Search This Blog

Wednesday, April 3, 2024

India's three-stage nuclear power programme

Monazite powder, a rare earth and thorium phosphate mineral, is the primary source of the world's thorium

India's three-stage nuclear power programme was formulated by Homi Bhabha, the well-known physicist, in the 1950s to secure the country's long term energy independence, through the use of uranium and thorium reserves found in the monazite sands of coastal regions of South India. The ultimate focus of the programme is on enabling the thorium reserves of India to be utilised in meeting the country's energy requirements. Thorium is particularly attractive for India, as India has only around 1–2% of the global uranium reserves, but one of the largest shares of global thorium reserves at about 25% of the world's known thorium reserves. However, thorium is more difficult to use than uranium as a fuel because it requires breeding, and global uranium prices remain low enough that breeding is not cost effective.

India published about twice the number of papers on thorium as its nearest competitors, during each of the years from 2002 to 2006. The Indian nuclear establishment estimates that the country could produce 500 GWe for at least four centuries using just the country's economically extractable thorium reserves.

The first Prototype Fast Breeder Reactor has been repeatedly delayed – and is currently expected to be commissioned by October 2022  – and India continues to import thousands of tonnes of uranium from Russia, Kazakhstan, France, and Uzbekistan. The 2005 Indo–US Nuclear Deal and the NSG waiver, which ended more than three decades of international isolation of the Indian civil nuclear programme, have created many hitherto unexplored alternatives for the success of the three-stage nuclear power programme.

Origin and rationale

Homi Jehangir Bhabha, the founding Chairman of India's Atomic Energy Commission and the architect of Indian three-stage (thorium) programme

Homi Bhabha conceived of the three-stage nuclear programme as a way to develop nuclear energy by working around India's limited uranium resources. Thorium itself is not a fissile material, and thus cannot undergo fission to produce energy. Instead, it must be transmuted to uranium-233 in a reactor fueled by other fissile materials. The first two stages, natural uranium-fueled heavy water reactors and plutonium-fueled fast breeder reactors, are intended to generate sufficient fissile material from India's limited uranium resources, so that all its vast thorium reserves can be fully utilised in the third stage of thermal breeder reactors.

Bhabha summarised the rationale for the three-stage approach as follows:

The total reserves of thorium in India amount to over 500,000 tons in the readily extractable form, while the known reserves of uranium are less than a tenth of this. The aim of long range atomic power programme in India must therefore be to base the nuclear power generation as soon as possible on thorium rather than uranium… The first generation of atomic power stations based on natural uranium can only be used to start off an atomic power programme… The plutonium produced by the first generation power stations can be used in a second generation of power stations designed to produce electric power and convert thorium into U-233, or depleted uranium into more plutonium with breeding gain… The second generation of power stations may be regarded as an intermediate step for the breeder power stations of the third generation all of which would produce more U-233 than they burn in the course of producing power.

In November 1954, Bhabha presented the three-stage plan for national development, at the conference on "Development of Atomic Energy for Peaceful Purposes" which was also attended by India's first Prime Minister Jawaharlal Nehru. Four years later in 1958, the Indian government formally adopted the three-stage plan. Indian energy resource base was estimated to be capable of yielding a total electric power output of the order shown in the table below. Indian government recognised that thorium was a source that could provide power to the Indian people for the long term.

Energy resource type Amount (tonnes) Power potential (TWe-year)
Coal 54 billion 11
Hydrocarbons 12 billion 6
Uranium (in PHWR) 61,000 0.3–0.42
Uranium (in FBR) 61,000 16–54
Thorium ~300,000 155–168 or 358

Fuel reserves and research capability

According to a report issued by the IAEA, India has limited uranium reserves, consisting of approximately 54,636 tonnes of "reasonably assured resources", 25,245 tonnes of "estimated additional resources", 15,488 tonnes of "undiscovered conventional resources, and 17,000 tonnes of "speculative resources". According to NPCIL, these reserves are only sufficient to generate about 10 GWe for about 40 years. In July 2011, it was reported that a four-year-long mining survey done at Tummalapalle mine in Kadapa district near Hyderabad had yielded confirmed reserve figure of 49,000 tonnes with a potential that it could rise to 150,000 tonnes. This was a rise from an earlier estimate of 15,000 tonnes for that area.

Although India has only around 1–2% of the global uranium reserves, thorium reserves are bigger; around 12–33% of global reserves, according to IAEA and US Geological Survey. Several in-depth independent studies put Indian thorium reserves at 30% of the total world thorium reserves. Indian uranium production is constrained by government investment decisions rather than by any shortage of ore.

As per official estimates shared in the country's Parliament in August 2011, the country can obtain 846,477 tonnes of thorium from 963,000 tonnes of ThO2, which in turn can be obtained from 10.7 million tonnes of monazite occurring in beaches and river sands in association with other heavy metals. Indian monazite contains about 9–10% ThO2. The 846,477 tonne figure compares with the earlier estimates for India, made by IAEA and US Geological Survey of 319,000 tonnes and 290,000 to 650,000 tonnes respectively. The 800,000 tonne figure is given by other sources as well.

It was further clarified in the country's parliament on 21 March 2012 that, "Out of nearly 100 deposits of the heavy minerals, at present only 17 deposits containing about 4 million tonnes of monazite have been identified as exploitable. Mine-able reserves are ~70% of identified exploitable resources. Therefore, about 225,000 tonnes of thorium metal is available for nuclear power program."

India is a leader of thorium based research. It is also by far the most committed nation as far as the use of thorium fuel is concerned, and no other country has done as much neutron physics work on thorium. The country published about twice the number of papers on thorium as its nearest competitors during each of the years from 2002 to 2006. Bhabha Atomic Research Centre (BARC) had the highest number of publications in the thorium area, across all research institutions in the world during the period 1982–2004. During this same period, India ranks an overall second behind the United States in the research output on Thorium. According to Siegfried Hecker, a former director (1986–1997) of the Los Alamos National Laboratory in the United States, "India has the most technically ambitious and innovative nuclear energy programme in the world. The extent and functionality of its nuclear experimental facilities are matched only by those in Russia and are far ahead of what is left in the US."

