Search This Blog

Thursday, March 18, 2021

Ecological resilience

From Wikipedia, the free encyclopedia

Temperate lake and Mulga woodland
Lake and Mulga ecosystems with alternative stable states

In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and recovering quickly. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities such as deforestation, fracking of the ground for oil extraction, pesticide sprayed in soil, and the introduction of exotic plant or animal species. Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem and may force an ecosystem to reach a threshold beyond which a different regime of processes and structures predominates. When such thresholds are associated with a critical or bifurcation point, these regime shifts may also be referred to as critical transitions.

Human activities that adversely affect ecological resilience such as reduction of biodiversity, exploitation of natural resources, pollution, land use, and anthropogenic climate change are increasingly causing regime shifts in ecosystems, often to less desirable and degraded conditions. Interdisciplinary discourse on resilience now includes consideration of the interactions of humans and ecosystems via socio-ecological systems, and the need for shift from the maximum sustainable yield paradigm to environmental resource management which aims to build ecological resilience through "resilience analysis, adaptive resource management, and adaptive governance".

Definitions

The concept of resilience in ecological systems was first introduced by the Canadian ecologist C.S. Holling  in order to describe the persistence of natural systems in the face of changes in ecosystem variables due to natural or anthropogenic causes. Resilience has been defined in two ways in ecological literature:

  1. as the time required for an ecosystem to return to an equilibrium or steady-state following a perturbation (which is also defined as stability by some authors). This definition of resilience is used in other fields such as physics and engineering, and hence has been termed ‘engineering resilience’ by Holling.
  2. as "the capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks".

The second definition has been termed ‘ecological resilience’, and it presumes the existence of multiple stable states or regimes.

Some shallow temperate lakes can exist within either clear water regime, which provides many ecosystem services, or a turbid water regime, which provides reduced ecosystem services and can produce toxic algae blooms. The regime or state is dependent upon lake phosphorus cycles, and either regime can be resilient dependent upon the lake's ecology and management.

Mulga woodlands of Australia can exist in a grass-rich regime that supports sheep herding, or a shrub-dominated regime of no value for sheep grazing. Regime shifts are driven by the interaction of fire, herbivory, and variable rainfall. Either state can be resilient dependent upon management.

Theory

Three levels of a panarchy, three adaptive cycles, and two cross-level linkages (remember and revolt)

Ecologists Brian Walker, C S Holling and others describe four critical aspects of resilience: latitude, resistance, precariousness, and panarchy.

The first three can apply both to a whole system or the sub-systems that make it up.

  1. Latitude: the maximum amount a system can be changed before losing its ability to recover (before crossing a threshold which, if breached, makes recovery difficult or impossible).
  2. Resistance: the ease or difficulty of changing the system; how “resistant” it is to being changed.
  3. Precariousness: how close the current state of the system is to a limit or “threshold.”.
  4. Panarchy: the degree to which a certain hierarchical level of an ecosystem is influenced by other levels. For example, organisms living in communities that are in isolation from one another may be organized differently from the same type of organism living in a large continuous population, thus the community-level structure is influenced by population-level interactions.

Closely linked to resilience is adaptive capacity, which is the property of an ecosystem that describes change in stability landscapes and resilience. Adaptive capacity in socio-ecological systems refers to the ability of humans to deal with change in their environment by observation, learning and altering their interactions.

Human impacts

Resilience refers to ecosystem's stability and capability of tolerating disturbance and restoring itself.  If the disturbance is of sufficient magnitude or duration, a threshold may be reached where the ecosystem undergoes a regime shift, possibly permanently. Sustainable use of environmental goods and services requires understanding and consideration of the resilience of the ecosystem and its limits. However, the elements which influence ecosystem resilience are complicated. For example, various elements such as the water cycle, fertility, biodiversity, plant diversity and climate, interact fiercely and affect different systems.

There are many areas where human activity impacts upon and is also dependent upon the resilience of terrestrial, aquatic and marine ecosystems. These include agriculture, deforestation, pollution, mining, recreation, overfishing, dumping of waste into the sea and climate change.

Agriculture

Agriculture can be seen as a significant example which the resilience of terrestrial ecosystems should be considered. The organic matter (elements carbon and nitrogen) in soil, which is supposed to be recharged by multiple plants, is the main source of nutrients for crop growth. At the same time, intensive agriculture practices in response to global food demand and shortages involves the removal of weeds and the application of fertilisers to increase food production. However, as a result of agricultural intensification and the application of herbicides to control weeds, fertilisers to accelerate and increase crop growth and pesticides to control insects, plant biodiversity is reduced as is the supply of organic matter to replenish soil nutrients and prevent surface runoff. This leads to a reduction in soil fertility and productivity. More sustainable agricultural practices would take into account and estimate the resilience of the land and monitor and balance the input and output of organic matter.

