Search This Blog

Monday, November 9, 2015

The Cassandra Effect



From Wikipedia, the free encyclopedia


Painting of Cassandra by Evelyn De Morgan

The Cassandra metaphor (variously labelled the Cassandra 'syndrome', 'complex', 'phenomenon', 'predicament', 'dilemma', or 'curse') occurs when valid warnings or concerns are dismissed or disbelieved.

The term originates in Greek mythology. Cassandra was a daughter of Priam, the King of Troy. Struck by her beauty, Apollo provided her with the gift of prophecy, but when Cassandra refused Apollo's romantic advances, he placed a curse ensuring that nobody would believe her warnings. Cassandra was left with the knowledge of future events, but could neither alter these events nor convince others of the validity of her predictions.

The metaphor has been applied in a variety of contexts such as psychology, environmentalism, politics, science, cinema, the corporate world, and in philosophy, and has been in circulation since at least 1949 when French philosopher Gaston Bachelard coined the term 'Cassandra Complex' to refer to a belief that things could be known in advance.[1]

Usage

Psychology

The Cassandra metaphor is applied by some psychologists to individuals who experience physical and emotional suffering as a result of distressing personal perceptions, and who are disbelieved when they attempt to share the cause of their suffering with others.

Melanie Klein

In 1963, psychologist Melanie Klein provided an interpretation of Cassandra as representing the human moral conscience whose main task is to issue warnings. Cassandra as moral conscience, "predicts ill to come and warns that punishment will follow and grief arise."[2] Cassandra's need to point out moral infringements and subsequent social consequences is driven by what Klein calls "the destructive influences of the cruel super-ego," which is represented in the Greek myth by the god Apollo, Cassandra's overlord and persecutor.[3] Klein's use of the metaphor centers on the moral nature of certain predictions, which tends to evoke in others "a refusal to believe what at the same time they know to be true, and expresses the universal tendency toward denial, [with] denial being a potent defence against persecutory anxiety and guilt."[2]

Laurie Layton Schapira

In a 1988 study Jungian analyst Laurie Layton Schapira explored what she called the "Cassandra Complex" in the lives of two of her analysands.[4]

Based on clinical experience, she delineates three factors which constitute the Cassandra complex:
  1. dysfunctional relationships with the "Apollo archetype",
  2. emotional or physical suffering, including hysteria or ‘women’s problems’,
  3. and being disbelieved when attempting to relate the facticity of these experiences to others.[4]
Layton Schapira views the Cassandra complex as resulting from a dysfunctional relationship with what she calls the "Apollo archetype", which refers to any individual's or culture's pattern that is dedicated to, yet bound by, order, reason, intellect, truth and clarity that disavows itself of anything occult or irrational.[5] The intellectual specialization of this archetype creates emotional distance and can predispose relationships to a lack of emotional reciprocity and consequent dysfunctions.[4] She further states that a 'Cassandra woman' is very prone to hysteria because she "feels attacked not only from the outside world but also from within, especially from the body in the form of somatic, often gynaecological, complaints."[6]

Addressing the metaphorical application of the Greek Cassandra myth, Layton Schapira states that:
What the Cassandra woman sees is something dark and painful that may not be apparent on the surface of things or that objective facts do not corroborate. She may envision a negative or unexpected outcome; or something which would be difficult to deal with; or a truth which others, especially authority figures, would not accept. In her frightened, ego-less state, the Cassandra woman may blurt out what she sees, perhaps with the unconscious hope that others might be able to make some sense of it. But to them her words sound meaningless, disconnected and blown out of all proportion.[6]

Jean Shinoda Bolen

In 1989, Jean Shinoda Bolen, Clinical Professor of Psychiatry at the University of California, published an essay on the god Apollo[7] in which she detailed a psychological profile of the ‘Cassandra woman’ whom she suggested referred to someone suffering — as happened in the mythological relationship between Cassandra and Apollo — a dysfunctional relationship with an “Apollo man”. Bolen added that the Cassandra woman may exhibit “hysterical” overtones, and may be disbelieved when attempting to share what she knows.[8]