However, conventional uranium-fueled reactors are much cheaper to operate; so India imports large quantities of uranium from abroad. Also, in March 2011, large deposits of uranium were discovered in the Tummalapalle belt in the southern part of the Kadapa basin in Andhra Pradesh.

Stage I – Pressurised Heavy Water Reactor

The Narora Atomic Power Station has two IPHWR reactors, the first stage of the three stage program

In the first stage of the programme, natural uranium fueled pressurised heavy water reactors (PHWR) produce electricity while generating plutonium-239 as by-product. PHWRs was a natural choice for implementing the first stage because it had the most efficient reactor design in terms of uranium utilisation, and the existing Indian infrastructure in the 1960s allowed for quick adoption of the PHWR technology. India correctly calculated that it would be easier to create heavy water production facilities (required for PHWRs) than uranium enrichment facilities (required for LWRs). Natural uranium contains only 0.7% of the fissile isotope uranium-235. Most of the remaining 99.3% is uranium-238 which is not fissile but can be converted in a reactor to the fissile isotope plutonium-239. Heavy water (deuterium oxide, D2O) is used as moderator and coolant. Since the program began, India has developed a series of sequentially larger PHWR's under the IPHWR series derived from the original Canadian supplied CANDU reactors. The IPHWR series consists of three designs of 220 MWe, 540 MWe and 700 MWe capacity under the designations IPHWR-220, IPHWR-540 and IPHWR-700 respectively.

Indian uranium reserves are capable of generating a total power capacity of 420 GWe-years, but the Indian government limited the number of PHWRs fueled exclusively by indigenous uranium reserves, in an attempt to ensure that existing plants get a lifetime supply of uranium. US analysts calculate this limit as being slightly over 13 GW in capacity. Several other sources estimate that the known reserves of natural uranium in the country permit only about 10 GW of capacity to be built through indigenously fueled PHWRs. The three-stage programme explicitly incorporates this limit as the upper cut off of the first stage, beyond which PHWRs are not planned to be built.

Almost the entire existing base of Indian nuclear power (4780 MW) is composed of first stage PHWRs of the IPHWR series, with the exception of the two Boiling Water Reactor (BWR) units at Tarapur. The installed capacity of Kaiga station is now 880 MW consisting of four 220 MWe IPHWR-220 reactors, making it the third largest after Tarapur (1400 MW) (2 x BWR Mark-1, 2 x IPHWR-540) and Rawatbhata (1180 MW) (2 x CANDU, 2 x IPHWR-220). The remaining three power stations at Kakrapar, Kalpakkam and Narora all have 2 units of 220 MWe, thus contributing 440 MW each to the grid. The 2 units of 700 MWe each (IPHWR-700) that are under construction at both Kakraparand Rawatbhata, and the one planned for Banswara would also come under the first stage of the programme, totalling a further addition of 4200 MW. These additions will bring the total power capacity from the first stage PHWRs to near the total planned capacity of 10 GW called for by the three-stage power programme.

Capital costs of PHWRs is in the range of Rs. 6 to 7 crore ($1.2 to $1.4 million) per MW, coupled with a designed plant life of 40 years. Time required for construction has improved over time and is now at about five years. Tariffs of the operating plants are in the range of Rs. 1.75 to 2.80 per unit, depending on the life of the reactor. In the year 2007–08 the average tariff was Rs. 2.28.

India is also working on the design of reactors based on the more efficient Pressurized Water Reactor technology derived from the work on the Arihant-class submarine program to develop a 900 MWe IPWR-900 reactor platform to supplement the currently deployed PHWR's of the IPHWR series.

Stage II – Fast Breeder Reactor

In the second stage, fast breeder reactors (FBRs) would use a mixed oxide (MOX) fuel made from plutonium-239, recovered by reprocessing spent fuel from the first stage, and natural uranium. In FBRs, plutonium-239 undergoes fission to produce energy, while the uranium-238 present in the mixed oxide fuel transmutes to additional plutonium-239. Thus, the Stage II FBRs are designed to "breed" more fuel than they consume. Once the inventory of plutonium-239 is built up thorium can be introduced as a blanket material in the reactor and transmuted to uranium-233 for use in the third stage.

The surplus plutonium bred in each fast reactor can be used to set up more such reactors, and might thus grow the Indian civil nuclear power capacity till the point where the third stage reactors using thorium as fuel can be brought online, which is forecasted as being possible once 50 GW of nuclear power capacity has been achieved. The uranium in the first stage PHWRs that yield 29 EJ of energy in the once-through fuel cycle, can be made to yield between 65 and 128 times more energy through multiple cycles in fast breeder reactors.

The design of the country's first fast breeder, called Prototype Fast Breeder Reactor (PFBR), was done by Indira Gandhi Centre for Atomic Research (IGCAR). Bharatiya Nabhikiya Vidyut Nigam Ltd (Bhavini), a public sector company under the Department of Atomic Energy (DAE), has been given the responsibility to build the fast breeder reactors in India. The construction of this PFBR at Kalpakkam was due to be completed in 2012. It is not yet complete. The date of commission has been delayed to October 2022 from the previous date in 2019.

Doubling time

Doubling time refers to the time required to extract as output, double the amount of fissile fuel, which was fed as input into the breeder reactors. This metric is critical for understanding the time durations that are unavoidable while transitioning from the second stage to the third stage of Bhabha's plan, because building up a sufficiently large fissile stock is essential to the large deployment of the third stage. In Bhabha's 1958 papers on role of thorium, he pictured a doubling time of 5–6 years for breeding U-233 in the Th–U233 cycle. This estimate has now been revised to 70 years due to technical difficulties that were unforeseen at the time. Despite such setbacks, according to publications done by DAE scientists, the doubling time of fissile material in the fast breeder reactors can be brought down to about 10 years by choosing appropriate technologies with short doubling time.

Fuel Type U238–Pu cycle Th–U233 cycle
oxide 17.8 108
carbide-Lee 10 50
metal 8.5 75.1
carbide 10.2 70

Another report prepared for U.S. Department of Energy suggests a doubling time of 22 years for oxide fuel, 13 years for carbide fuel and 10 years for metal fuel.