Deforestation

The term deforestation has a meaning that covers crossing the threshold of forest's resilience and losing its ability to return its originally stable state. To recover itself, a forest ecosystem needs suitable interactions among climate conditions and bio-actions, and enough area. In addition, generally, the resilience of a forest system allows recovery from a relatively small scale of damage (such as lightning or landslide) of up to 10 per cent of its area. The larger the scale of damage, the more difficult it is for the forest ecosystem to restore and maintain its balance.

Deforestation also decreases biodiversity of both plant and animal life and can lead to an alteration of the climatic conditions of an entire area. Deforestation can also lead to species extinction, which can have a domino effect particularly when keystone species are removed or when a significant number of species is removed and their ecological function is lost.

Climate change

Climate resilience is generally defined as the capacity for a socio-ecological system to: (1) absorb stresses and maintain function in the face of external stresses imposed upon it by climate change and (2) adapt, reorganize, and evolve into more desirable configurations that improve the sustainability of the system, leaving it better prepared for future climate change impacts. Increasingly, climate change is threatening human communities around the world in a variety of ways such as rising sea levels, increasingly frequent large storms, tidal surges and flooding damage. One of the main results of climate change is rising sea water temperature which has a serious effect on coral reefs, through thermal-stress related coral bleaching. Between 1997-1998 the most significant worldwide coral bleaching event was recorded which corresponded with the El Nino Southern Oscillation, with significant damage to the coral reefs of the Western Indian Ocean.

Overfishing

It has been estimated by the United Nations Food and Agriculture Organisation that over 70% of the world's fish stocks are either fully exploited or depleted which means overfishing threatens marine ecosystem resilience and this is mostly by rapid growth of fishing technology. One of the negative effects on marine ecosystems is that over the last half-century the stocks of coastal fish have had a huge reduction as a result of overfishing for its economic benefits. Blue fin tuna is at particular risk of extinction. Depletion of fish stocks results in lowered biodiversity and consequently imbalance in the food chain, and increased vulnerability to disease.

In addition to overfishing, coastal communities are suffering the impacts of growing numbers of large commercial fishing vessels in causing reductions of small local fishing fleets. Many local lowland rivers which are sources of fresh water have become degraded because of the inflows of pollutants and sediments.

Dumping of waste into the sea

Dumping both depends upon ecosystem resilience whilst threatening it. Dumping of sewage and other contaminants into the ocean is often undertaken for the dispersive nature of the oceans and adaptive nature and ability for marine life to process the marine debris and contaminants. However, waste dumping threatens marine ecosystems by poisoning marine life and eutrophication.

Poisoning marine life

According to the International Maritime Organisation oil spills can have serious effects on marine life. The OILPOL Convention recognized that most oil pollution resulted from routine shipboard operations such as the cleaning of cargo tanks.  In the 1950s, the normal practice was simply to wash the tanks out with water and then pump the resulting mixture of oil and water into the sea. OILPOL 54   prohibited the dumping of oily wastes within a certain distance from land and in 'special areas' where the danger to the environment was especially acute. In 1962 the limits were extended by means of an amendment adopted at a conference organized by IMO. Meanwhile, IMO in 1965 set up a Subcommittee on Oil Pollution, under the auspices of its Maritime Safety committee, to address oil pollution issues.

The threat of oil spills to marine life is recognised by those likely to be responsible for the pollution, such as the International Tanker Owners Pollution Federation:

The marine ecosystem is highly complex and natural fluctuations in species composition, abundance and distribution are a basic feature of its normal function. The extent of damage can therefore be difficult to detect against this background variability. Nevertheless, the key to understanding damage and its importance is whether spill effects result in a downturn in breeding success, productivity, diversity and the overall functioning of the system. Spills are not the only pressure on marine habitats; chronic urban and industrial contamination or the exploitation of the resources they provide are also serious threats.