According to Bolen, the archetypes of Cassandra and Apollo are not gender-specific. She states that "women often find that a particular [male] god exists in them as well, just as I found that when I spoke about goddesses men could identify a part of themselves with a specific goddess. Gods and goddesses represent different qualities in the human psyche. The pantheon of Greek deities together, male and female, exist as archetypes in us all… There are gods and goddesses in every person."[9]

"As an archetype, Apollo personifies the aspect of the personality that wants clear definitions, is drawn to master a skill, values order and harmony, and prefers to look at the surface rather than at what underlies appearances. The Apollo archetype favors thinking over feeling, distance over closeness, objective assessment over subjective intuition."[10]

Of what she describes as the negative Apollonic influence, Dr. Bolen writes:
Individuals who resemble Apollo have difficulties that are related to emotional distance, such as communication problems, and the inability to be intimate… Rapport with another person is hard for the Apollo man. He prefers to access (or judge) the situation or the person from a distance, not knowing that he must "get close up" – be vulnerable and empathic – in order to truly know someone else…. But if the woman wants a deeper, more personal relationship, then there are difficulties… she may become increasingly irrational or hysterical.[8]
Bolen suggests that a Cassandra woman (or man) may become increasingly hysterical and irrational when in a dysfunctional relationship with a negative Apollo, and may experience others' disbelief when describing her experiences.[8]

Corporate world

Foreseeing potential future directions for a corporation or company is sometimes called ‘visioning’.[11] Yet achieving a clear, shared vision in an organization is often difficult due to a lack of commitment to the new vision by some individuals in the organization, because it does not match reality as they see it. Those who support the new vision are termed ‘Cassandras’ – able to see what is going to happen, but not believed.[11] Sometimes the name Cassandra is applied to those who can predict rises, falls, and particularly crashes on the global stock market, as happened with Warren Buffett, who repeatedly warned that the 1990s stock market surge was a bubble, attracting to him the title of 'Wall Street Cassandra'.[12]

Environmental movement

Many environmentalists have predicted looming environmental catastrophes including climate change, rise in sea levels, irreversible pollution, and an impending collapse of ecosystems, including those of rainforests and ocean reefs.[13] Such individuals sometimes acquire the label of 'Cassandras', whose warnings of impending environmental disaster are disbelieved or mocked.[13]

Environmentalist Alan Atkisson states that to understand that humanity is on a collision course with the laws of nature is to be stuck in what he calls the 'Cassandra dilemma' in which one can see the most likely outcome of current trends and can warn people about what is happening, but the vast majority can not, or will not respond, and later if catastrophe occurs, they may even blame you, as if your prediction set the disaster in motion.[14] Occasionally there may be a "successful" alert, though the succession of books, campaigns, organizations, and personalities that we think of as the environmental movement has more generally fallen toward the opposite side of this dilemma: a failure to "get through" to the people and avert disaster. In the words of Atkisson: "too often we watch helplessly, as Cassandra did, while the soldiers emerge from the Trojan horse just as foreseen and wreak their predicted havoc. Worse, Cassandra's dilemma has seemed to grow more inescapable even as the chorus of Cassandras has grown larger."[15]

Other examples

There are examples of the Cassandra metaphor being applied in the contexts of medical science,[16][17] the media,[18] to feminist perspectives on 'reality',[19][20] in relation to Asperger’s Disorder (a 'Cassandra Syndrome' is sometimes said to arise when partners or family members of the Asperger individual seek help but are disbelieved,)[21][22][23] and in politics.[24] There are also examples of the metaphor being used in popular music lyrics, such as the 1982 ABBA song "Cassandra"[25][26] and Star One's "Cassandra Complex". The five-part The Mars Volta song "Cassandra Gemini" may reference this syndrome,[27] as well as the film 12 Monkeys or in dead and divine's "cassandra syndrome".

Novikov self-consistency principle



From Wikipedia, the free encyclopedia

The Novikov self-consistency principle, also known as the Novikov self-consistency conjecture, is a principle developed by Russian physicist Igor Dmitriyevich Novikov in the mid-1980s to solve the problem of paradoxes in time travel, which is theoretically permitted in certain solutions of general relativity (solutions containing what are known as closed timelike curves). The principle asserts that if an event exists that would give rise to a paradox, or to any "change" to the past whatsoever, then the probability of that event is zero. It would thus be impossible to create time paradoxes.

