K·mol)−1
−74.6 kJ·mol−1
−50.5 kJ·mol−1
−891 kJ·mol−1
Hazards
Safety data sheet See: data page
GHS pictograms GHS02: Flammable
GHS Signal word Danger
H220
P210
NFPA 704 (fire diamond)
Flash point −188 °C (−306.4 °F; 85.1 K)
537 °C (999 °F; 810 K)
Explosive limits 4.4–17%
Related compounds
Related alkanes
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒ verify (what is check☒ ?)
Infobox references


Methane (US: /ˈmɛθn/ or UK: /ˈmθn/) is a chemical compound with the chemical formula CH4 (one atom of carbon and four atoms of hydrogen). It is a group-14 hydride and the simplest alkane, and is the main constituent of natural gas. The relative abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it poses technical challenges due to its gaseous state under normal conditions for temperature and pressure.

Naturally occurring methane is found both below ground and under the seafloor, and is formed by both geological and biological processes. The largest reservoir of methane is under the seafloor in the form of methane clathrates. When methane reaches the surface and the atmosphere, it is known as atmospheric methane. The Earth's atmospheric methane concentration has increased by about 150% since 1750, and it accounts for 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases. Methane has also been detected on other planets, including Mars, which has implications for astrobiology research.

Properties and bonding

Methane is a tetrahedral molecule with four equivalent C–H bonds. Its electronic structure is described by four bonding molecular orbitals (MOs) resulting from the overlap of the valence orbitals on C and H. The lowest-energy MO is the result of the overlap of the 2s orbital on carbon with the in-phase combination of the 1s orbitals on the four hydrogen atoms. Above this energy level is a triply degenerate set of MOs that involve overlap of the 2p orbitals on carbon with various linear combinations of the 1s orbitals on hydrogen. The resulting "three-over-one" bonding scheme is consistent with photoelectron spectroscopic measurements.

At room temperature and standard pressure, methane is a colorless, odorless gas. The familiar smell of natural gas as used in homes is achieved by the addition of an odorant, usually blends containing tert-butylthiol, as a safety measure. Methane has a boiling point of −161.5 °C at a pressure of one atmosphere. As a gas, it is flammable over a range of concentrations (5.4–17%) in air at standard pressure.

Solid methane exists in several modifications. Presently nine are known. Cooling methane at normal pressure results in the formation of methane I. This substance crystallizes in the cubic system (space group Fm3m). The positions of the hydrogen atoms are not fixed in methane I, i.e. methane molecules may rotate freely. Therefore, it is a plastic crystal.

Chemical reactions

The primary chemical reactions of methane are combustion, steam reforming to syngas, and halogenation. In general, methane reactions are difficult to control.

Selective oxidation

Partial oxidation of methane to methanol is challenging because the reaction typically progresses all the way to carbon dioxide and water even with an insufficient supply of oxygen. The enzyme methane monooxygenase produces methanol from methane, but cannot be used for industrial-scale reactions. Some homogeneously catalyzed systems and heterogeneous systems have been developed, but all have significant drawbacks. These generally operate by generating protected products which are shielded from overoxidation. Examples include the Catalytica system, copper zeolites, and iron zeolites stabilizing the alpha-oxygen active site.

One group of bacteria drive methane oxidation with nitrite as the oxidant in the absence of oxygen, giving rise to the so-called anaerobic oxidation of methane.

Acid–base reactions

Like other hydrocarbons, methane is a very weak acid. Its pKa in DMSO is estimated to be 56. It cannot be deprotonated in solution, but the conjugate base is known in forms such as methyllithium.

A variety of positive ions derived from methane have been observed, mostly as unstable species in low-pressure gas mixtures. These include methenium or methyl cation CH+
3
, methane cation CH+
4
, and methanium or protonated methane CH+
5
. Some of these have been detected in outer space. Methanium can also be produced as diluted solutions from methane with superacids. Cations with higher charge, such as CH2+
6
and CH3+
7
, have been studied theoretically and conjectured to be stable.

Despite the strength of its C–H bonds, there is intense interest in catalysts that facilitate C–H bond activation in methane (and other lower numbered alkanes).

Combustion

A young woman holding a flame in her hands
Methane bubbles can be burned on a wet hand without injury.

Methane's heat of combustion is 55.5 MJ/kg. Combustion of methane is a multiple step reaction summarized as follows:

CH4 + 2 O2 → CO2 + 2 H2O (ΔH = −891 kJ/mol, at standard conditions)

Peters four-step chemistry is a systematically reduced four-step chemistry that explains the burning of methane.

Methane radical reactions

Given appropriate conditions, methane reacts with halogen radicals as follows:

X• + CH4 → HX + CH3
CH3• + X2 → CH3X + X•

where X is a halogen: fluorine (F), chlorine (Cl), bromine (Br), or iodine (I). This mechanism for this process is called free radical halogenation. It is initiated when UV light or some other radical initiator (like peroxides) produces a halogen atom. A two-step chain reaction ensues in which the halogen atom abstracts a hydrogen atom from a methane molecule, resulting in the formation of a hydrogen halide molecule and a methyl radical (CH3•). The methyl radical then reacts with a molecule of the halogen to form a molecule of the halomethane, with a new halogen atom as byproduct. Similar reactions can occur on the halogenated product, leading to replacement of additional hydrogen atoms by halogen atoms with dihalomethane, trihalomethane, and ultimately, tetrahalomethane structures, depending upon reaction conditions and the halogen-to-methane ratio.

Uses

Methane is used in industrial chemical processes and may be transported as a refrigerated liquid (liquefied natural gas, or LNG). While leaks from a refrigerated liquid container are initially heavier than air due to the increased density of the cold gas, the gas at ambient temperature is lighter than air. Gas pipelines distribute large amounts of natural gas, of which methane is the principal component.

Fuel

Methane is used as a fuel for ovens, homes, water heaters, kilns, automobiles, turbines, and other things. Activated carbon is used to store methane. Refined liquid methane is used as a rocket fuel, when combined with liquid oxygen, as in the BE-4 and Raptor engines.

As the major constituent of natural gas, methane is important for electricity generation by burning it as a fuel in a gas turbine or steam generator. Compared to other hydrocarbon fuels, methane produces less carbon dioxide for each unit of heat released. At about 891 kJ/mol, methane's heat of combustion is lower than that of any other hydrocarbon. However, it produces more heat per mass (55.7 kJ/g) than any other organic molecule due to its relatively large content of hydrogen, which accounts for 55% of the heat of combustion but contributes only 25% of the molecular mass of methane. In many cities, methane is piped into homes for domestic heating and cooking. In this context it is usually known as natural gas, which is considered to have an energy content of 39 megajoules per cubic meter, or 1,000 BTU per standard cubic foot. Liquefied natural gas (LNG) is predominantly methane (CH4) converted into liquid form for ease of storage or transport.