Eutrophication and algal blooms

The Woods Hole Oceanographic Institution calls nutrient pollution the most widespread, chronic environmental problem in the coastal ocean. The discharges of nitrogen, phosphorus, and other nutrients come from agriculture, waste disposal, coastal development, and fossil fuel use. Once nutrient pollution reaches the coastal zone, it stimulates harmful overgrowths of algae, which can have direct toxic effects and ultimately result in low-oxygen conditions. Certain types of algae are toxic. Overgrowths of these algae result in harmful algal blooms, which are more colloquially referred to as "red tides" or "brown tides". Zooplankton eat the toxic algae and begin passing the toxins up the food chain, affecting edibles like clams, and ultimately working their way up to seabirds, marine mammals, and humans. The result can be illness and sometimes death.

Sustainable development

There is increasing awareness that a greater understanding and emphasis of ecosystem resilience is required to reach the goal of sustainable development. A similar conclusion is drawn by Perman et al. who use resilience to describe one of 6 concepts of sustainability; "A sustainable state is one which satisfies minimum conditions for ecosystem resilience through time". Resilience science has been evolving over the past decade, expanding beyond ecology to reflect systems of thinking in fields such as economics and political science. And, as more and more people move into densely populated cities, using massive amounts of water, energy, and other resources, the need to combine these disciplines to consider the resilience of urban ecosystems and cities is of paramount importance.

Academic perspectives

The interdependence of ecological and social systems has gained renewed recognition since the late 1990s by academics including Berkes and Folke and developed further in 2002 by Folke et al. As the concept of sustainable development has evolved beyond the 3 pillars of sustainable development to place greater political emphasis on economic development. This is a movement which causes wide concern in environmental and social forums and which Clive Hamilton describes as "the growth fetish".

The purpose of ecological resilience that is proposed is ultimately about averting our extinction as Walker cites Holling in his paper: "[..] "resilience is concerned with [measuring] the probabilities of extinction” (1973, p. 20)". Becoming more apparent in academic writing is the significance of the environment and resilience in sustainable development. Folke et al state that the likelihood of sustaining development is raised by "Managing for resilience" whilst Perman et al. propose that safeguarding the environment to "deliver a set of services" should be a "necessary condition for an economy to be sustainable".

The flaw of the free market

The challenge of applying the concept of ecological resilience to the context of sustainable development is that it sits at odds with conventional economic ideology and policy making. Resilience questions the free market model within which global markets operate. Inherent to the successful operation of a free market is specialisation which is required to achieve efficiency and increase productivity. This very act of specialisation weakens resilience by permitting systems to become accustomed to and dependent upon their prevailing conditions. In the event of unanticipated shocks; this dependency reduces the ability of the system to adapt to these changes. Correspondingly; Perman et al. note that; "Some economic activities appear to reduce resilience, so that the level of disturbance to which the ecosystem can be subjected to without parametric change taking place is reduced".

Moving beyond sustainable development

Berkes and Folke table a set of principles to assist with "building resilience and sustainability" which consolidate approaches of adaptive management, local knowledge-based management practices and conditions for institutional learning and self-organisation.

More recently, it has been suggested by Andrea Ross that the concept of sustainable development is no longer adequate in assisting policy development fit for today's global challenges and objectives. This is because the concept of sustainable development is "based on weak sustainability" which doesn't take account of the reality of "limits to earth's resilience". Ross draws on the impact of climate change on the global agenda as a fundamental factor in the "shift towards ecological sustainability" as an alternative approach to that of sustainable development.

Because climate change is a major and growing driver of biodiversity loss, and that biodiversity and ecosystem functions and services, significantly contribute to climate change adaptation, mitigation and disaster risk reduction, proponents of ecosystem-based adaptation suggest that the resilience of vulnerable human populations and the ecosystem services upon which they depend are critical factors for sustainable development in a changing climate.

In environmental policy

Scientific research associated with resilience is beginning to play a role in influencing policy-making and subsequent environmental decision making.

This occurs in a number of ways:

  • Observed resilience within specific ecosystems drives management practice. When resilience is observed to be low, or impact seems to be reaching the threshold, management response can be to alter human behavior to result in less adverse impact to the ecosystem.
  • Ecosystem resilience impacts upon the way that development is permitted/environmental decision making is undertaken, similar to the way that existing ecosystem health impacts upon what development is permitted. For instance, remnant vegetation in the states of Queensland and New South Wales are classified in terms of ecosystem health and abundance. Any impact that development has upon threatened ecosystems must consider the health and resilience of these ecosystems. This is governed by the Threatened Species Conservation Act 1995 in New South Wales  and the Vegetation Management Act 1999 in Queensland.
  • International level initiatives aim at improving socio-ecological resilience worldwide through the cooperation and contributions of scientific and other experts. An example of such an initiative is the Millennium Ecosystem Assessment whose objective is "to assess the consequences of ecosystem change for human well-being and the scientific basis for action needed to enhance the conservation and sustainable use of those systems and their contribution to human well-being". Similarly, the United Nations Environment Programme aim is "to provide leadership and encourage partnership in caring for the environment by inspiring, informing, and enabling nations and peoples to improve their quality of life without compromising that of future generations.