History of the principle

Physicists have long been aware that there are solutions to the theory of general relativity which contain closed timelike curves, or CTCs—see for example the Gödel metric. Novikov discussed the possibility of CTCs in books written in 1975 and 1983,[1] offering the opinion that only self-consistent trips back in time would be permitted.[2] In a 1990 paper by Novikov and several others, "Cauchy problem in spacetimes with closed timelike curves",[3] the authors state:
The only type of causality violation that the authors would find unacceptable is that embodied in the science-fiction concept of going backward in time and killing one's younger self ("changing the past"). Some years ago one of us (Novikov10) briefly considered the possibility that CTCs might exist and argued that they cannot entail this type of causality violation: Events on a CTC are already guaranteed to be self-consistent, Novikov argued; they influence each other around a closed curve in a self-adjusted, cyclical, self-consistent way. The other authors recently have arrived at the same viewpoint.
We shall embody this viewpoint in a principle of self-consistency, which states that the only solutions to the laws of physics that can occur locally in the real Universe are those which are globally self-consistent. This principle allows one to build a local solution to the equations of physics only if that local solution can be extended to a part of a (not necessarily unique) global solution, which is well defined throughout the nonsingular regions of the spacetime.
Among the coauthors of this 1990 paper were Kip Thorne, Mike Morris, and Ulvi Yurtsever, who in 1988 had stirred up renewed interest in the subject of time travel in general relativity with their paper "Wormholes, Time Machines, and the Weak Energy Condition",[4] which showed that a new general relativity solution known as a traversable wormhole could lead to closed timelike curves, and unlike previous CTC-containing solutions it did not require unrealistic conditions for the universe as a whole. After discussions with another coauthor of the 1990 paper, John Friedman, they convinced themselves that time travel need not lead to unresolvable paradoxes, regardless of what type of object was sent through the wormhole.[5]:509

In response, another physicist named Joseph Polchinski sent them a letter in which he argued that one could avoid questions of free will by considering a potentially paradoxical situation involving a billiard ball sent through a wormhole which sends it back in time. In this scenario, the ball is fired into a wormhole at an angle such that, if it continues along that path, it will exit the wormhole in the past at just the right angle to collide with its earlier self, thereby knocking it off course and preventing it from entering the wormhole in the first place. Thorne deemed this problem "Polchinski's paradox".[5]:510–511

After considering the problem, two students at Caltech (where Thorne taught), Fernando Echeverria and Gunnar Klinkhammer, were able to find a solution beginning with the original billiard ball trajectory proposed by Polchinski which managed to avoid any inconsistencies. In this situation, the billiard ball emerges from the future at a different angle than the one used to generate the paradox, and delivers its younger self a glancing blow instead of knocking it completely away from the wormhole, a blow which changes its trajectory in just the right way so that it will travel back in time with the angle required to deliver its younger self this glancing blow. Echeverria and Klinkhammer actually found that there was more than one self-consistent solution, with slightly different angles for the glancing blow in each case. Later analysis by Thorne and Robert Forward showed that for certain initial trajectories of the billiard ball, there could actually be an infinite number of self-consistent solutions.[5]:511–513

Echeverria, Klinkhammer and Thorne published a paper discussing these results in 1991;[6] in addition, they reported that they had tried to see if they could find any initial conditions for the billiard ball for which there were no self-consistent extensions, but were unable to do so. Thus it is plausible that there exist self-consistent extensions for every possible initial trajectory, although this has not been proven.[7]:184 This only applies to initial conditions which are outside of the chronology-violating region of spacetime,[7]:187 which is bounded by a Cauchy horizon.[8] This could mean that the Novikov self-consistency principle does not actually place any constraints on systems outside of the region of spacetime where time travel is possible, only inside it.