Stage III – Thorium Based Reactors

A sample of thorium

A Stage III reactor or an Advanced nuclear power system involves a self-sustaining series of thorium-232uranium-233 fuelled reactors. This would be a thermal breeder reactor, which in principle can be refueled – after its initial fuel charge – using only naturally occurring thorium. According to the three-stage programme, Indian nuclear energy could grow to about 10 GW through PHWRs fueled by domestic uranium, and the growth above that would have to come from FBRs till about 50GW. The third stage is to be deployed only after this capacity has been achieved.

According to replies given in Q&A in the Indian Parliament on two separate occasions, 19 August 2010 and 21 March 2012, large scale thorium deployment is only to be expected "3–4 decades after the commercial operation of fast breeder reactors with short doubling time". Full exploitation of India's domestic thorium reserves will likely not occur until after the year 2050.

Parallel approaches

As there is a long delay before direct thorium utilisation in the three-stage programme, the country is looking at reactor designs that allow more direct use of thorium in parallel with the sequential three-stage programme. Three options under consideration are the Indian Accelerator Driven Systems (IADS), Advanced Heavy Water Reactor (AHWR) and Compact High Temperature Reactor. Molten Salt Reactor may also be under consideration based on some recent reports and is under development.

Advanced Heavy Water Reactor (AHWR)

Of the options, the design for AHWR is ready for deployment. AHWR is a 300 MWe vertical pressure tube type, boiling light water cooled and heavy water moderated reactor, using uranium233–thorium MOX and plutonium–thorium MOX. It is expected to generate 65% of its power from thorium and can also be configured to accept other fuel types in full core including enriched uranium and uranium–plutonium MOX. There was a plan for constructing such an AHWR with a plutonium–thorium core combination in 2007. This AHWR design was sent for an independent pre-licensing design safety review by the Atomic Energy Regulatory Board (AERB), the results of which were deemed satisfactory. AHWR would offer very little growth for the fuel build up that is essential for wide deployment of the third stage, and perhaps the impact on the accumulated fissile material could even be negative.

The AHWR design that will be taken up for construction is to be fueled with 20% low enriched uranium (LEU) and 80% thorium. The low enriched uranium (LEU) for this AHWR design is readily available on the world market. As of November 2011, construction will start after the site is identified in 6 months time. It will take another 18 months to get clearances on regulatory and environmental grounds. Construction is estimated to take six years. If everything goes according to plan, AHWR could be operational in India by 2020. In Aug 2017 the AHWR location was still not announced.

Accelerator Driven System

India's Department of Atomic Energy and US's Fermilab are designing unique first-of-its-kind accelerator driven systems. No country has yet built an Accelerator Driven System for power generation. Dr Anil Kakodkar, former chairman of the Atomic Energy Commission called this a mega science project and a "necessity" for humankind.

Indian Molten Salt Breeder Reactor (IMSBR)

The Indian Molten Salt Breeder Reactor (IMSBR) is under development. Studies on conceptual design of the Indian Molten Salt Breeder Reactors (IMSBR) have been initiated.

Linkages with the Indo–US nuclear deal

U.S. President George W. Bush and India's Prime Minister Manmohan Singh exchange greetings in New Delhi on 2 March 2006

In spite of the overall adequacy of its uranium reserves, Indian power plants could not get the necessary amount of uranium to function at full capacity in the late 2000s, primarily due to inadequate investments made in the uranium mining and milling capacity resulting from fiscal austerity in the early 1990s. One study done for U.S. Congress in that time period reaches the conclusion, "India’s current fuel situation means that New Delhi cannot produce sufficient fuel for both its nuclear weapons programme and its projected civil nuclear programme." An independent study arrives at roughly the same conclusion, "India’s current uranium production of less than 300 tons/year can meet at most, two-thirds of its needs for civil and military nuclear fuel." This uranium shortfall during the deal negotiations was understood by both players to be a temporary aberration that was poised to be resolved with requisite investments in India's uranium milling infrastructure.

Drivers for the deal from the Indian side

It was estimated that after attaining 21 GW from nuclear power by 2020, further growth might require imported uranium. This is problematic because deployment of third stage requires that 50 GW be already established through the first and second stages. If imported uranium was made available, Department of Atomic Energy (DAE) estimated that India could reach 70 GW by 2032 and 275 GW by 2052. In such a scenario, the third stage could be made operational following the fast breeder implementation, and nuclear power capacity could grow to 530 GW. The estimated stagnation of the nuclear power at about 21GW by 2020 is likely due to the fact that even the short "doubling time" of the breeder reactors is quite slow, on the order of 10–15 years. Implementing the three-stage programme using the domestic uranium resources alone is feasible, but requires several decades to come to fruition. Imports of fissile material from outside would considerably speed up the programme.

As per research data, the U238–Pu cycle has the shortest doubling time by a large margin, and that technology's compounded yearly fissile material growth rate has been calculated as follows, after making some basic assumptions about the operating features of the fast breeder reactors.

Type Fissile Material Growth %
oxide 1.73%
carbide-Lee 2.31%
metal 4.08%
carbide 3.15%

Indian power generation capacity has grown at 5.9% per annum in the 25-year period prior to 2006. If Indian economy is to grow at 8–9% for the next 25-year period of 2006 to 2032, total power generation capacity has to increase at 6–7% per annum. As the fissile material growth rate does not meet this objective, it becomes necessary to look at alternative approaches for obtaining the fissile material. This conclusion is mostly independent of future technical breakthroughs, and complementary to the eventual implementation of the three-stage approach. It was realised that the best way to get access to the requisite fissile material would be through uranium imports, which was not possible without ending India's nuclear isolation by U.S. and the NSG.

U.S. analyst Ashley J. Tellis argues that the Indo–US nuclear deal is attractive to India because it gives it access to far more options on its civil nuclear programme than would otherwise be the case, primarily by ending its isolation from the international nuclear community. These options include access to latest technologies, access to higher unit output reactors which are more economical, access to global finance for building reactors, ability to export its indigenous small reactor size PHWRs, better information flow for its research community, etc. Finally, the deal also gives India two options that are relatively independent from the three-stage programme, at least in terms of their dependencies on success or failure. The first option is that, India can opt to stay with the first stage reactors as long as the global supply of uranium lasts. The plus side of this is that it covers any risk from short term delays or failures in implementing the three-stage programme. On the negative side, this is an option that is antithetical to the underlying objective of energy independence through the exploitation of thorium.