Environmental management in legislation

Ecological resilience and the thresholds by which resilience is defined are closely interrelated in the way that they influence environmental policy-making, legislation and subsequently environmental management. The ability of ecosystems to recover from certain levels of environmental impact is not explicitly noted in legislation, however, because of ecosystem resilience, some levels of environmental impact associated with development are made permissible by environmental policy-making and ensuing legislation.

Some examples of the consideration of ecosystem resilience within legislation include:

  • Environmental Planning and Assessment Act 1979 (NSW)  – A key goal of the Environmental Assessment procedure is to determine whether proposed development will have a significant impact upon ecosystems.
  • Protection of the Environment (Operations) Act 1997 (NSW)  – Pollution control is dependent upon keeping levels of pollutants emitted by industrial and other human activities below levels which would be harmful to the environment and its ecosystems. Environmental protection licenses are administered to maintain the environmental objectives of the POEO Act and breaches of license conditions can attract heavy penalties and in some cases criminal convictions.
  • Threatened Species Conservation Act 1995 (NSW)  – This Act seeks to protect threatened species while balancing it with development.

Quantum evolution

From Wikipedia, the free encyclopedia

Quantum evolution is a component of George Gaylord Simpson's multi-tempoed theory of evolution proposed to explain the rapid emergence of higher taxonomic groups in the fossil record. According to Simpson, evolutionary rates differ from group to group and even among closely related lineages. These different rates of evolutionary change were designated by Simpson as bradytelic (slow tempo), horotelic (medium tempo), and tachytelic (rapid tempo).

Quantum evolution differed from these styles of change in that it involved a drastic shift in the adaptive zones of certain classes of animals. The word "quantum" therefore refers to an "all-or-none reaction", where transitional forms are particularly unstable, and thereby perish rapidly and completely. Although quantum evolution may happen at any taxonomic level, it plays a much larger role in "the origin taxonomic units of relatively high rank, such as families, orders, and classes."

Quantum Evolution in Plants

Usage of the phrase "quantum evolution" in plants was apparently first articulated by Verne Grant in 1963 (pp. 458-459).[4] He cited an earlier 1958 paper by Harlan Lewis and Peter H. Raven, wherein Grant asserted that Lewis and Raven gave a "parallel" definition of quantum evolution as defined by Simpson. Lewis and Raven postulated that species in the Genus Clarkia had a mode of speciation that resulted

...as a consequence of a rapid reorganization of the chromosomes due to the presence, at some time, of a genotype conducive to extensive chromosome breakage. A similar mode of origin by rapid reorganization of the chromosomes is suggested for the derivation of other species of Clarkia. In all of these examples the derivative populations grow adjacent to the parental species, which they resemble closely in morphology, but from which they are reproductively isolated because of multiple structural differences in their chromosomes. The spatial relationship of each parental species and its derivative suggests that differentiation has been recent. The repeated occurrence of the same pattern of differentiation in Clarkia suggests that a rapid reorganization of chromosomes has been an important mode of evolution in the genus. This rapid reorganization of the chromosomes is comparable to the systemic mutations proposed by Goldschmidt as a mechanism of macroevolution. In Clarkia, we have not observed marked changes in physiology and pattern of development that could be described as macroevolution. Reorganization of the genomes may, however, set the stage for subsequent evolution along a very different course from that of the ancestral populations

Harlan Lewis refined this concept in a 1962 paper where he coined the term "Catastrophic Speciation" to describe this mode of speciation, since he theorized that the reductions in population size and consequent inbreeding that led to chromosomal rearrangements occurred in small populations that were subject to severe drought.

Leslie D. Gottlieb in his 2003 summary of the subject in plants stated

we can define quantum speciation as the budding off of a new and very different daughter species from a semi-isolated peripheral population of the ancestral species in a cross-fertilizing organism...as compared with geographical speciation, which is a gradual and conservative process, quantum speciation is rapid and radical in its phenotypic or genotypic effects or both.

Gottlieb did not believe that sympatric speciation required disruptive selection to form a reproductive isolating barrier, as defined by Grant, and in fact Gottlieb stated that requiring disruptive selection was "unnecessarily restrictive" in identifying cases of sympatric speciation. In this 2003 paper Gottlieb summarized instances of quantum evolution in the plant species Clarkia, Layia, and Stephanomeria.