Even if self-consistent extensions can be found for arbitrary initial conditions outside the Cauchy Horizon, the finding that there can be multiple distinct self-consistent extensions for the same initial condition—indeed, Echeverria et al. found an infinite number of consistent extensions for every initial trajectory they analyzed[7]:184—can be seen as problematic, since classically there seems to be no way to decide which extension the laws of physics will choose. To get around this difficulty, Thorne and Klinkhammer analyzed the billiard ball scenario using quantum mechanics,[5]:514–515 performing a quantum-mechanical sum over histories (path integral) using only the consistent extensions, and found that this resulted in a well-defined probability for each consistent extension. The authors of Cauchy problem in spacetimes with closed timelike curves write:
The simplest way to impose the principle of self-consistency in quantum mechanics (in a classical space-time) is by a sum-over-histories formulation in which one includes all those, and only those, histories that are self-consistent. It turns out that, at least formally (modulo such issues as the convergence of the sum), for every choice of the billiard ball's initial, nonrelativistic wave function before the Cauchy horizon, such a sum over histories produces unique, self-consistent probabilities for the outcomes of all sets of subsequent measurements. ... We suspect, more generally, that for any quantum system in a classical wormhole spacetime with a stable Cauchy horizon, the sum over all self-consistent histories will give unique, self-consistent probabilities for the outcomes of all sets of measurements that one might choose to make.

Assumptions of the Novikov self-consistency principle

The Novikov consistency principle assumes certain conditions about what sort of time travel is possible. Specifically, it assumes either that there is only one timeline, or that any alternative timelines (such as those postulated by the many-worlds interpretation of quantum mechanics) are not accessible.

Given these assumptions, the constraint that time travel must not lead to inconsistent outcomes could be seen merely as a tautology, a self-evident truth that cannot possibly be false, because if you make the assumption that it is false this would lead to a logical paradox. However, the Novikov self-consistency principle is intended to go beyond just the statement that history must be consistent, making the additional nontrivial assumption that the universe obeys the same local laws of physics in situations involving time travel that it does in regions of spacetime that lack closed timelike curves. This is made clear in the above-mentioned Cauchy problem in spacetimes with closed timelike curves,[3] where the authors write:
That the principle of self-consistency is not totally tautological becomes clear when one considers the following alternative: The laws of physics might permit CTC's; and when CTC's occur, they might trigger new kinds of local physics which we have not previously met. ... The principle of self-consistency is intended to rule out such behavior. It insists that local physics is governed by the same types of physical laws as we deal with in the absence of CTC's: the laws that entail self-consistent single valuedness for the fields. In essence, the principle of self-consistency is a principle of no new physics. If one is inclined from the outset to ignore or discount the possibility of new physics, then one will regard self-consistency as a trivial principle.

Implications for time travelers

The assumptions of the self-consistency principle can be extended to hypothetical scenarios involving intelligent time travelers as well as unintelligent objects such as billiard balls. The authors of "Cauchy problem in spacetimes with closed timelike curves" commented on the issue in the paper's conclusion, writing:
If CTC's are allowed, and if the above vision of theoretical physics' accommodation with them turns out to be more or less correct, then what will this imply about the philosophical notion of free will for humans and other intelligent beings? It certainly will imply that intelligent beings cannot change the past. Such change is incompatible with the principle of self-consistency. Consequently, any being who went through a wormhole and tried to change the past would be prevented by physical law from making the change; i.e., the "free will" of the being would be constrained. Although this constraint has a more global character than constraints on free will that follow from the standard, local laws of physics, it is not obvious to us that this constraint is more severe than those imposed by standard physical law.[3]
Similarly, physicist and astronomer J. Craig Wheeler concludes that:
According to the consistency conjecture, any complex interpersonal interactions must work themselves out self-consistently so that there is no paradox. That is the resolution. This means, if taken literally, that if time machines exist, there can be no free will. You cannot will yourself to kill your younger self if you travel back in time. You can coexist, take yourself out for a beer, celebrate your birthday together, but somehow circumstances will dictate that you cannot behave in a way that leads to a paradox in time. Novikov supports this point of view with another argument: physics already restricts your free will every day. You may will yourself to fly or to walk through a concrete wall, but gravity and condensed-matter physics dictate that you cannot. Why, Novikov asks, is the consistency restriction placed on a time traveler any different?[9]

Time loop logic

Time loop logic, coined by the roboticist and futurist Hans Moravec,[10] is the name of a hypothetical system of computation that exploits the Novikov self-consistency principle to compute answers much faster than possible with the standard model of computational complexity using Turing machines. In this system, a computer sends a result of a computation backwards through time and relies upon the self-consistency principle to force the sent result to be correct, providing the machine can reliably receive information from the future and providing the algorithm and the underlying mechanism are formally correct. An incorrect result or no result can still be produced if the time travel mechanism or algorithm are not guaranteed to be accurate.