As a rocket fuel, methane offers the advantage over kerosene of producing small exhaust molecules. This deposits less soot on the internal parts of rocket motors, reducing the difficulty of booster re-use. The lower molecular weight of the exhaust also increases the fraction of the heat energy which is in the form of kinetic energy available for propulsion, increasing the specific impulse of the rocket. Liquid methane also has a temperature range (91–112 K) nearly compatible with liquid oxygen (54–90 K).

Chemical feedstock

Natural gas, which is mostly composed of methane, is used to produce hydrogen gas on an industrial scale. Steam methane reforming (SMR), or simply known as steam reforming, is the most common method of producing commercial bulk hydrogen gas. More than 50 million metric tons are produced annually worldwide (2013), principally from the SMR of natural gas. Much of this hydrogen is used in petroleum refineries, in the production of chemicals and in food processing. Very large quantities of hydrogen are used in the industrial synthesis of ammonia.

At high temperatures (700–1100 °C) and in the presence of a metal-based catalyst (nickel), steam reacts with methane to yield a mixture of CO and H2, known as "water gas" or "syngas":

CH4 + H2OCO + 3 H2

This reaction is strongly endothermic (consumes heat, ΔHr = 206 kJ/mol). Additional hydrogen is obtained by the reaction of CO with water via the water-gas shift reaction:

CO + H2O ⇌ CO2 + H2

This reaction is mildly exothermic (produces heat, ΔHr = −41 kJ/mol).

Methane is also subjected to free-radical chlorination in the production of chloromethanes, although methanol is a more typical precursor.

Generation

Geological routes

The two main routes for geological methane generation are (i) organic (thermally generated, or thermogenic) and (ii) inorganic (abiotic). Thermogenic methane occurs due to the breakup of organic matter at elevated temperatures and pressures in deep sedimentary strata. Most methane in sedimentary basins is thermogenic; therefore, thermogenic methane is the most important source of natural gas. Thermogenic methane components are typically considered to be relic (from an earlier time). Generally, formation of thermogenic methane (at depth) can occur through organic matter breakup, or organic synthesis. Both ways can involve microorganisms (methanogenesis), but may also occur inorganically. The processes involved can also consume methane, with and without microorganisms.

The more important source of methane at depth (crystalline bedrock) is abiotic. Abiotic means that methane is created from inorganic compounds, without biological activity, either through magmatic processes or via water-rock reactions that occur at low temperatures and pressures, like serpentinization.

Biological routes

Most of Earth's methane is biogenic and is produced by methanogenesis, a form of anaerobic respiration only known to be conducted by some members of the domain Archaea. Methanogens occupy landfills and other soils, ruminants (for example cows or cattle), the guts of termites, and the anoxic sediments below the seafloor and the bottom of lakes. Rice fields also generate large amounts of methane during plant growth. This multistep process is used by these microorganisms for energy. The net reaction of methanogenesis is:

CO2 + 4 H2→ CH4 + 2 H2O

The final step in the process is catalyzed by the enzyme methyl coenzyme M reductase (MCR).

Testing Australian sheep for exhaled methane production (2001), CSIRO
 
This image represents a ruminant, more specifically a sheep producing methane within the four stages of hydrolysis, acidogenesis, acetogenesis, and methanogenesis.

Ruminants

Ruminants, such as cattle, belch methane, accounting for ~22% of the U.S. annual methane emissions to the atmosphere. One study reported that the livestock sector in general (primarily cattle, chickens, and pigs) produces 37% of all human-induced methane. A 2013 study estimated that livestock accounted for 44% of human-induced methane and ~15% of human-induced greenhouse gas emissions. Many efforts are underway to reduce livestock methane production, such as medical treatments and dietary adjustments, and to trap the gas to use as energy.

Seafloor sediments

Most of the subseafloor is anoxic because oxygen is removed by aerobic microorganisms within the first few centimeters of the sediment. Below the oxygen replete seafloor, methanogens produce methane that is either used by other organisms or becomes trapped in gas hydrates. These other organisms which utilize methane for energy are known as methanotrophs (methane-eating), and are the main reason why little methane generated at depth reaches the sea surface. Consortia of Archaea and Bacteria have been found to oxidize methane via Anaerobic Oxidation of Methane (AOM); the organisms responsible for this are Anaerobic Methanotrophic Archaea (ANME) and Sulfate-Reducing Bacteria (SRB).

Industrial routes

Diagram of sustainable methane fuel production.PNG

There is little incentive to produce methane industrially. Methane is produced by hydrogenating carbon dioxide through the Sabatier process. Methane is also a side product of the hydrogenation of carbon monoxide in the Fischer–Tropsch process, which is practiced on a large scale to produce longer-chain molecules than methane.

Example of large-scale coal-to-methane gasification is the Great Plains Synfuels plant, started in 1984 in Beulah, North Dakota as a way to develop abundant local resources of low-grade lignite, a resource that is otherwise difficult to transport for its weight, ash content, low calorific value and propensity to spontaneous combustion during storage and transport.

Power to methane is a technology that uses electrical power to produce hydrogen from water by electrolysis and uses the Sabatier reaction to combine hydrogen with carbon dioxide to produce methane. As of 2016, this is mostly under development and not in large-scale use. Theoretically, the process could be used as a buffer for excess and off-peak power generated by highly fluctuating wind generators and solar arrays. However, as currently very large amounts of natural gas are used in power plants (e.g. CCGT) to produce electric energy, the losses in efficiency are not acceptable.

Laboratory synthesis

Methane can be produced by protonation of methyl lithium or a methyl Grignard reagent such as methylmagnesium chloride. It can also be made from anhydrous sodium acetate and dry sodium hydroxide, mixed and heated above 300 °C (with sodium carbonate as byproduct).[citation needed] In practice, a requirement for pure methane can easily be fulfilled by steel gas bottle from standard gas suppliers.

Occurrence

Methane was discovered and isolated by Alessandro Volta between 1776 and 1778 when studying marsh gas from Lake Maggiore. It is the major component of natural gas, about 87% by volume. The major source of methane is extraction from geological deposits known as natural gas fields, with coal seam gas extraction becoming a major source (see Coal bed methane extraction, a method for extracting methane from a coal deposit, while enhanced coal bed methane recovery is a method of recovering methane from non-mineable coal seams). It is associated with other hydrocarbon fuels, and sometimes accompanied by helium and nitrogen. Methane is produced at shallow levels (low pressure) by anaerobic decay of organic matter and reworked methane from deep under the Earth's surface. In general, the sediments that generate natural gas are buried deeper and at higher temperatures than those that contain oil.

Methane is generally transported in bulk by pipeline in its natural gas form, or LNG carriers in its liquefied form; few countries transport it by truck.

Atmospheric methane

Methane concentration evolution from 1987 to September 2020 at Mauna Loa (Hawaii).

In 2010, methane levels in the Arctic were measured at 1850 nmol/mol. This level is over twice as high as at any time in the last 400,000 years. Historic methane concentrations in the world's atmosphere have ranged between 300 and 400 nmol/mol during glacial periods commonly known as ice ages, and between 600 and 700 nmol/mol during the warm interglacial periods. The Earth's oceans are a potential important source of Arctic methane.