The second option, and perhaps the more interesting one, is that India can choose to access the third stage of thorium reactors by skipping the more difficult second stage of the plan through some appropriately selected parallel approach such as the high-temperature gas-cooled reactor, the molten salt reactor, or the various accelerator driven systems.

Stakeholder views on the linkages

United States Secretary of State Condoleezza Rice and Indian External Affairs Minister Pranab Mukherjee, after signing the 123 Agreement in Washington, D.C., on 10 October 2008

Indian commentators welcomed the opportunity simply because they could see that India would be able end its international isolation on the nuclear front and obtain a de facto acknowledgement of it as a nuclear weapon state to some degree, in addition to it being able to obtain the uranium that would increase the success potential of its three-stage programme as well as its efforts to build a "minimum credible nuclear deterrent". It was estimated that the power produced by imported reactors could be 50% more expensive than the country's existing nuclear power cost. However, this was perceived as a minor point in the larger context of the deal. In a U.S. Senate Foreign Relations Committee hearing, Under Secretary for Political Affairs Nicholas Burns' prepared remarks stated that "India had made this the central issue in the new partnership developing between our countries". Indian government proceeded to negotiate and execute the Indo–US Nuclear Deal, which then paved the way for the NSG waiver on international uranium imports to India in 2008.

According to one foreign analyst, the deal could "over time… result in India being weaned away from its… three-phase nuclear program involving FBRs and advanced PHWRs. This would occur should India become confident that it would have assured supplies of relatively cheap natural uranium, including from Australia. Of course, nobody in the Indian nuclear establishment would yet admit to that possibility."

Anil Kakodkar, then Chairman of the Atomic Energy Commission, went to the extent of making public, the milder position of keeping the country's indigenous fast breeder programme out of the ambit of international safeguards, saying "in the long run, the energy that will come out from the nuclear fuel resources available in India (from domestic uranium and thorium mines) should always form the larger share of the nuclear energy programme..." and "our strategy should be such that the integrity and autonomy of our being able to develop the three-stage nuclear power programme, be maintained, we cannot compromise that." The full demand of the Indian scientists, to have the ability to reprocess plutonium from spent fuel of the imported reactors (goes beyond the defensive position of Kakodkar), appears to have been met in the final deal.

According to the Indian government's official position, India's indigenous three-stage nuclear power programme is unaffected by the Indo–US Nuclear Deal; "Its full autonomy has been preserved." Both right and left-wing political parties opposed the deal in the Parliament. The left feared the deal would make the country subservient to U.S. interests, while the right felt it would limit further nuclear testing.

According to one view within the Indian defence establishment, the deal "has for all practical purposes capped Indian ability to field test and proof high yield nuclear weapons till some time in future (about 20 years) when Indian three-stage nuclear fuel cycle based on Thorium fuel matures into mainstream power production, thus eliminating Indian dependence on imported nuclear fuel from NSG countries or if there is a breakout in global nuclear test moratorium."

Indian nuclear energy forecasts

Atomic Power Stations in India
 Active plants
 Under construction
 Planned plants

On the basis of the three-stage plan and assuming optimistic development times, some extravagant predictions about nuclear power have been made over the years:

Bhabha announced that there would be 8,000 MW of nuclear power in the country by 1980. As the years progressed, these predictions were to increase. By 1962, the prediction was that nuclear energy would generate 20,000–25,000 MW by 1987, and by 1969, the AEC predicted that by 2000 there would be 43,500 MW of nuclear generating capacity. All of this was before a single unit of nuclear electricity was produced in the country. Reality was quite different. Installed capacity in 1979–80 was about 600 MW, about 950 MW in 1987, and 2720 MW in 2000.

In 2007, after five decades of sustained and generous government financial support, nuclear power's capacity was just 3,310 MW, less than 3% of India's total power generation capacity.

The Integrated Energy Policy of India estimates the share of nuclear power in the total primary energy mix to be between 4% and 6.4% in various scenarios by the year 2031–32. A study by the DAE, estimates that the nuclear energy share will be about 8.6% by the year 2032 and 16.6% by the year 2052. The possible nuclear power capacity beyond the year 2020 has been estimated by DAE is shown in the table.[115] The 63 GW expected by 2032 will be achieved by setting up 16 indigenous Pressurised Heavy Water Reactors (PHWR), of which ten is to be based on reprocessed uranium. Out of the 63 GW, about 40 GW will be generated through the imported Light Water Reactors (LWR), made possible after the NSG waiver.[116]

Year Pessimistic (GWe) Optimistic (GWe)
2030 48 63
2040 104 131
2050 208 275

Indian Prime Minister Manmohan Singh stated in 2009 that the nation could generate up to 470 GW of power by 2050 if it managed the three-stage program well. "This will sharply reduce our dependence on fossil fuels and will be a major contribution to global efforts to combat climate change", he reportedly said. According to plan, 30% of the Indian electricity in 2050 will be generated from thorium based reactors. Indian nuclear scientists estimate that the country could produce 500 GWe for at least four centuries using just the country's economically extractable thorium reserves.

Thorium energy forecasts

According to the Chairman of India's Atomic Energy Commission, Srikumar Banerjee, without the implementation of fast breeders the presently available uranium reserves of 5.469 million tonnes can support 570 GWe till 2025. If the total identified and undiscovered uranium reserves of 16 million tonnes are brought online, the power availability can be extended till the end of the century. While calling for more research into thorium as an energy source and the country's indigenous three-stage programme, he said, "The world always felt there would be a miracle. Unfortunately, we have not seen any miracle for the last 40 years. Unless we wake up, humans won't be able to exist beyond this century."

Light-water reactor

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Light-water_reactor
A simple light-water reactor

The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reactors are the most common type of nuclear reactor, and light-water reactors are the most common type of thermal-neutron reactor.

There are three varieties of light-water reactors: the pressurized water reactor (PWR), the boiling water reactor (BWR), and (most designs of) the supercritical water reactor (SCWR).