A simple example is an iterative method algorithm. Moravec states:
Make a computing box that accepts an input, which represents an approximate solution to some problem, and produces an output that is an improved approximation. Conventionally you would apply such a computation repeatedly a finite number of times, and then settle for the better, but still approximate, result. Given an appropriate negative delay something else is possible: [...] the result of each iteration of the function is brought back in time to serve as the "first" approximation. As soon as the machine is activated, a so-called "fixed-point" of F, an input which produces an identical output, usually signaling a perfect answer, appears (by an extraordinary coincidence!) immediately and steadily. [...] If the iteration does not converge, that is, if F has no fixed point, the computer outputs and inputs will shut down or hover in an unlikely intermediate state.
Physicist David Deutsch showed in 1991 that this model of computation could solve NP problems in polynomial time,[11] and Scott Aaronson later extended this result to show that the model could also be used to solve PSPACE problems in polynomial time.[12][13]

Wormhole



From Wikipedia, the free encyclopedia

A wormhole or Einstein-Rosen Bridge is a hypothetical topological feature that would fundamentally be a shortcut connecting two separate points in spacetime that could connect extremely far distances such as a billion light years or more, short distances, such as a few feet, different universes, and in theory, different points in time. A wormhole is much like a tunnel with two ends, each in separate points in spacetime.
For a simplified notion of a wormhole, space can be visualized as a two-dimensional (2D) surface. In this case, a wormhole would appear as a hole in that surface, lead into a 3D tube (the inside surface of a cylinder), then re-emerge at another location on the 2D surface with a hole similar to the entrance. An actual wormhole would be analogous to this, but with the spatial dimensions raised by one. For example, instead of circular holes on a 2D plane, the entry and exit points could be visualized as spheres in 3D space.

Overview

Researchers have no observational evidence for wormholes, but the equations of the theory of general relativity have valid solutions that contain wormholes. The first type of wormhole solution discovered was the Schwarzschild wormhole, which would be present in the Schwarzschild metric describing an eternal black hole, but it was found that it would collapse too quickly for anything to cross from one end to the other. Wormholes that could be crossed in both directions, known as traversable wormholes, would only be possible if exotic matter with negative energy density could be used to stabilize them. Wormholes are also a very powerful mathematical metaphor for teaching general relativity.

The Casimir effect shows that quantum field theory allows the energy density in certain regions of space to be negative relative to the ordinary vacuum energy, and it has been shown theoretically that quantum field theory allows states where energy can be arbitrarily negative at a given point.[1] Many physicists, such as Stephen Hawking,[2] Kip Thorne[3] and others,[4][5][6] therefore argue that such effects might make it possible to stabilize a traversable wormhole. Physicists have not found any natural process that would be predicted to form a wormhole naturally in the context of general relativity, although the quantum foam hypothesis is sometimes used to suggest that tiny wormholes might appear and disappear spontaneously at the Planck scale,[7][8] and stable versions of such wormholes have been suggested as dark matter candidates.[9][10] It has also been proposed that, if a tiny wormhole held open by a negative mass cosmic string had appeared around the time of the Big Bang, it could have been inflated to macroscopic size by cosmic inflation.[11]

The American theoretical physicist John Archibald Wheeler coined the term wormhole in 1957; the German mathematician Hermann Weyl, however, had proposed the wormhole theory in 1921, in connection with mass analysis of electromagnetic field energy.[12]
This analysis forces one to consider situations... where there is a net flux of lines of force, through what topologists would call "a handle" of the multiply-connected space, and what physicists might perhaps be excused for more vividly terming a "wormhole".
— John Wheeler in Annals of Physics

"Embedding diagram" of a Schwarzschild wormhole (see below)