Methane is an important greenhouse gas with a global warming potential of 34 compared to CO2 (potential of 1) over a 100-year period, and 72 over a 20-year period.

The Earth's atmospheric methane concentration has increased by about 150% since 1750, and it accounts for 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases (these gases don't include water vapor which is by far the largest component of the greenhouse effect).

From 2015 to 2019 sharp rises in levels of atmospheric methane have been recorded. In February 2020, it was reported methane emissions from the fossil fuel industry may have been significantly underestimated.

Climate change can increase atmospheric methane levels by increasing methane production in natural ecosystems, forming a Climate change feedback.

Clathrates

Methane clathrates (also known as methane hydrates) are solid cages of water molecules that trap single molecules of methane. Significant reservoirs of methane clathrates have been found in arctic permafrost and along continental margins beneath the ocean floor within the gas clathrate stability zone, located at high pressures (1 to 100 MPa; lower end requires lower temperature) and low temperatures (< 15 °C; upper end requires higher pressure). Methane clathrates can form from biogenic methane, thermogenic methane, or a mix of the two. These deposits are both a potential source of methane fuel as well as a potential contributor to global warming. The global mass of carbon stored in gas clathrates is still uncertain and has been estimated as high as 12,500 Gt carbon and as low as 500 Gt carbon. The estimate has declined over time with a most recent estimate of ~1800 Gt carbon. A large part of this uncertainty is due to our knowledge gap in sources and sinks of methane and the distribution of methane clathrates at the global scale. For example, a relatively newly discovered source of methane was discovered in an ultraslow spreading ridge in the Arctic. Some climate models suggest that today's methane emission regime from the ocean floor is potentially similar to that during the period of the Paleocene–Eocene Thermal Maximum (PETM) around 55.5 million years ago, although there are no data indicating that methane from clathrate dissociation currently reaches the atmosphere. Arctic methane release from permafrost and seafloor methane clathrates is a potential consequence and further cause of global warming; this is known as the clathrate gun hypothesis. Data from 2016 indicate that Arctic permafrost thaws faster than predicted.

Extraterrestrial methane

Interstellar medium

Methane is abundant in many parts of the Solar system and potentially could be harvested on the surface of another solar-system body (in particular, using methane production from local materials found on Mars or Titan), providing fuel for a return journey.

Mars

Methane has been detected on all planets of the solar system and most of the larger moons. With the possible exception of Mars, it is believed to have come from abiotic processes.

Methane (CH4) on Mars – potential sources and sinks

The Curiosity rover has documented seasonal fluctuations of atmospheric methane levels on Mars. These fluctuations peaked at the end of the Martian summer at 0.6 parts per billion.

Methane has been proposed as a possible rocket propellant on future Mars missions due in part to the possibility of synthesizing it on the planet by in situ resource utilization. An adaptation of the Sabatier methanation reaction may be used with a mixed catalyst bed and a reverse water-gas shift in a single reactor to produce methane from the raw materials available on Mars, utilizing water from the Martian subsoil and carbon dioxide in the Martian atmosphere.

Methane could be produced by a non-biological process called serpentinization involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars.

History

In November 1776, methane was first scientifically identified by Italian physicist Alessandro Volta in the marshes of Lake Maggiore straddling Italy and Switzerland. Volta was inspired to search for the substance after reading a paper written by Benjamin Franklin about "flammable air". Volta collected the gas rising from the marsh, and by 1778 had isolated the pure gas. He also demonstrated that the gas could be ignited with an electric spark.

The name "methane" was coined in 1866 by the German chemist August Wilhelm von Hofmann. The name was derived from methanol.

Etymology

Etymologically, the word "methane" is coined from the chemical suffix "-ane", which denotes substances belonging to the alkane family; and the word "methyl", which is derived from the German "methyl" (1840) or directly from the French "méthyle", which is a back-formation from the French "méthylène" (corresponding to English "methylene"), the root of which was coined by Jean-Baptiste Dumas and Eugène Péligot in 1834 from the Greek "methy" (related to English "mead") and "hyle" (meaning "wood"). The radical is named after this because it was first detected in methanol, an alcohol first isolated by distillation of wood. The chemical suffix "-ane" is from the coordinating chemical suffix "-ine" which is from Latin feminine suffix "-ina" which is applied to represent abstracts. The coordination of "-ane", "-ene", "-one", etc. was proposed in 1866 by German chemist August Wilhelm von Hofmann (1818–1892).

Abbreviations

The abbreviation CH4-C can mean the mass of carbon contained in a mass of methane, and the mass of methane is always 1.33 times the mass of CH4-C. CH4-C can also mean the methane-carbon ratio, which is 1.33 by mass. Methane at scales of the atmosphere is commonly measured in teragrams (Tg CH4) or millions of metric tons (MMT CH4), which mean the same thing. Other standard units are also used, such as nanomole (nmol, one billionth of a mole), mole (mol), kilogram, and gram.

Safety

Methane is nontoxic, yet it is extremely flammable and may form explosive mixtures with air. Methane is also an asphyxiant if the oxygen concentration is reduced to below about 16% by displacement, as most people can tolerate a reduction from 21% to 16% without ill effects. The concentration of methane at which asphyxiation risk becomes significant is much higher than the 5–15% concentration in a flammable or explosive mixture. Methane off-gas can penetrate the interiors of buildings near landfills and expose occupants to significant levels of methane. Some buildings have specially engineered recovery systems below their basements to actively capture this gas and vent it away from the building.

Methane gas explosions are responsible for many deadly mining disasters. A methane gas explosion was the cause of the Upper Big Branch coal mine disaster in West Virginia on April 5, 2010, killing 29.

Nitrous oxide

From Wikipedia, the free encyclopedia

Nitrous oxide
Nitrous oxide's canonical forms
Ball-and-stick model with bond lengths
Space-filling model of nitrous oxide
Names
IUPAC name
Nitrous oxide
Other names
Laughing gas, sweet air, protoxide of nitrogen, hyponitrous oxide, dinitrogen oxide, dinitrogen monoxide
Identifiers
3D model (JSmol)
8137358
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.030.017 Edit this at Wikidata
E number E942 (glazing agents, ...)
2153410
KEGG
RTECS number
  • QX1350000
UNII
UN number 1070 (compressed)
2201 (liquid)



Properties
N
2
O
Molar mass 44.013 g/mol
Appearance colourless gas
Density 1.977 g/L (gas)
Melting point −90.86 °C (−131.55 °F; 182.29 K)
Boiling point −88.48 °C (−127.26 °F; 184.67 K)
1.5 g/L (15 °C)
Solubility soluble in alcohol, ether, sulfuric acid
log P 0.35
Vapor pressure 5150 kPa (20 °C)
−18.9·10−6 cm3/mol
1.000516 (0 °C, 101,325 kPa)
Viscosity 14.90 μPa·s[2]
Structure
linear, C∞v
0.166 D
Thermochemistry
219.96 J/(K·mol)
+82.05 kJ/mol
Pharmacology
N01AX13 (WHO)
Inhalation
Pharmacokinetics:
0.004%
5 minutes
Respiratory
Hazards
Safety data sheet Ilo.org, ICSC 0067
GHS pictograms GHS04: Compressed Gas GHS03: Oxidizing GHS07: Harmful
NFPA 704 (fire diamond)
Flash point Nonflammable
Related compounds
Nitric oxide
Dinitrogen trioxide
Nitrogen dioxide
Dinitrogen tetroxide
Dinitrogen pentoxide
Related compounds
Ammonium nitrate
Azide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒ verify (what is check☒ ?)
Infobox references


Nitrous oxide, commonly known as laughing gas or nitrous, is a chemical compound, an oxide of nitrogen with the formula N
2
O
. At room temperature, it is a colourless non-flammable gas, with a slight metallic scent and taste. At elevated temperatures, nitrous oxide is a powerful oxidiser similar to molecular oxygen.