Mechanisms

According to Simpson (1944), quantum evolution resulted from Sewall Wright's model of random genetic drift. Simpson believed that major evolutionary transitions would arise when small populations, that were isolated and limited from gene flow, would fixate upon unusual gene combinations. This "inadaptive phase" (caused by genetic drift) would then (by natural selection) drive a deme population from one stable adaptive peak to another on the adaptive fitness landscape. However, in his Major Features of Evolution (1953) Simpson wrote that this mechanism was still controversial:

"whether prospective adaptation as prelude to quantum evolution arises adaptively or inadaptively. It was concluded above that it usually arises adaptively . . . . The precise role of, say, genetic drift in this process thus is largely speculative at present. It may have an essential part or none. It surely is not involved in all cases of quantum evolution, but there is a strong possibility that it is often involved. If or when it is involved, it is an initiating mechanism. Drift can only rarely, and only for lower categories, have completed the transition to a new adaptive zone."

This preference for adaptive over inadaptive forces led Stephen Jay Gould to call attention to the "hardening of the Modern Synthesis", a trend in the 1950s where adaptationism took precedence over the pluralism of mechanisms common in the 1930s and 40s.

Simpson considered quantum evolution his crowning achievement, being "perhaps the most important outcome of [my] investigation, but also the most controversial and hypothetical."

 

Synergy

From Wikipedia, the free encyclopedia

Synergy is an interaction or cooperation giving rise to a whole that is greater than the simple sum of its parts. The term synergy comes from the Attic Greek word συνεργία synergia from synergos, συνεργός, meaning "working together".

History

In Christian theology, synergism is the idea that salvation involves some form of cooperation between divine grace and human freedom.

The words synergy and synergetic have been used in the field of physiology since at least the middle of the 19th century:

SYN'ERGY, Synergi'a, Synenergi'a, (F.) Synergie; from συν, 'with', and εργον, 'work'. A correlation or concourse of action between different organs in health; and, according to some, in disease.

—Dunglison, Robley Medical Lexicon Blanchard and Lea, 1853

In 1896, Henri Mazel applied the term "synergy" to social psychology by writing La synergie sociale, in which he argued that Darwinian theory failed to account of "social synergy" or "social love", a collective evolutionary drive. The highest civilizations were the work not only of the elite but of the masses too; those masses must be led, however, because the crowd, a feminine and unconscious force, cannot distinguish between good and evil.

In 1909, Lester Frank Ward defined synergy as the universal constructive principle of nature:

I have characterized the social struggle as centrifugal and social solidarity as centripetal. Either alone is productive of evil consequences. Struggle is essentially destructive of the social order, while communism removes individual initiative. The one leads to disorder, the other to degeneracy. What is not seen—the truth that has no expounders—is that the wholesome, constructive movement consists in the properly ordered combination and interaction of both these principles. This is social synergy, which is a form of cosmic synergy, the universal constructive principle of nature.

—Ward, Lester F. Glimpses of the Cosmos, volume VI (1897–1912) G. P. Putnam's Sons, 1918, p. 358

Descriptions and usages

In the natural world, synergistic phenomena are ubiquitous, ranging from physics (for example, the different combinations of quarks that produce protons and neutrons) to chemistry (a popular example is water, a compound of hydrogen and oxygen), to the cooperative interactions among the genes in genomes, the division of labor in bacterial colonies, the synergies of scale in multi-cellular organisms, as well as the many different kinds of synergies produced by socially-organized groups, from honeybee colonies to wolf packs and human societies: compare stigmergy, a mechanism of indirect coordination between agents or actions that results in the self-assembly of complex systems. Even the tools and technologies that are widespread in the natural world represent important sources of synergistic effects. The tools that enabled early hominins to become systematic big-game hunters is a primordial human example.

In the context of organizational behavior, following the view that a cohesive group is more than the sum of its parts, synergy is the ability of a group to outperform even its best individual member. These conclusions are derived from the studies conducted by Jay Hall on a number of laboratory-based group ranking and prediction tasks. He found that effective groups actively looked for the points in which they disagreed and in consequence encouraged conflicts amongst the participants in the early stages of the discussion. In contrast, the ineffective groups felt a need to establish a common view quickly, used simple decision making methods such as averaging, and focused on completing the task rather than on finding solutions they could agree on. In a technical context, its meaning is a construct or collection of different elements working together to produce results not obtainable by any of the elements alone. The elements, or parts, can include people, hardware, software, facilities, policies, documents: all things required to produce system-level results. The value added by the system as a whole, beyond that contributed independently by the parts, is created primarily by the relationship among the parts, that is, how they are interconnected. In essence, a system constitutes a set of interrelated components working together with a common objective: fulfilling some designated need.