Definition

The basic notion of an intra-universe wormhole is that it is a compact region of spacetime whose boundary is topologically trivial, but whose interior is not simply connected. Formalizing this idea leads to definitions such as the following, taken from Matt Visser's Lorentzian Wormholes.
If a Minkowski spacetime contains a compact region Ω, and if the topology of Ω is of the form Ω ~ R x Σ, where Σ is a three-manifold of the nontrivial topology, whose boundary has topology of the form ∂Σ ~ S2, and if, furthermore, the hypersurfaces Σ are all spacelike, then the region Ω contains a quasipermanent intra-universe wormhole.
Wormholes have been defined geometrically, as opposed to topologically,[clarification needed] as regions of spacetime that constrain the incremental deformation of closed surfaces. For example, in Enrico Rodrigo’s The Physics of Stargates, a wormhole is defined informally as:
a region of spacetime containing a "world tube" (the time evolution of a closed surface) that cannot be continuously deformed (shrunk) to a world line (the time evolution of a point).

Schwarzschild wormholes


An artist's impression of a wormhole from an observer's perspective, crossing the event horizon of a Schwarzschild wormhole that bridges two different universes. The observer originates from the right, and another universe becomes visible in the center of the wormhole’s shadow once the horizon is crossed, the observer seeing light that has fallen into the black hole interior region from the other universe; however, this other universe is unreachable in the case of a Schwarzschild wormhole, as the bridge always collapses before the observer has time to cross it, and everything that has fallen through the event horizon of either universe is inevitably crushed in the singularity.

Lorentzian wormholes known as Schwarzschild wormholes or Einstein–Rosen bridges are connections between areas of space that can be modeled as vacuum solutions to the Einstein field equations, and that are now understood to be intrinsic parts of the maximally extended version of the Schwarzschild metric describing an eternal black hole with no charge and no rotation. Here, "maximally extended" refers to the idea that the spacetime should not have any "edges": for any possible trajectory of a free-falling particle (following a Geodesic in the spacetime, it should be possible to continue this path arbitrarily far into the particle's future or past, unless the trajectory hits a gravitational singularity like the one at the center of the black hole's interior. In order to satisfy this requirement, it turns out that in addition to the black hole interior region that particles enter when they fall through the event horizon from the outside, there must be a separate white hole interior region that allows us to extrapolate the trajectories of particles that an outside observer sees rising up away from the event horizon. And just as there are two separate interior regions of the maximally extended spacetime, there are also two separate exterior regions, sometimes called two different "universes", with the second universe allowing us to extrapolate some possible particle trajectories in the two interior regions. This means that the interior black hole region can contain a mix of particles that fell in from either universe (and thus an observer who fell in from one universe might be able to see light that fell in from the other one), and likewise particles from the interior white hole region can escape into either universe. All four regions can be seen in a spacetime diagram that uses Kruskal–Szekeres coordinates.

In this spacetime, it is possible to come up with coordinate systems such that if you pick a hypersurface of constant time (a set of points that all have the same time coordinate, such that every point on the surface has a space-like separation, giving what is called a 'space-like surface') and draw an "embedding diagram" depicting the curvature of space at that time, the embedding diagram will look like a tube connecting the two exterior regions, known as an "Einstein–Rosen bridge". Note that the Schwarzschild metric describes an idealized black hole that exists eternally from the perspective of external observers; a more realistic black hole that forms at some particular time from a collapsing star would require a different metric. When the infalling stellar matter is added to a diagram of a black hole's history, it removes the part of the diagram corresponding to the white hole interior region, along with the part of the diagram corresponding to the other universe.[13]

The Einstein–Rosen bridge was discovered by Ludwig Flamm[14] in 1916, a few months after Schwarzschild published his solution, and was rediscovered (although it is hard to imagine that Einstein had not seen Flamm's paper when it came out) by Albert Einstein and his colleague Nathan Rosen, who published their result in 1935. However, in 1962, John A. Wheeler and Robert W. Fuller published a paper showing that this type of wormhole is unstable if it connects two parts of the same universe, and that it will pinch off too quickly for light (or any particle moving slower than light) that falls in from one exterior region to make it to the other exterior region.