Nitrous oxide has significant medical uses, especially in surgery and dentistry, for its anaesthetic and pain reducing effects. Its colloquial name "laughing gas", coined by Humphry Davy, is due to the euphoric effects upon inhaling it, a property that has led to its recreational use as a dissociative anaesthetic. It is on the World Health Organisation's List of Essential Medicines, the safest and most effective medicines needed in a health system. It is also used as an oxidiser in rocket propellants, and in motor racing to increase the power output of engines.

Nitrous oxide's atmospheric concentration reached 333 parts per billion (ppb) in 2020, increasing at a rate of about 1 ppb annually. It is a major scavenger of stratospheric ozone, with an impact comparable to that of CFCs. Global accounting of N
2
O
sources and sinks over the decade ending 2016 indicates that about 40% of the average 17 TgN/yr (Teragrams of Nitrogen per year) of emissions originated from human activity, and shows that emissions growth chiefly came from expanding agriculture and industry sources within emerging economies. Being the third most important long-lived greenhouse gas, nitrous oxide also substantially contributes to global warming.

Uses

Rocket motors

Nitrous oxide may be used as an oxidiser in a rocket motor. This is advantageous over other oxidisers in that it is much less toxic, and due to its stability at room temperature is also easier to store and relatively safe to carry on a flight. As a secondary benefit, it may be decomposed readily to form breathing air. Its high density and low storage pressure (when maintained at low temperature) enable it to be highly competitive with stored high-pressure gas systems.

In a 1914 patent, American rocket pioneer Robert Goddard suggested nitrous oxide and gasoline as possible propellants for a liquid-fuelled rocket. Nitrous oxide has been the oxidiser of choice in several hybrid rocket designs (using solid fuel with a liquid or gaseous oxidiser). The combination of nitrous oxide with hydroxyl-terminated polybutadiene fuel has been used by SpaceShipOne and others. It also is notably used in amateur and high power rocketry with various plastics as the fuel.

Nitrous oxide also may be used in a monopropellant rocket. In the presence of a heated catalyst, N
2
O
will decompose exothermically into nitrogen and oxygen, at a temperature of approximately 1,070 °F (577 °C). Because of the large heat release, the catalytic action rapidly becomes secondary, as thermal autodecomposition becomes dominant. In a vacuum thruster, this may provide a monopropellant specific impulse (Isp) of as much as 180 s. While noticeably less than the Isp available from hydrazine thrusters (monopropellant or bipropellant with dinitrogen tetroxide), the decreased toxicity makes nitrous oxide an option worth investigating.

Nitrous oxide is said to deflagrate at approximately 600 °C (1,112 °F) at a pressure of 309 psi (21 atmospheres). At 600 psi, for example, the required ignition energy is only 6 joules, whereas N
2
O
at 130 psi a 2,500-joule ignition energy input is insufficient.

Internal combustion engine

In vehicle racing, nitrous oxide (often referred to as just "nitrous") allows the engine to burn more fuel by providing more oxygen during combustion. The increase in oxygen allows for an increase in the injection of fuel, allowing the engine to produce more engine power. The gas is not flammable at a low pressure/temperature, but it delivers more oxygen than atmospheric air by breaking down at elevated temperatures, about 570 degrees F (~300C). Therefore, it often is mixed with another fuel that is easier to deflagrate. Nitrous oxide is a strong oxidising agent, roughly equivalent to hydrogen peroxide, and much stronger than oxygen gas.

Nitrous oxide is stored as a compressed liquid; the evaporation and expansion of liquid nitrous oxide in the intake manifold causes a large drop in intake charge temperature, resulting in a denser charge, further allowing more air/fuel mixture to enter the cylinder. Sometimes nitrous oxide is injected into (or prior to) the intake manifold, whereas other systems directly inject, right before the cylinder (direct port injection) to increase power.

The technique was used during World War II by Luftwaffe aircraft with the GM-1 system to boost the power output of aircraft engines. Originally meant to provide the Luftwaffe standard aircraft with superior high-altitude performance, technological considerations limited its use to extremely high altitudes. Accordingly, it was only used by specialised planes such as high-altitude reconnaissance aircraft, high-speed bombers and high-altitude interceptor aircraft. It sometimes could be found on Luftwaffe aircraft also fitted with another engine-boost system, MW 50, a form of water injection for aviation engines that used methanol for its boost capabilities.

One of the major problems of using nitrous oxide in a reciprocating engine is that it can produce enough power to damage or destroy the engine. Very large power increases are possible, and if the mechanical structure of the engine is not properly reinforced, the engine may be severely damaged, or destroyed, during this kind of operation. It is very important with nitrous oxide augmentation of petrol engines to maintain proper operating temperatures and fuel levels to prevent "pre-ignition", or "detonation" (sometimes referred to as "knock"). Most problems that are associated with nitrous oxide do not come from mechanical failure due to the power increases. Since nitrous oxide allows a much denser charge into the cylinder, it dramatically increases cylinder pressures. The increased pressure and temperature can cause problems such as melting the piston or valves. It also may crack or warp the piston or head and cause pre-ignition due to uneven heating.

Automotive-grade liquid nitrous oxide differs slightly from medical-grade nitrous oxide. A small amount of sulfur dioxide (SO
2
) is added to prevent substance abuse. Multiple washes through a base (such as sodium hydroxide) can remove this, decreasing the corrosive properties observed when SO
2
is further oxidised during combustion into sulfuric acid, making emissions cleaner.

Aerosol propellant

Food-grade N
2
O
whipped-cream chargers

The gas is approved for use as a food additive (E number: E942), specifically as an aerosol spray propellant. Its most common uses in this context are in aerosol whipped cream canisters and cooking sprays.

The gas is extremely soluble in fatty compounds. In aerosol whipped cream, it is dissolved in the fatty cream until it leaves the can, when it becomes gaseous and thus creates foam. Used in this way, it produces whipped cream which is four times the volume of the liquid, whereas whipping air into cream only produces twice the volume. If air were used as a propellant, oxygen would accelerate rancidification of the butterfat, but nitrous oxide inhibits such degradation. Carbon dioxide cannot be used for whipped cream because it is acidic in water, which would curdle the cream and give it a seltzer-like "sparkling" sensation.