If used in a business application, synergy means that teamwork will produce an overall better result than if each person within the group were working toward the same goal individually. However, the concept of group cohesion needs to be considered. Group cohesion is that property that is inferred from the number and strength of mutual positive attitudes among members of the group. As the group becomes more cohesive, its functioning is affected in a number of ways. First, the interactions and communication between members increase. Common goals, interests and small size all contribute to this. In addition, group member satisfaction increases as the group provides friendship and support against outside threats.

There are negative aspects of group cohesion that have an effect on group decision-making and hence on group effectiveness. There are two issues arising. The risky shift phenomenon is the tendency of a group to make decisions that are riskier than those that the group would have recommended individually. Group Polarisation is when individuals in a group begin by taking a moderate stance on an issue regarding a common value and, after having discussed it, end up taking a more extreme stance.

A second, potential negative consequence of group cohesion is group think. Group think is a mode of thinking that people engage in when they are deeply involved in cohesive group, when the members' striving for unanimity overrides their motivation to appraise realistically the alternative courses of action. Studying the events of several American policy "disasters" such as the failure to anticipate the Japanese attack on Pearl Harbor (1941) and the Bay of Pigs Invasion fiasco (1961), Irving Janis argued that they were due to the cohesive nature of the committees that made the relevant decisions.

That decisions made by committees lead to failure in a simple system is noted by Dr. Chris Elliot. His case study looked at IEEE-488, an international standard set by the leading US standards body; it led to a failure of small automation systems using the IEEE-488 standard (which codified a proprietary communications standard HP-IB). But the external devices used for communication were made by two different companies, and the incompatibility between the external devices led to a financial loss for the company. He argues that systems will be safe only if they are designed, not if they emerge by chance.

The idea of a systemic approach is endorsed by the United Kingdom Health and Safety Executive. The successful performance of the health and safety management depends upon the analyzing the causes of incidents and accidents and learning correct lessons from them. The idea is that all events (not just those causing injuries) represent failures in control, and present an opportunity for learning and improvement. UK Health and Safety Executive, Successful health and safety management (1997): this book describes the principles and management practices, which provide the basis of effective health and safety management. It sets out the issues that need to be addressed, and can be used for developing improvement programs, self-audit, or self-assessment. Its message is that organizations must manage health and safety with the same degree of expertise and to the same standards as other core business activities, if they are to effectively control risks and prevent harm to people.

The term synergy was refined by R. Buckminster Fuller, who analyzed some of its implications more fully and coined the term synergetics.

  • A dynamic state in which combined action is favored over the difference of individual component actions.
  • Behavior of whole systems unpredicted by the behavior of their parts taken separately, known as emergent behavior.
  • The cooperative action of two or more stimuli (or drugs), resulting in a different or greater response than that of the individual stimuli.

Biological sciences

Synergy of various kinds has been advanced by Peter Corning as a causal agency that can explain the progressive evolution of complexity in living systems over the course of time. According to the Synergism Hypothesis, synergistic effects have been the drivers of cooperative relationships of all kinds and at all levels in living systems. The thesis, in a nutshell, is that synergistic effects have often provided functional advantages (economic benefits) in relation to survival and reproduction that have been favored by natural selection. The cooperating parts, elements, or individuals become, in effect, functional “units” of selection in evolutionary change. Similarly, environmental systems may react in a non-linear way to perturbations, such as climate change, so that the outcome may be greater than the sum of the individual component alterations. Synergistic responses are a complicating factor in environmental modeling.

Pest synergy

Pest synergy would occur in a biological host organism population, where, for example, the introduction of parasite A may cause 10% fatalities, and parasite B may also cause 10% loss. When both parasites are present, the losses would normally be expected to total less than 20%, yet, in some cases, losses are significantly greater. In such cases, it is said that the parasites in combination have a synergistic effect.