History

Early concepts and experiments

After the discoveries of fission, moderation and of the theoretical possibility of a nuclear chain reaction, early experimental results rapidly showed that natural uranium could only undergo a sustained chain reaction using graphite or heavy water as a moderator. While the world's first reactors (CP-1, X10 etc.) were successfully reaching criticality, uranium enrichment began to develop from theoretical concept to practical applications in order to meet the goal of the Manhattan Project, to build a nuclear explosive.

In May 1944, the first grams of enriched uranium ever produced reached criticality in the low power (LOPO) reactor at Los Alamos, which was used to estimate the critical mass of U235 to produce the atomic bomb. LOPO cannot be considered as the first light-water reactor because its fuel was not a solid uranium compound cladded with corrosion-resistant material, but was composed of uranyl sulfate salt dissolved in water. It is however the first aqueous homogeneous reactor and the first reactor using enriched uranium as fuel and ordinary water as a moderator.

By the end of the war, following an idea of Alvin Weinberg, natural uranium fuel elements were arranged in a lattice in ordinary water at the top of the X10 reactor to evaluate the neutron multiplication factor. The purpose of this experiment was to determine the feasibility of a nuclear reactor using light water as a moderator and coolant, and clad solid uranium as fuel. The results showed that, with a lightly enriched uranium, criticality could be reached. This experiment was the first practical step toward the light-water reactor.

After World War II and with the availability of enriched uranium, new reactor concepts became feasible. In 1946, Eugene Wigner and Alvin Weinberg proposed and developed the concept of a reactor using enriched uranium as a fuel, and light water as a moderator and coolant. This concept was proposed for a reactor whose purpose was to test the behavior of materials under neutron flux. This reactor, the Material Testing Reactor (MTR), was built in Idaho at INL and reached criticality on March 31, 1952. For the design of this reactor, experiments were necessary, so a mock-up of the MTR was built at ORNL, to assess the hydraulic performances of the primary circuit and then to test its neutronic characteristics. This MTR mock-up, later called the Low Intensity Test Reactor (LITR), reached criticality on February 4, 1950 and was the world's first light-water reactor.

Pressurized water reactors

Immediately after the end of World War II the United States Navy started a program under the direction of Captain (later Admiral) Hyman Rickover, with the goal of nuclear propulsion for ships. It developed the first pressurized water reactors in the early 1950s, and led to the successful deployment of the first nuclear submarine, the USS Nautilus (SSN-571).

The Soviet Union independently developed a version of the PWR in the late 1950s, under the name of VVER. While functionally very similar to the American effort, it also has certain design distinctions from Western PWRs.

Boiling water reactor

Researcher Samuel Untermyer II led the effort to develop the BWR at the US National Reactor Testing Station (now the Idaho National Laboratory) in a series of tests called the BORAX experiments.

PIUS reactor

PIUS, standing for Process Inherent Ultimate Safety, was a Swedish design designed by ASEA-ATOM. It is a concept for a light-water reactor system. Along with the SECURE reactor, it relied on passive measures, not requiring operator actions or external energy supplies, to provide safe operation. No units were ever built.

OPEN100

In 2020, the Energy Impact Center announced publication of an open-sourced engineering design of a pressurized water reactor capable of producing 300 MWth/100 MWe of energy called OPEN100.

Overview

The Koeberg nuclear power station, consisting of two pressurized water reactors fueled with uranium

The family of nuclear reactors known as light-water reactors (LWR), cooled and moderated using ordinary water, tend to be simpler and cheaper to build than other types of nuclear reactors; due to these factors, they make up the vast majority of civil nuclear reactors and naval propulsion reactors in service throughout the world as of 2009. LWRs can be subdivided into three categories – pressurized water reactors (PWRs), boiling water reactors (BWRs), and supercritical water reactors (SCWRs). The SCWR remains hypothetical as of 2009; it is a Generation IV design that is still a light-water reactor, but it is only partially moderated by light water and exhibits certain characteristics of a fast neutron reactor.

The leaders in national experience with PWRs, offering reactors for export, are the United States (which offers the passively safe AP1000, a Westinghouse design, as well as several smaller, modular, passively safe PWRs, such as the Babcock & Wilcox MPower, and the NuScale MASLWR), the Russian Federation (offering both the VVER-1000 and the VVER-1200 for export), the Republic of France (offering the AREVA EPR for export), and Japan (offering the Mitsubishi Advanced Pressurized Water Reactor for export); in addition, both the People's Republic of China and the Republic of Korea are both noted to be rapidly ascending into the front rank of PWR-constructing nations as well, with the Chinese being engaged in a massive program of nuclear power expansion, and the Koreans currently designing and constructing their second generation of indigenous designs. The leaders in national experience with BWRs, offering reactors for export, are the United States and Japan, with the alliance of General Electric (of the US) and Hitachi (of Japan), offering both the Advanced Boiling Water Reactor (ABWR) and the Economic Simplified Boiling Water Reactor (ESBWR) for construction and export; in addition, Toshiba offers an ABWR variant for construction in Japan, as well. West Germany was also once a major player with BWRs. The other types of nuclear reactor in use for power generation are the heavy water moderated reactor, built by Canada (CANDU) and the Republic of India (AHWR), the advanced gas cooled reactor (AGCR), built by the United Kingdom, the liquid metal cooled reactor (LMFBR), built by the Russian Federation, the Republic of France, and Japan, and the graphite-moderated, water-cooled reactor (RBMK or LWGR), found exclusively within the Russian Federation and former Soviet states.

Though electricity generation capabilities are comparable between all these types of reactor, due to the aforementioned features, and the extensive experience with operations of the LWR, it is favored in the vast majority of new nuclear power plants. In addition, light-water reactors make up the vast majority of reactors that power naval nuclear-powered vessels. Four out of the five great powers with nuclear naval propulsion capacity use light-water reactors exclusively: the British Royal Navy, the Chinese People's Liberation Army Navy, the French Marine nationale, and the United States Navy. Only the Russian Federation's Navy has used a relative handful of liquid-metal cooled reactors in production vessels, specifically the Alfa class submarine, which used lead-bismuth eutectic as a reactor moderator and coolant, but the vast majority of Russian nuclear-powered boats and ships use light-water reactors exclusively. The reason for near exclusive LWR use aboard nuclear naval vessels is the level of inherent safety built into these types of reactors. Since light water is used as both a coolant and a neutron moderator in these reactors, if one of these reactors suffers damage due to military action, leading to a compromise of the reactor core's integrity, the resulting release of the light-water moderator will act to stop the nuclear reaction and shut the reactor down. This capability is known as a negative void coefficient of reactivity.