The whipped cream produced with nitrous oxide is unstable, however, and will return to a more liquid state within half an hour to one hour. Thus, the method is not suitable for decorating food that will not be served immediately.

During December 2016, some manufacturers reported a shortage of aerosol whipped creams in the United States due to an explosion at the Air Liquide nitrous oxide facility in Florida in late August. With a major facility offline, the disruption caused a shortage resulting in the company diverting the supply of nitrous oxide to medical clients rather than to food manufacturing. The shortage came during the Christmas and holiday season when canned whipped cream use is normally at its highest.

Similarly, cooking spray, which is made from various types of oils combined with lecithin (an emulsifier), may use nitrous oxide as a propellant. Other propellants used in cooking spray include food-grade alcohol and propane.

Medicine

Medical-grade N
2
O
tanks used in dentistry

Nitrous oxide has been used in dentistry and surgery, as an anaesthetic and analgesic, since 1844. In the early days, the gas was administered through simple inhalers consisting of a breathing bag made of rubber cloth. Today, the gas is administered in hospitals by means of an automated relative analgesia machine, with an anaesthetic vaporiser and a medical ventilator, that delivers a precisely dosed and breath-actuated flow of nitrous oxide mixed with oxygen in a 2:1 ratio.

Nitrous oxide is a weak general anaesthetic, and so is generally not used alone in general anaesthesia, but used as a carrier gas (mixed with oxygen) for more powerful general anaesthetic drugs such as sevoflurane or desflurane. It has a minimum alveolar concentration of 105% and a blood/gas partition coefficient of 0.46. The use of nitrous oxide in anaesthesia, however, can increase the risk of postoperative nausea and vomiting.

Dentists use a simpler machine which only delivers an N
2
O
/O
2
mixture for the patient to inhale while conscious. The patient is kept conscious throughout the procedure, and retains adequate mental faculties to respond to questions and instructions from the dentist.

Inhalation of nitrous oxide is used frequently to relieve pain associated with childbirth, trauma, oral surgery and acute coronary syndrome (includes heart attacks). Its use during labour has been shown to be a safe and effective aid for birthing women. Its use for acute coronary syndrome is of unknown benefit.

In Britain and Canada, Entonox and Nitronox are used commonly by ambulance crews (including unregistered practitioners) as rapid and highly effective analgesic gas.

Fifty percent nitrous oxide can be considered for use by trained non-professional first aid responders in prehospital settings, given the relative ease and safety of administering 50% nitrous oxide as an analgesic. The rapid reversibility of its effect would also prevent it from precluding diagnosis.

Recreational use

Aquatint depiction of a laughing gas party in the nineteenth century, by Thomas Rowlandson
 
Whippit remnants (the small steel canisters) of recreational drug use, the Netherlands, 2017

Recreational inhalation of nitrous oxide, with the purpose of causing euphoria and/or slight hallucinations, began as a phenomenon for the British upper class in 1799, known as "laughing gas parties".

Starting in the nineteenth century, widespread availability of the gas for medical and culinary purposes allowed the recreational use to expand greatly throughout the world. In the United Kingdom, as of 2014, nitrous oxide was estimated to be used by almost half a million young people at nightspots, festivals and parties. The legality of that use varies greatly from country to country, and even from city to city in some countries.

Widespread recreational use of the drug throughout the UK was featured in the 2017 Vice documentary Inside The Laughing Gas Black Market, in which journalist Matt Shea met with dealers of the drug who stole it from hospitals, although with nitrous oxide canisters being readily available online, the incidents of hospital theft are expected to be extremely rare.

A significant issue cited in London's press is the effect of nitrous oxide canister littering, which is highly visible and causes significant complaint from communities.

Safety

The major safety hazards of nitrous oxide come from the fact that it is a compressed liquefied gas, an asphyxiation risk and a dissociative anaesthetic.

While relatively non-toxic, nitrous oxide has a number of recognised ill effects on human health, whether through breathing it in or by contact of the liquid with skin or eyes.

Nitrous oxide is a significant occupational hazard for surgeons, dentists and nurses. Because nitrous oxide is minimally metabolised in humans (with a rate of 0.004%), it retains its potency when exhaled into the room by the patient, and can pose an intoxicating and prolonged exposure hazard to the clinic staff if the room is poorly ventilated. Where nitrous oxide is administered, a continuous-flow fresh-air ventilation system or N
2
O
scavenger system is used to prevent a waste-gas buildup.

The National Institute for Occupational Safety and Health recommends that workers' exposure to nitrous oxide should be controlled during the administration of anaesthetic gas in medical, dental and veterinary operators. It set a recommended exposure limit (REL) of 25 ppm (46 mg/m3) to escaped anaesthetic.

Mental and manual impairment

Exposure to nitrous oxide causes short-term decreases in mental performance, audiovisual ability and manual dexterity. These effects coupled with the induced spatial and temporal disorientation could result in physical harm to the user from environmental hazards. Part of safer use can be to inhale it while seated, because there is an increased risk of injury from falling if you lose consciousness.

Neurotoxicity and neuroprotection

Like other NMDA receptor antagonists, N
2
O
was suggested to produce neurotoxicity in the form of Olney's lesions in rodents upon prolonged (several hour) exposure. New research has arisen suggesting that Olney's lesions do not occur in humans, however, and similar drugs such as ketamine are now believed not to be acutely neurotoxic. It has been argued that, because N
2
O
has a very short duration under normal circumstances, it is less likely to be neurotoxic than other NMDAR antagonists. Indeed, in rodents, short-term exposure results in only mild injury that is rapidly reversible, and neuronal death occurs only after constant and sustained exposure. Nitrous oxide also may cause neurotoxicity after extended exposure because of hypoxia. This is especially true of non-medical formulations such as whipped-cream chargers (also known as "whippets" or "nangs"), which never contain oxygen, since oxygen makes cream rancid.

Additionally, nitrous oxide depletes vitamin B12 levels. This can cause serious neurotoxicity if the user has preexisting vitamin B12 deficiency.

Nitrous oxide at 75% by volume reduces ischemia-induced neuronal death induced by occlusion of the middle cerebral artery in rodents, and decreases NMDA-induced Ca2+ influx in neuronal cell cultures, a critical event involved in excitotoxicity.

DNA damage

Occupational exposure to ambient nitrous oxide has been associated with DNA damage, due to interruptions in DNA synthesis. This correlation is dose-dependent and does not appear to extend to casual recreational use; however, further research is needed to confirm the duration and quantity of exposure needed to cause damage.