Drug synergy

Mechanisms that may be involved in the development of synergistic effects include:

  • Effect on the same cellular system (e.g. two different antibiotics like a penicillin and an aminoglycoside; penicillins damage the cell wall of gram-positive bacteria and improve the penetration of aminoglycosides).
  • Bioavailability (e.g. ayahuasca (or pharmahuasca) consists of DMT combined with MAOIs that interfere with the action of the MAO enzyme and stop the breakdown of chemical compounds such as DMT).
  • Reduced risk for substance abuse (e.g. lisdexamfetamine, which is a combination of the amino acid L-lysine, attached to dextroamphetamine, may have a lower liability for abuse as a recreational drug)
  • Increased potency (e.g. as with other NSAIDs, combinations of aspirin and caffeine provide slightly greater pain relief than aspirin alone.).
  • Prevention or delay of degradation in the body (e.g. the antibiotic Ciprofloxacin inhibits the metabolism of Theophylline).
  • Slowdown of excretion (e.g. Probenecid delays the renal excretion of Penicillin and thus prolongs its effect).
  • Anticounteractive action: for example, the effect of oxaliplatin and irinotecan. Oxaliplatin intercalates DNA, thereby preventing the cell from replicating DNA. Irinotecan inhibits topoisomerase 1, consequently the cytostatic effect is increased.
  • Effect on the same receptor but different sites (e.g. the coadministration of benzodiazepines and barbiturates, both act by enhancing the action of GABA on GABAA receptors, but benzodiazepines increase the frequency of channel opening, whilst barbiturates increase the channel closing time, making these two drugs dramatically enhance GABAergic neurotransmission).

More mechanisms are described in an exhaustive 2009 review.

Toxicological synergy

Toxicological synergy is of concern to the public and regulatory agencies because chemicals individually considered safe might pose unacceptable health or ecological risk in combination. Articles in scientific and lay journals include many definitions of chemical or toxicological synergy, often vague or in conflict with each other. Because toxic interactions are defined relative to the expectation under "no interaction", a determination of synergy (or antagonism) depends on what is meant by "no interaction". The United States Environmental Protection Agency has one of the more detailed and precise definitions of toxic interaction, designed to facilitate risk assessment. In their guidance documents, the no-interaction default assumption is dose addition, so synergy means a mixture response that exceeds that predicted from dose addition. The EPA emphasizes that synergy does not always make a mixture dangerous, nor does antagonism always make the mixture safe; each depends on the predicted risk under dose addition.

For example, a consequence of pesticide use is the risk of health effects. During the registration of pesticides in the United States exhaustive tests are performed to discern health effects on humans at various exposure levels. A regulatory upper limit of presence in foods is then placed on this pesticide. As long as residues in the food stay below this regulatory level, health effects are deemed highly unlikely and the food is considered safe to consume.

However, in normal agricultural practice, it is rare to use only a single pesticide. During the production of a crop, several different materials may be used. Each of them has had determined a regulatory level at which they would be considered individually safe. In many cases, a commercial pesticide is itself a combination of several chemical agents, and thus the safe levels actually represent levels of the mixture. In contrast, a combination created by the end user, such as a farmer, has rarely been tested in that combination. The potential for synergy is then unknown or estimated from data on similar combinations. This lack of information also applies to many of the chemical combinations to which humans are exposed, including residues in food, indoor air contaminants, and occupational exposures to chemicals. Some groups think that the rising rates of cancer, asthma, and other health problems may be caused by these combination exposures; others have alternative explanations. This question will likely be answered only after years of exposure by the population in general and research on chemical toxicity, usually performed on animals. Examples of pesticide synergists include Piperonyl butoxide and MGK 264.

Human synergy

Human synergy relates to human interaction and teamwork. For example, say person A alone is too short to reach an apple on a tree and person B is too short as well. Once person B sits on the shoulders of person A, they are tall enough to reach the apple. In this example, the product of their synergy would be one apple. Another case would be two politicians. If each is able to gather one million votes on their own, but together they were able to appeal to 2.5 million voters, their synergy would have produced 500,000 more votes than had they each worked independently. A song is also a good example of human synergy, taking more than one musical part and putting them together to create a song that has a much more dramatic effect than each of the parts when played individually.

A third form of human synergy is when one person is able to complete two separate tasks by doing one action, for example, if a person were asked by a teacher and his boss at work to write an essay on how he could improve his work. A more visual example of this synergy is a drummer using four separate rhythms to create one drum beat.

Synergy usually arises when two persons with different complementary skills cooperate. In business, cooperation of people with organizational and technical skills happens very often. In general, the most common reason why people cooperate is that it brings a synergy. On the other hand, people tend to specialize just to be able to form groups with high synergy (see also division of labor and teamwork).