Currently offered LWRs include the following

LWR statistics

Data from the International Atomic Energy Agency in 2009:

Reactors in operation. 359
Reactors under construction. 27
Number of countries with LWRs. 27
Generating capacity (gigawatts). 328.4

Reactor design

The light-water reactor produces heat by controlled nuclear fission. The nuclear reactor core is the portion of a nuclear reactor where the nuclear reactions take place. It mainly consists of nuclear fuel and control elements. The pencil-thin nuclear fuel rods, each about 12 feet (3.7 m) long, are grouped by the hundreds in bundles called fuel assemblies. Inside each fuel rod, pellets of uranium, or more commonly uranium oxide, are stacked end to end. The control elements, called control rods, are filled with pellets of substances like hafnium or cadmium that readily capture neutrons. When the control rods are lowered into the core, they absorb neutrons, which thus cannot take part in the chain reaction. On the converse, when the control rods are lifted out of the way, more neutrons strike the fissile uranium-235 or plutonium-239 nuclei in nearby fuel rods, and the chain reaction intensifies. All of this is enclosed in a water-filled steel pressure vessel, called the reactor vessel.

In the boiling water reactor, the heat generated by fission turns the water into steam, which directly drives the power-generating turbines. But in the pressurized water reactor, the heat generated by fission is transferred to a secondary loop via a heat exchanger. Steam is produced in the secondary loop, and the secondary loop drives the power-generating turbines. In either case, after flowing through the turbines, the steam turns back into water in the condenser.

The water required to cool the condenser is taken from a nearby river or ocean. It is then pumped back into the river or ocean, in warmed condition. The heat can also be dissipated via a cooling tower into the atmosphere. The United States uses LWR reactors for electric power production, in comparison to the heavy water reactors used in Canada.

Control

A pressurized water reactor head, with the control rods visible on the top

Control rods are usually combined into control rod assemblies — typically 20 rods for a commercial pressurized water reactor assembly — and inserted into guide tubes within a fuel element. A control rod is removed from or inserted into the central core of a nuclear reactor in order to control the number of neutrons which will split further uranium atoms. This in turn affects the thermal power of the reactor, the amount of steam generated, and hence the electricity produced. The control rods are partially removed from the core to allow a chain reaction to occur. The number of control rods inserted and the distance by which they are inserted can be varied to control the reactivity of the reactor.

Usually there are also other means of controlling reactivity. In the PWR design a soluble neutron absorber, usually boric acid, is added to the reactor coolant allowing the complete extraction of the control rods during stationary power operation ensuring an even power and flux distribution over the entire core. Operators of the BWR design use the coolant flow through the core to control reactivity by varying the speed of the reactor recirculation pumps. An increase in the coolant flow through the core improves the removal of steam bubbles, thus increasing the density of the coolant/moderator with the result of increasing power.

Coolant

The light-water reactor also uses ordinary water to keep the reactor cooled. The cooling source, light water, is circulated past the reactor core to absorb the heat that it generates. The heat is carried away from the reactor and is then used to generate steam. Most reactor systems employ a cooling system that is physically separate from the water that will be boiled to produce pressurized steam for the turbines, like the pressurized-water reactor. But in some reactors the water for the steam turbines is boiled directly by the reactor core, for example the boiling-water reactor.

Many other reactors are also light-water cooled, notably the RBMK and some military plutonium-production reactors. These are not regarded as LWRs, as they are moderated by graphite, and as a result their nuclear characteristics are very different. Although the coolant flow rate in commercial PWRs is constant, it is not in nuclear reactors used on U.S. Navy ships.

Fuel

A nuclear fuel pellet
Nuclear fuel pellets that are ready for fuel assembly completion

The use of ordinary water makes it necessary to do a certain amount of enrichment of the uranium fuel before the necessary criticality of the reactor can be maintained. The light-water reactor uses uranium 235 as a fuel, enriched to approximately 3 percent. Although this is its major fuel, the uranium 238 atoms also contribute to the fission process by converting to plutonium 239; about one-half of which is consumed in the reactor. Light-water reactors are generally refueled every 12 to 18 months, at which time, about 25 percent of the fuel is replaced.

The enriched UF6 is converted into uranium dioxide powder that is then processed into pellet form. The pellets are then fired in a high-temperature, sintering furnace to create hard, ceramic pellets of enriched uranium. The cylindrical pellets then undergo a grinding process to achieve a uniform pellet size. The uranium oxide is dried before inserting into the tubes to try to eliminate moisture in the ceramic fuel that can lead to corrosion and hydrogen embrittlement. The pellets are stacked, according to each nuclear core's design specifications, into tubes of corrosion-resistant metal alloy. The tubes are sealed to contain the fuel pellets: these tubes are called fuel rods.

The finished fuel rods are grouped in special fuel assemblies that are then used to build up the nuclear fuel core of a power reactor. The metal used for the tubes depends on the design of the reactor – stainless steel was used in the past, but most reactors now use a zirconium alloy. For the most common types of reactors the tubes are assembled into bundles with the tubes spaced precise distances apart. These bundles are then given a unique identification number, which enables them to be tracked from manufacture through use and into disposal.

Pressurized water reactor fuel consists of cylindrical rods put into bundles. A uranium oxide ceramic is formed into pellets and inserted into zirconium alloy tubes that are bundled together. The zirconium alloy tubes are about 1 cm in diameter, and the fuel cladding gap is filled with helium gas to improve the conduction of heat from the fuel to the cladding. There are about 179-264 fuel rods per fuel bundle and about 121 to 193 fuel bundles are loaded into a reactor core. Generally, the fuel bundles consist of fuel rods bundled 14x14 to 17x17. PWR fuel bundles are about 4 meters in length. The zirconium alloy tubes are pressurized with helium to try to minimize pellet cladding interaction which can lead to fuel rod failure over long periods.