Oxygen deprivation

If pure nitrous oxide is inhaled without oxygen mixed in, this can eventually lead to oxygen deprivation resulting in loss of blood pressure, fainting and even heart attacks. This can occur if the user inhales large quantities continuously, as with a strap-on mask connected to a gas canister. It can also happen if the user engages in excessive breath-holding or uses any other inhalation system that cuts off a supply of fresh air. A further risk is that symptoms of frostbite can occur on the lips, larynx and bronchi if the gas is inhaled directly from the gas container. Therefore, condoms or balloons are often used to inhale nitrous oxide out of them.

Vitamin B12 deficiency

Long-term exposure to nitrous oxide may cause vitamin B12 deficiency. It inactivates the cobalamin form of vitamin B12 by oxidation. Symptoms of vitamin B12 deficiency, including sensory neuropathy, myelopathy and encephalopathy, may occur within days or weeks of exposure to nitrous oxide anaesthesia in people with subclinical vitamin B12 deficiency.

Symptoms are treated with high doses of vitamin B12, but recovery can be slow and incomplete.

People with normal vitamin B12 levels have stores to make the effects of nitrous oxide insignificant, unless exposure is repeated and prolonged (nitrous oxide abuse). Vitamin B12 levels should be checked in people with risk factors for vitamin B12 deficiency prior to using nitrous oxide anaesthesia.

Prenatal development

Several experimental studies in rats indicate that chronic exposure of pregnant females to nitrous oxide may have adverse effects on the developing fetus.

Chemical/physical risks

At room temperature (20 °C [68 °F]) the saturated vapour pressure is 50.525 bar, rising up to 72.45 bar at 36.4 °C (97.5 °F)—the critical temperature. The pressure curve is thus unusually sensitive to temperature.

As with many strong oxidisers, contamination of parts with fuels have been implicated in rocketry accidents, where small quantities of nitrous/fuel mixtures explode due to "water hammer"-like effects (sometimes called "dieseling"—heating due to adiabatic compression of gases can reach decomposition temperatures). Some common building materials such as stainless steel and aluminium can act as fuels with strong oxidisers such as nitrous oxide, as can contaminants that may ignite due to adiabatic compression.

There also have been incidents where nitrous oxide decomposition in plumbing has led to the explosion of large tanks.

Mechanism of action

The pharmacological mechanism of action of N
2
O
in medicine is not fully known. However, it has been shown to directly modulate a broad range of ligand-gated ion channels, and this likely plays a major role in many of its effects. It moderately blocks NMDAR and β2-subunit-containing nACh channels, weakly inhibits AMPA, kainate, GABAC and 5-HT3 receptors, and slightly potentiates GABAA and glycine receptors. It also has been shown to activate two-pore-domain K+
channels
. While N
2
O
affects quite a few ion channels, its anaesthetic, hallucinogenic and euphoriant effects are likely caused predominantly, or fully, via inhibition of NMDA receptor-mediated currents. In addition to its effects on ion channels, N
2
O
may act to imitate nitric oxide (NO) in the central nervous system, and this may be related to its analgesic and anxiolytic properties. Nitrous oxide is 30 to 40 times more soluble than nitrogen.

The effects of inhaling sub-anaesthetic doses of nitrous oxide have been known to vary, based on several factors, including settings and individual differences; however, from his discussion, Jay (2008) suggests that it has been reliably known to induce the following states and sensations:

  • Intoxication
  • Euphoria/dysphoria
  • Spatial disorientation
  • Temporal disorientation
  • Reduced pain sensitivity

A minority of users also will present with uncontrolled vocalisations and muscular spasms. These effects generally disappear minutes after removal of the nitrous oxide source.

Euphoric effect

In rats, N
2
O
stimulates the mesolimbic reward pathway by inducing dopamine release and activating dopaminergic neurons in the ventral tegmental area and nucleus accumbens, presumably through antagonisation of NMDA receptors localised in the system. This action has been implicated in its euphoric effects and, notably, appears to augment its analgesic properties as well.

It is remarkable, however, that in mice, N
2
O
blocks amphetamine-induced carrier-mediated dopamine release in the nucleus accumbens and behavioural sensitisation, abolishes the conditioned place preference (CPP) of cocaine and morphine, and does not produce reinforcing (or aversive) effects of its own. Effects of CPP of N
2
O
in rats are mixed, consisting of reinforcement, aversion and no change. In contrast, it is a positive reinforcer in squirrel monkeys, and is well known as a drug of abuse in humans. These discrepancies in response to N
2
O
may reflect species variation or methodological differences. In human clinical studies, N
2
O
was found to produce mixed responses, similarly to rats, reflecting high subjective individual variability.

Anxiolytic effect

In behavioural tests of anxiety, a low dose of N
2
O
is an effective anxiolytic, and this anti-anxiety effect is associated with enhanced activity of GABAA receptors, as it is partially reversed by benzodiazepine receptor antagonists. Mirroring this, animals that have developed tolerance to the anxiolytic effects of benzodiazepines are partially tolerant to N
2
O
. Indeed, in humans given 30% N
2
O
, benzodiazepine receptor antagonists reduced the subjective reports of feeling "high", but did not alter psychomotor performance, in human clinical studies.

Analgesic effect

The analgesic effects of N
2
O
are linked to the interaction between the endogenous opioid system and the descending noradrenergic system. When animals are given morphine chronically, they develop tolerance to its pain-killing effects, and this also renders the animals tolerant to the analgesic effects of N
2
O
. Administration of antibodies that bind and block the activity of some endogenous opioids (not β-endorphin) also block the antinociceptive effects of N
2
O
. Drugs that inhibit the breakdown of endogenous opioids also potentiate the antinociceptive effects of N
2
O
. Several experiments have shown that opioid receptor antagonists applied directly to the brain block the antinociceptive effects of N
2
O
, but these drugs have no effect when injected into the spinal cord.

Conversely, α2-adrenoceptor antagonists block the pain-reducing effects of N
2
O
when given directly to the spinal cord, but not when applied directly to the brain. Indeed, α2B-adrenoceptor knockout mice or animals depleted in norepinephrine are nearly completely resistant to the antinociceptive effects of N
2
O
. Apparently N
2
O
-induced release of endogenous opioids causes disinhibition of brainstem noradrenergic neurons, which release norepinephrine into the spinal cord and inhibit pain signalling. Exactly how N
2
O
causes the release of endogenous opioid peptides remains uncertain.

Properties and reactions

Nitrous oxide is a colourless, non-toxic gas with a faint, sweet odour.

Nitrous oxide supports combustion by releasing the dipolar bonded oxygen radical, and can thus relight a glowing splint.

N
2
O
is inert at room temperature and has few reactions. At elevated temperatures, its reactivity increases. For example, nitrous oxide reacts with NaNH
2
at 460 K (187 °C) to give NaN
3
:

2 NaNH
2
+ N
2
O
NaN
3
+ NaOH + NH
3

The above reaction is the route adopted by the commercial chemical industry to produce azide salts, which are used as detonators.

History

The gas was first synthesised in 1772 by English natural philosopher and chemist Joseph Priestley who called it phlogisticated nitrous air (see phlogiston theory) or inflammable nitrous air. Priestley published his discovery in the book Experiments and Observations on Different Kinds of Air (1775), where he described how to produce the preparation of "nitrous air diminished", by heating iron filings dampened with nitric acid.