According to general relativity, the gravitational collapse of a sufficiently compact mass forms a singular Schwarzschild black hole. In the Einstein–Cartan–Sciama–Kibble theory of gravity, however, it forms a regular Einstein–Rosen bridge. This theory extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the torsion tensor, as a dynamical variable. Torsion naturally accounts for the quantum-mechanical, intrinsic angular momentum (spin) of matter. The minimal coupling between torsion and Dirac spinors generates a repulsive spin–spin interaction that is significant in fermionic matter at extremely high densities. Such an interaction prevents the formation of a gravitational singularity.[clarification needed] Instead, the collapsing matter reaches an enormous but finite density and rebounds, forming the other side of the bridge.[15]

Before the stability problems of Schwarzschild wormholes were apparent, it was proposed that quasars were white holes forming the ends of wormholes of this type.[citation needed]

Although Schwarzschild wormholes are not traversable in both directions, their existence inspired Kip Thorne to imagine traversable wormholes created by holding the "throat" of a Schwarzschild wormhole open with exotic matter (material that has negative mass/energy).

Traversable wormholes


Image of a simulated traversable wormhole that connects the square in front of the physical institutes of University of Tübingen with the sand dunes near Boulogne sur Mer in the north of France. The image is calculated with 4D raytracing in a Morris–Thorne wormhole metric, but the gravitational effects on the wavelength of light have not been simulated.[16]

Lorentzian traversable wormholes would allow travel in both directions from one part of the universe to another part of that same universe very quickly or would allow travel from one universe to another. The possibility of traversable wormholes in general relativity was first demonstrated by Kip Thorne and his graduate student Mike Morris in a 1988 paper. For this reason, the type of traversable wormhole they proposed, held open by a spherical shell of exotic matter, is referred to as a Morris–Thorne wormhole. Later, other types of traversable wormholes were discovered as allowable solutions to the equations of general relativity, including a variety analyzed in a 1989 paper by Matt Visser, in which a path through the wormhole can be made where the traversing path does not pass through a region of exotic matter. However, in the pure Gauss–Bonnet gravity (a modification to general relativity involving extra spatial dimensions which is sometimes studied in the context of brane cosmology) exotic matter is not needed in order for wormholes to exist—they can exist even with no matter.[17] A type held open by negative mass cosmic strings was put forth by Visser in collaboration with Cramer et al.,[11] in which it was proposed that such wormholes could have been naturally created in the early universe.

Wormholes connect two points in spacetime, which means that they would in principle allow travel in time, as well as in space. In 1988, Morris, Thorne and Yurtsever worked out explicitly how to convert a wormhole traversing space into one traversing time.[3] However, according to general relativity, it would not be possible to use a wormhole to travel back to a time earlier than when the wormhole was first converted into a time machine by accelerating one of its two mouths.[18]

Raychaudhuri's theorem and exotic matter

To see why exotic matter is required, consider an incoming light front traveling along geodesics, which then crosses the wormhole and re-expands on the other side. The expansion goes from negative to positive. As the wormhole neck is of finite size, we would not expect caustics to develop, at least within the vicinity of the neck. According to the optical Raychaudhuri's theorem, this requires a violation of the averaged null energy condition. Quantum effects such as the Casimir effect cannot violate the averaged null energy condition in any neighborhood of space with zero curvature,[19] but calculations in semiclassical gravity suggest that quantum effects may be able to violate this condition in curved spacetime.[20] Although it was hoped recently that quantum effects could not violate an achronal version of the averaged null energy condition,[21] violations have nevertheless been found,[22] so it remains an open possibility that quantum effects might be used to support a wormhole.

Faster-than-light travel

The impossibility of faster-than-light relative speed only applies locally. Wormholes might allow superluminal (faster-than-light) travel by ensuring that the speed of light is not exceeded locally at any time. While traveling through a wormhole, subluminal (slower-than-light) speeds are used. If two points are connected by a wormhole whose length is shorter than the distance between them outside the wormhole, the time taken to traverse it could be less than the time it would take a light beam to make the journey if it took a path through the space outside the wormhole. However, a light beam traveling through the wormhole would of course beat the traveler.