In boiling water reactors, the fuel is similar to PWR fuel except that the bundles are "canned"; that is, there is a thin tube surrounding each bundle. This is primarily done to prevent local density variations from affecting neutronics and thermal hydraulics of the nuclear core on a global scale. In modern BWR fuel bundles, there are either 91, 92, or 96 fuel rods per assembly depending on the manufacturer. A range between 368 assemblies for the smallest and 800 assemblies for the largest U.S. BWR forms the reactor core. Each BWR fuel rod is back filled with helium to a pressure of about three atmospheres (300 kPa).

Moderator

A neutron moderator is a medium which reduces the velocity of fast neutrons, thereby turning them into thermal neutrons capable of sustaining a nuclear chain reaction involving uranium-235. A good neutron moderator is a material full of atoms with light nuclei which do not easily absorb neutrons. The neutrons strike the nuclei and bounce off. After sufficient impacts, the velocity of the neutron will be comparable to the thermal velocities of the nuclei; this neutron is then called a thermal neutron.

The light-water reactor uses ordinary water, also called light water, as its neutron moderator. The light water absorbs too many neutrons to be used with unenriched natural uranium, and therefore uranium enrichment or nuclear reprocessing becomes necessary to operate such reactors, increasing overall costs. This differentiates it from a heavy water reactor, which uses heavy water as a neutron moderator. While ordinary water has some heavy water molecules in it, it is not enough to be important in most applications. In pressurized water reactors the coolant water is used as a moderator by letting the neutrons undergo multiple collisions with light hydrogen atoms in the water, losing speed in the process. This moderating of neutrons will happen more often when the water is denser, because more collisions will occur.

The use of water as a moderator is an important safety feature of PWRs, as any increase in temperature causes the water to expand and become less dense; thereby reducing the extent to which neutrons are slowed down and hence reducing the reactivity in the reactor. Therefore, if reactivity increases beyond normal, the reduced moderation of neutrons will cause the chain reaction to slow down, producing less heat. This property, known as the negative temperature coefficient of reactivity, makes PWRs very stable. In event of a loss-of-coolant accident, the moderator is also lost and the active fission reaction will stop. Heat is still produced after the chain reaction stops from the radioactive byproducts of fission, at about 5% of rated power. This "decay heat" will continue for 1 to 3 years after shut down, whereupon the reactor finally reaches "full cold shutdown". Decay heat, while dangerous and strong enough to melt the core, is not nearly as intense as an active fission reaction. During the post shutdown period the reactor requires cooling water to be pumped or the reactor will overheat. If the temperature exceeds 2200 °C, cooling water will break down into hydrogen and oxygen, which can form a (chemically) explosive mixture. Decay heat is a major risk factor in LWR safety record.

Malonyl-CoA decarboxylase

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Malonyl-CoA_decarboxylase

Malonyl-CoA decarboxylase (EC 4.1.1.9), (which can also be called MCD and malonyl-CoA carboxyl-lyase) is found in bacteria and humans and has important roles in regulating fatty acid metabolism and food intake, and it is an attractive target for drug discovery. It is an enzyme associated with Malonyl-CoA decarboxylase deficiency. In humans, it is encoded by the MLYCD gene.

Its main function is to catalyze the conversion of malonyl-CoA into acetyl-CoA and carbon dioxide. It is involved in fatty acid biosynthesis. To some degree, it reverses the action of Acetyl-CoA carboxylase.

malonyl-CoA decarboxylase
Human mitochondrial Malonyl-CoA decarboxylase. PDB 2ygw
Identifiers
EC no.4.1.1.9
CAS no.9024-99-1
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO

Search

Structure

malonyl-CoA decarboxylase
Malonyl-CoA decarboxylase (mitochondrial, peroxisomal isoform) homotetramer, Human
Identifiers
SymbolMLYCD
NCBI gene23417
HGNC7150
OMIM606761
RefSeqNM_012213
UniProtO95822
Other data
EC number4.1.1.9
LocusChr. 16 q23-q24

MCD presents two isoforms which can be transcribed form one gene: a long isoform (54kDa), distributed in mitochondria, and a short isoform (49kDa) that can be found in peroxisomes and cytosol. The long isoform includes a sequence of signaling towards mitochondria in the N-terminus; whereas the short one only contains the typical sequence of peroxisomal signaling PTS1 in the C-terminus, also shared by the long isoform.

MCD is a protein tetramer, an oligomer formed by a dimer of heterodimers related by an axis of binary symmetry with a rotation angle of about 180 degrees. The strong structural asymmetry between the monomers of the heterodimer suggests a half of the sites reactivity, in which only half of the active sites are functional simultaneously. Each monomer contains basically two domains:

  • The N-terminus one, which is involved in oligomerization and has a helical structure of eight helixes organised as a bundle of four antiparallel helixes with two pairs of inserted helixes.
  • The C-terminus one is where malonyl-CoA catalysis takes place and which is present in GCN5- Histone acetyiltranferase family. It also includes a cluster of seven helixes.

However, the binding site for malonyl-CoA in MCD presents a variation with respect to their homologous: the center of the binding site has a glutamic residue instead of a glycine, acting as a molecular lever in the substrate releasing.

As said before, MCD presents a half of the sites reactivity, due to the fact that each heterodimer has two different structural conformations: B state (bound), in which the substrate is united; and U conformation (unbound), where the substrate union isn't allowed. According to this, the half of the sites mechanism might present a consumption of catalytic energy. Nevertheless, the conformational change produced in a subunit when changing from the B state to the U state (which produces the release of the product) coincides with the formation of a new union site in the active site of the neighbour subunit when changing from the U stat to B state. As a result, the conformational changes synchronised in the pair of subunits facilitates the catalysis despite the reduction of the number of available active sites.

Each monomer of that structure exhibits a large hydrophobic interface with the possibility to form an inter subunit disulfide bridge. Heterodimers are also interconnected by a small C-terminus domain interface, where a pair of cysteines is properly disposed. The disulfide bonds gives to MCD the capability to form a tetrameric enzyme linked by inter subunits covalent bonds in the presence of oxidants such as hydrogen peroxide.