Early use

"LIVING MADE EASY"
A satirical print from 1830 depicting Humphry Davy administering a dose of laughing gas to a woman

The first important use of nitrous oxide was made possible by Thomas Beddoes and James Watt, who worked together to publish the book Considerations on the Medical Use and on the Production of Factitious Airs (1794). This book was important for two reasons. First, James Watt had invented a novel machine to produce "Factitious Airs" (i.e. nitrous oxide) and a novel "breathing apparatus" to inhale the gas. Second, the book also presented the new medical theories by Thomas Beddoes, that tuberculosis and other lung diseases could be treated by inhalation of "Factitious Airs".

Sir Humphry Davy's Researches chemical and philosophical: chiefly concerning nitrous oxide (1800), pages 556 and 557 (right), outlining potential anaesthetic properties of nitrous oxide in relieving pain during surgery

The machine to produce "Factitious Airs" had three parts: a furnace to burn the needed material, a vessel with water where the produced gas passed through in a spiral pipe (for impurities to be "washed off"), and finally the gas cylinder with a gasometer where the gas produced, "air", could be tapped into portable air bags (made of airtight oily silk). The breathing apparatus consisted of one of the portable air bags connected with a tube to a mouthpiece. With this new equipment being engineered and produced by 1794, the way was paved for clinical trials, which began in 1798 when Thomas Beddoes established the "Pneumatic Institution for Relieving Diseases by Medical Airs" in Hotwells (Bristol). In the basement of the building, a large-scale machine was producing the gases under the supervision of a young Humphry Davy, who was encouraged to experiment with new gases for patients to inhale. The first important work of Davy was examination of the nitrous oxide, and the publication of his results in the book: Researches, Chemical and Philosophical (1800). In that publication, Davy notes the analgesic effect of nitrous oxide at page 465 and its potential to be used for surgical operations at page 556. Davy coined the name "laughing gas" for nitrous oxide.

Despite Davy's discovery that inhalation of nitrous oxide could relieve a conscious person from pain, another 44 years elapsed before doctors attempted to use it for anaesthesia. The use of nitrous oxide as a recreational drug at "laughing gas parties", primarily arranged for the British upper class, became an immediate success beginning in 1799. While the effects of the gas generally make the user appear stuporous, dreamy and sedated, some people also "get the giggles" in a state of euphoria, and frequently erupt in laughter.

One of the earliest commercial producers in the U.S. was George Poe, cousin of the poet Edgar Allan Poe, who also was the first to liquefy the gas.

Anaesthetic use

The first time nitrous oxide was used as an anaesthetic drug in the treatment of a patient was when dentist Horace Wells, with assistance by Gardner Quincy Colton and John Mankey Riggs, demonstrated insensitivity to pain from a dental extraction on 11 December 1844. In the following weeks, Wells treated the first 12 to 15 patients with nitrous oxide in Hartford, Connecticut, and, according to his own record, only failed in two cases. In spite of these convincing results having been reported by Wells to the medical society in Boston in December 1844, this new method was not immediately adopted by other dentists. The reason for this was most likely that Wells, in January 1845 at his first public demonstration to the medical faculty in Boston, had been partly unsuccessful, leaving his colleagues doubtful regarding its efficacy and safety. The method did not come into general use until 1863, when Gardner Quincy Colton successfully started to use it in all his "Colton Dental Association" clinics, that he had just established in New Haven and New York City. Over the following three years, Colton and his associates successfully administered nitrous oxide to more than 25,000 patients. Today, nitrous oxide is used in dentistry as an anxiolytic, as an adjunct to local anaesthetic.

Nitrous oxide was not found to be a strong enough anaesthetic for use in major surgery in hospital settings, however. Instead, diethyl ether, being a stronger and more potent anaesthetic, was demonstrated and accepted for use in October 1846, along with chloroform in 1847. When Joseph Thomas Clover invented the "gas-ether inhaler" in 1876, however, it became a common practice at hospitals to initiate all anaesthetic treatments with a mild flow of nitrous oxide, and then gradually increase the anaesthesia with the stronger ether or chloroform. Clover's gas-ether inhaler was designed to supply the patient with nitrous oxide and ether at the same time, with the exact mixture being controlled by the operator of the device. It remained in use by many hospitals until the 1930s. Although hospitals today use a more advanced anaesthetic machine, these machines still use the same principle launched with Clover's gas-ether inhaler, to initiate the anaesthesia with nitrous oxide, before the administration of a more powerful anaesthetic.

As a patent medicine

Colton's popularisation of nitrous oxide led to its adoption by a number of less than reputable quacksalvers, who touted it as a cure for consumption, scrofula, catarrh and other diseases of the blood, throat and lungs. Nitrous oxide treatment was administered and licensed as a patent medicine by the likes of C. L. Blood and Jerome Harris in Boston and Charles E. Barney of Chicago.

Production

Reviewing various methods of producing nitrous oxide is published.

Industrial methods

Nitrous oxide production

Nitrous oxide is prepared on an industrial scale by careful heating of ammonium nitrate at about 250 C, which decomposes into nitrous oxide and water vapour.

NH
4
NO
3
→ 2 H
2
O
+ N
2
O

The addition of various phosphate salts favours formation of a purer gas at slightly lower temperatures. This reaction may be difficult to control, resulting in detonation.

Laboratory methods

The decomposition of ammonium nitrate is also a common laboratory method for preparing the gas. Equivalently, it can be obtained by heating a mixture of sodium nitrate and ammonium sulfate:

2 NaNO
3
+ (NH
4
)2SO
4
Na
2
SO
4
+ 2 N
2
O
+ 4 H
2
O

Another method involves the reaction of urea, nitric acid and sulfuric acid:

2 (NH2)2CO + 2 HNO
3
+ H
2
SO
4
→ 2 N
2
O
+ 2 CO
2
+ (NH4)2SO4 + 2 H
2
O

Direct oxidation of ammonia with a manganese dioxide-bismuth oxide catalyst has been reported: cf. Ostwald process.

2 NH
3
+ 2 O
2
N
2
O
+ 3 H
2
O

Hydroxylammonium chloride reacts with sodium nitrite to give nitrous oxide. If the nitrite is added to the hydroxylamine solution, the only remaining by-product is salt water. If the hydroxylamine solution is added to the nitrite solution (nitrite is in excess), however, then toxic higher oxides of nitrogen also are formed:

NH
3
OH
Cl + NaNO
2
N
2
O
+ NaCl + 2 H
2
O

Treating HNO
3
with SnCl
2
and HCl also has been demonstrated:

2 HNO
3
+ 8 HCl + 4 SnCl
2
→ 5 H
2
O
+ 4 SnCl
4
+ N
2
O

Hyponitrous acid decomposes to N2O and water with a half-life of 16 days at 25 °C at pH 1–3.