Time travel

The theory of general relativity predicts that if traversable wormholes exist, they could allow time travel.[3] This would be accomplished by accelerating one end of the wormhole to a high velocity relative to the other, and then sometime later bringing it back; relativistic time dilation would result in the accelerated wormhole mouth aging less than the stationary one as seen by an external observer, similar to what is seen in the twin paradox. However, time connects differently through the wormhole than outside it, so that synchronized clocks at each mouth will remain synchronized to someone traveling through the wormhole itself, no matter how the mouths move around.[23] This means that anything which entered the accelerated wormhole mouth would exit the stationary one at a point in time prior to its entry.

For example, consider two clocks at both mouths both showing the date as 2000. After being taken on a trip at relativistic velocities, the accelerated mouth is brought back to the same region as the stationary mouth with the accelerated mouth's clock reading 2004 while the stationary mouth's clock read 2012. A traveler who entered the accelerated mouth at this moment would exit the stationary mouth when its clock also read 2004, in the same region but now eight years in the past. Such a configuration of wormholes would allow for a particle's world line to form a closed loop in spacetime, known as a closed timelike curve. An object traveling through a wormhole could carry energy or charge from one time to another, but this would not violate conservation of energy or charge in each time, because the energy/charge of the wormhole mouth itself would change to compensate for the object that fell into it or emerged from it.[24][25]

It is thought that it may not be possible to convert a wormhole into a time machine in this manner; the predictions are made in the context of general relativity, but general relativity does not include quantum effects. Analyses using the semiclassical approach to incorporating quantum effects into general relativity have sometimes indicated that a feedback loop of virtual particles would circulate through the wormhole and pile up on themselves, driving the energy density in the region very high and possibly destroying it before any information could be passed through it, in keeping with the chronology protection conjecture. The debate on this matter is described by Kip S. Thorne in the book Black Holes and Time Warps, and a more technical discussion can be found in The quantum physics of chronology protection by Matt Visser.[26] There is also the Roman ring, which is a configuration of more than one wormhole. This ring seems to allow a closed time loop with stable wormholes when analyzed using semiclassical gravity, although without a full theory of quantum gravity it is uncertain whether the semiclassical approach is reliable in this case.

Interuniversal travel

A possible resolution to the paradoxes resulting from wormhole-enabled time travel rests on the many-worlds interpretation of quantum mechanics. In 1991 David Deutsch showed that quantum theory is fully consistent (in the sense that the so-called density matrix can be made free of discontinuities) in spacetimes with closed timelike curves.[27] However, later it was shown that such model of closed timelike curve can have internal inconsistencies as it will lead to strange phenomena like distinguishing non orthogonal quantum states and distinguishing proper and improper mixture.[28][29] Accordingly, the destructive positive feedback loop of virtual particles circulating through a wormhole time machine, a result indicated by semi-classical calculations, is averted. A particle returning from the future does not return to its universe of origination but to a parallel universe. This suggests that a wormhole time machine with an exceedingly short time jump is a theoretical bridge between contemporaneous parallel universes.[30] Because a wormhole time-machine introduces a type of nonlinearity into quantum theory, this sort of communication between parallel universes is consistent with Joseph Polchinski’s discovery of an "Everett phone" in Steven Weinberg’s formulation of nonlinear quantum mechanics.[31] Such a possibility is depicted in the science-fiction 2014 movie Interstellar.

Metrics

Theories of wormhole metrics describe the spacetime geometry of a wormhole and serve as theoretical models for time travel. An example of a (traversable) wormhole metric is the following:[clarification needed (equations that are not discussed, not part of general discussion)]
ds^2= - c^2 dt^2 + dl^2 + (k^2 + l^2)(d \theta^2 + \sin^2 \theta \, d\phi^2).
One type of non-traversable wormhole metric is the Schwarzschild solution (see the first diagram):
ds^2= - c^2 \left(1 - \frac{2GM}{rc^2}\right)dt^2 + \frac{dr^2}{1 - \frac{2GM}{rc^2}} + r^2(d \theta^2 + \sin^2 \theta \, d\phi^2).

In fiction

Wormholes are a common element in science fiction as they allow interstellar, intergalactic, and sometimes interuniversal travel within human timescales. They have also served as a method for time travel.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...