Gene: MLYCD

The malonyl-CoA decarboxylase gene (MLYCD) is located in chromosome 16 (locus: 16q23.3). This gene has 2 transcripts or splice variants, one of which encodes MCD (the other doesn’t encode any protein). It has also 59 orthologues, 1 paralogue and it is associated with 5 phenotypes.

MLYCD is strongly expressed in heart, liver and some other tissues like kidney. This gene is also weakly expressed in many other tissues such as brain, placenta, testis, etc.

Processing and post-translational modifications

Malonyl-CoA decarboxylase is firstly processed as a pro-protein or proenzyme, in which the transit peptide, whose role is to transport the enzyme to a specific organelle (in this case the mitochondria), comprises the first 39 amino acids (beginning with a methionine and ending with an alanine). The polypeptide chain in the mature protein is comprised between amino acid 40 and 493.

In order to turn into an active enzyme, MCD undergoes 8 post-translational modifications (PTM) in different amino acids. The last one, which consists of an acetylation in the amino acid lysine in position 472, activates malonyl-CoA decarboxylase activity. Similarly, a deacetylation in this specific amino acid by SIRT4 (a mitochondrial protein) represses the enzyme activity, inhibiting fatty acid oxidation in muscle cells. Another important PTM is the formation of an interchain disulfide bond in the amino acid cysteine in position 206, which may take place in peroxisomes, as the cytosolic and mitochondrial environments are too reducing for this process.

Functions

The enzyme malonyl-CoA decarboxylase (MCD) functions as an indirect via of conversion from malonic semi aldehyde to acetyl-CoA in peroxisomes. This is due to the fact that the beta oxidation of long chain fatty acids with an odd number of carbons produces propionyl-CoA. Most part of this metabolite is transformed into succinyl-CoA, which is an intermediate of the tricarboxylic acid cycle. The major alternative route by which the propionyl-CoA is metabolized is based on its conversion to acrylyl-CoA. After that, it is converted to 3-hydroxy propionic acid and finally to malonic semi-aldehyde. As soon as malonic semi aldehyde is produced, it is indirectly transformed into acetyl-CoA. This conversion has been detected only in bacteria, in the other natural kingdoms there is no scientific evidence to prove it.

Malonyl-CoA is an important metabolite in some parts of the cell. In peroxisomes, the accumulation of this substance causes malonic aciduria, a highly pathogenic disease. To avoid it malonyl-CoA decarboxylase (MCD) converts malonyl-CoA into acetyl-CoA through the following reaction:

Reaction by which MDC transforms malonyl-CoA into acetyl-CoA

In the cytosol, malonyl-CoA can inhibit the entrance of fatty acids into the mitochondria and it can also act as a precursor for the fatty acids synthesis. Malonyl-CoA also plays an important role inside the mitochondria, where it is an intermediary between fatty acids and acetyl-CoA, which will be a reserve for the Krebs cycle.

Cytoplasmic MCD is thought to play a role in the regulation of cytoplasmic malonyl-CoA abundance and, therefore, of mitochondrial fatty acid uptake and oxidation.[9] It has been observed that MCD mRNA is most abundant in cardiac and skeletal muscles, tissues in which cytoplasmic malonyl-CoA is a strong inhibitor of mitochondrial fatty acid oxidation and which derive significant amounts of energy from fatty acid oxidation.

In peroxisomes, it is proposed that this enzyme could be involved in degrading intraperoxisomal malonyl-CoA, which is produced by the peroxisomal beta oxidation of odd chain length dicarboxylic fatty acids (odd chain length DFAs). While long and medium chain fatty acids are oxidized mainly in the mitochondria, DFAs are oxidized primarily in peroxisomes, which degrade DFAs completely to malonyl-CoA (in the case of odd chain length DFAs) and oxalyl-CoA (for even chain length DFAs). The peroxisomal form of MCD could function to eliminate this final malonyl-CoA.

Malonyl-CoA acts as an intermediary between fatty acids and acetyl-CoA in the mitochondria, where MCD is believed to participate in the elimination of the residual malonyl-CoA, so that acetyl-CoA can enter the Krebs cycle.

MCD also plays a role in the regulation of glucose and lipids as fuels in human tissues. Malonyl-CoA concentrations are crucial in the intracellular energetic regulation and the production or degradation of this metabolite delimits the use of glucose or lipids to produce ATP.

Pathology

The diseases related with MCD can be caused by its mislocalization, mutations affecting the gene MLYCD, its accumulation in peroxisomes and, mainly, its deficiency.

MCS deficiency is a rare autosomal disorder that is widely diagnosed by neonatal screening and it is caused by mutations in MLYCD. It causes many symptoms: brain abnormalities, mild mental retardation, seizures, hypotonia, metabolic acidosis, vomiting, excretion of malonic and methylmalonic acids in urine, cardiomyopathies, and hypoglycemia. More rarely, it can cause rheumatoid arthritis too.

In peroxisomes, the accumulation of MCD substance also causes pathological symptoms, which are similar to MCS deficiency: malonic aciduria, a lethal disease in which patients (normally children) have delayed development and can suffer from seizures, diarrhoea, hypoglycaemia and cardiomyopathy, as well.

Others symptoms caused by an altered action of MCD can be abdominal pain and chronic constipation.

Localization

Malonyl-CoA decarboxylase is present in the cytosolic, mitochondrial and peroxisomal compartments. MCD is found from bacteria to plants. In humans, MCD has been identified in heart, skeletal tissue, pancreas and kidneys. In rats, MCD has been detected in fat, heart and liver.

Enzyme regulation

Because the formation of interchain disulfide bonds leads to positive cooperativity between active sites and increases the affinity for malonyl-CoA and the catalytic efficiency (in vitro), MCD activity doesn't need the intervention of any cofactors or divalent metal ions.

Medical applications

MCD is involved in regulating cardiac malonyl-CoA levels, inhibition of MCD can limit rates of fatty acid oxidation, leading to a secondary increase in glucose oxidation associated with an improvement in the functional recovery of the heart during ischaemia/reperfusion injury. MCD is a potential novel target for cancer treatment.

Personality theories of addiction

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Personality_theories_of_addiction ...