H2N2O2→ H2O + N2O

Atmospheric occurrence

Nitrous oxide atmospheric concentration since 1978.
 
Annual growth rate of atmospheric nitrous oxide since 2000.

Nitrous oxide is a minor component of Earth's atmosphere and is an active part of the planetary nitrogen cycle. Based on analysis of air samples gathered from sites around the world, its concentration surpassed 330 ppb in 2017. The growth rate of about 1 ppb per year has also accelerated during recent decades. Nitrous oxide's atmospheric abundance has grown more than 20% from a base level of about 270 ppb in year 1750.


Important atmospheric properties of N
2
O
are summarized in the following table:

Property Value
Ozone depletion potential (ODP) 0.17 (CCl3F = 1)
Global warming potential (GWP: 100-year) 265 (CO2 = 1)
Atmospheric lifetime 121 years


In October 2020 scientists published a comprehensive quantification of global N
2
O
sources and sinks. They report that human-induced emissions increased by 30% over the past four decades and are the main cause of the increase in atmospheric concentration. The recent growth has exceeded some of the highest projected emission scenarios.

Earth's nitrous oxide budget from the Global Carbon Project (2020).

Emissions by source

As of 2010, it was estimated that about 29.5 million tonnes of N
2
O
(containing 18.8 million tonnes of nitrogen) were entering the atmosphere each year; of which 64% were natural, and 36% due to human activity.

Most of the N
2
O
emitted into the atmosphere, from natural and anthropogenic sources, is produced by microorganisms such as bacteria and fungi in soils and oceans. Soils under natural vegetation are an important source of nitrous oxide, accounting for 60% of all naturally produced emissions. Other natural sources include the oceans (35%) and atmospheric chemical reactions (5%).

A 2019 study showed that emissions from thawing permafrost are 12 times higher than previously assumed.

The main components of anthropogenic emissions are fertilised agricultural soils and livestock manure (42%), runoff and leaching of fertilisers (25%), biomass burning (10%), fossil fuel combustion and industrial processes (10%), biological degradation of other nitrogen-containing atmospheric emissions (9%) and human sewage (5%). Agriculture enhances nitrous oxide production through soil cultivation, the use of nitrogen fertilisers and animal waste handling. These activities stimulate naturally occurring bacteria to produce more nitrous oxide. Nitrous oxide emissions from soil can be challenging to measure as they vary markedly over time and space, and the majority of a year's emissions may occur when conditions are favorable during "hot moments" and/or at favorable locations known as "hotspots".

Among industrial emissions, the production of nitric acid and adipic acid are the largest sources of nitrous oxide emissions. The adipic acid emissions specifically arise from the degradation of the nitrolic acid intermediate derived from nitration of cyclohexanone.

Biological processes

Natural processes that generate nitrous oxide may be classified as nitrification and denitrification. Specifically, they include:

  • aerobic autotrophic nitrification, the stepwise oxidation of ammonia (NH
    3
    ) to nitrite (NO
    2
    ) and to nitrate (NO
    3
    )
  • anaerobic heterotrophic denitrification, the stepwise reduction of NO
    3
    to NO
    2
    , nitric oxide (NO), N
    2
    O
    and ultimately N
    2
    , where facultative anaerobe bacteria use NO
    3
    as an electron acceptor in the respiration of organic material in the condition of insufficient oxygen (O
    2
    )
  • nitrifier denitrification, which is carried out by autotrophic NH
    3
    -oxidising bacteria and the pathway whereby ammonia (NH
    3
    ) is oxidised to nitrite (NO
    2
    ), followed by the reduction of NO
    2
    to nitric oxide (NO), N
    2
    O
    and molecular nitrogen (N
    2
    )
  • heterotrophic nitrification
  • aerobic denitrification by the same heterotrophic nitrifiers
  • fungal denitrification
  • non-biological chemodenitrification

These processes are affected by soil chemical and physical properties such as the availability of mineral nitrogen and organic matter, acidity and soil type, as well as climate-related factors such as soil temperature and water content.

The emission of the gas to the atmosphere is limited greatly by its consumption inside the cells, by a process catalysed by the enzyme nitrous oxide reductase.

Environmental impact

Greenhouse effect

Trends in the atmospheric abundance of long-lived greenhouse gases

Nitrous oxide has significant global warming potential as a greenhouse gas. On a per-molecule basis, considered over a 100-year period, nitrous oxide has 265 times the atmospheric heat-trapping ability of carbon dioxide (CO
2
). However, because of its low concentration (less than 1/1,000 of that of CO
2
), its contribution to the greenhouse effect is less than one third that of carbon dioxide, and also less than water vapour and methane. On the other hand, since 38% or more of the N
2
O
entering the atmosphere is the result of human activity, control of nitrous oxide is considered part of efforts to curb greenhouse gas emissions.

A 2008 study by Nobel Laureate Paul Crutzen suggests that the amount of nitrous oxide release attributable to agricultural nitrate fertilisers has been seriously underestimated, most of which presumably, would come under soil and oceanic release in the Environmental Protection Agency data.

Nitrous oxide is released into the atmosphere through agriculture, when farmers add nitrogen-based fertilizers onto the fields, through the breakdown of animal manure. Approximately 79 percent of all nitrous oxide released in the United States came from nitrogen fertilization. Nitrous oxide is also released as a by-product of burning fossil fuel, though the amount released depends on which fuel was used. It is also emitted through the manufacture of nitric acid, which is used in the synthesis of nitrogen fertilizers. The production of adipic acid, a precursor to nylon and other synthetic clothing fibres, also releases nitrous oxide. The total amount of nitrous oxide released that is of human origins is about 40 percent.

Ozone layer depletion

Nitrous oxide has also been implicated in thinning the ozone layer. A 2009 study suggested that N
2
O
emission was the single most important ozone-depleting emission and it was expected to remain the largest throughout the 21st century.

Legality

In the United States, possession of nitrous oxide is legal under federal law and is not subject to DEA purview. It is, however, regulated by the Food and Drug Administration under the Food Drug and Cosmetics Act; prosecution is possible under its "misbranding" clauses, prohibiting the sale or distribution of nitrous oxide for the purpose of human consumption. Many states have laws regulating the possession, sale and distribution of nitrous oxide. Such laws usually ban distribution to minors or limit the amount of nitrous oxide that may be sold without special license. For example, in the state of California, possession for recreational use is prohibited and qualifies as a misdemeanor.

In August 2015, the Council of the London Borough of Lambeth (UK) banned the use of the drug for recreational purposes, making offenders liable to an on-the-spot fine of up to £1,000.

In New Zealand, the Ministry of Health has warned that nitrous oxide is a prescription medicine, and its sale or possession without a prescription is an offense under the Medicines Act. This statement would seemingly prohibit all non-medicinal uses of nitrous oxide, although it is implied that only recreational use will be targeted legally.

In India, transfer of nitrous oxide from bulk cylinders to smaller, more transportable E-type, 1,590-litre-capacity tanks is legal when the intended use of the gas is for medical anaesthesia.

 

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...