Example: Two teams in System Administration working together to combine technical and organizational skills in order to better the client experience, thus creating synergy. Counter-examples can be found in books like The Mythical Man-Month, in which the addition of additional team members is shown to have negative effects on productivity.

Organismic computing is an approach to improving group efficacy by increasing synergy in human groups via technological means.

When synergy occurs in the work place, the individuals involved get to work in a positive and supportive working environment. When individuals get to work in environments such as these, the company reaps the benefits. The authors of Creating the Best Workplace on Earth Rob Goffee and Gareth Jones, state that "highly engaged employees are, on average, 50% more likely to exceed expectations that the least-engaged workers. And companies with highly engaged people outperform firms with the most disengaged folks- by 54% in employee retention, by 89% in customer satisfaction, and by fourfold in revenue growth (Goffee & Jones, pg. 100)." Also, those that are able to be open about their views on the company, and have confidence that they will be heard, are likely to be a more organized employee who helps his/ her fellow team members succeed.

Corporate synergy

Corporate synergy occurs when corporations interact congruently. A corporate synergy refers to a financial benefit that a corporation expects to realize when it merges with or acquires another corporation. This type of synergy is a nearly ubiquitous feature of a corporate acquisition and is a negotiating point between the buyer and seller that impacts the final price both parties agree to. There are distinct types of corporate synergies, as follows.

Marketing

A marketing synergy refers to the use of information campaigns, studies, and scientific discovery or experimentation for research and development. This promotes the sale of products for varied use or off-market sales as well as development of marketing tools and in several cases exaggeration of effects. It is also often a meaningless buzzword used by corporate leaders.

Revenue

A revenue synergy refers to the opportunity of a combined corporate entity to generate more revenue than its two predecessor stand-alone companies would be able to generate. For example, if company A sells product X through its sales force, company B sells product Y, and company A decides to buy company B, then the new company could use each salesperson to sell products X and Y, thereby increasing the revenue that each salesperson generates for the company.

In media revenue, synergy is the promotion and sale of a product throughout the various subsidiaries of a media conglomerate, e.g. films, soundtracks, or video games.

Financial

Financial synergy gained by the combined firm is a result of number of benefits which flow to the entity as a consequence of acquisition and merger. These benefits may be:

Cash slack

This is when a firm having a number of cash extensive projects acquires a firm which is cash-rich, thus enabling the new combined firm to enjoy the profits from investing the cash of one firm in the projects of the other.

Debt capacity

If two firms have no or little capacity to carry debt before individually, it is possible for them to join and gain the capacity to carry the debt through decreased gearing (leverage). This creates value for the firm, as debt is thought to be a cheaper source of finance.

Tax benefits

It is possible for one firm to have unused tax benefits which might be offset against the profits of another after combination, thus resulting in less tax being paid. However this greatly depends on the tax law of the country.

Management

Synergy in management and in relation to teamwork refers to the combined effort of individuals as participants of the team. The condition that exists when the organization's parts interact to produce a joint effect that is greater than the sum of the parts acting alone. Positive or negative synergies can exist. In these cases, positive synergy has positive effects such as improved efficiency in operations, greater exploitation of opportunities, and improved utilization of resources. Negative synergy on the other hand has negative effects such as: reduced efficiency of operations, decrease in quality, underutilization of resources and disequilibrium with the external environment.

Cost

A cost synergy refers to the opportunity of a combined corporate entity to reduce or eliminate expenses associated with running a business. Cost synergies are realized by eliminating positions that are viewed as duplicate within the merged entity. Examples include the headquarters office of one of the predecessor companies, certain executives, the human resources department, or other employees of the predecessor companies. This is related to the economic concept of economies of scale.

Synergistic action in economy

The synergistic action of the economic players lies within the economic phenomenon's profundity. The synergistic action gives different dimensions to competitiveness, strategy and network identity becoming an unconventional "weapon" which belongs to those who exploit the economic systems’ potential in depth.

Synergistic determinants

The synergistic gravity equation (SYNGEq), according to its complex “title”, represents a synthesis of the endogenous and exogenous factors which determine the private and non-private economic decision makers to call to actions of synergistic exploitation of the economic network in which they operate. That is to say, SYNGEq constitutes a big picture of the factors/motivations which determine the entrepreneurs to contour an active synergistic network. SYNGEq includes both factors which character is changing over time (such as the competitive conditions), as well as classics factors, such as the imperative of the access to resources of the collaboration and the quick answers. The synergistic gravity equation (SINGEq) comes to be represented by the formula:

∑SYN.Act = ∑R-*I(CRed+COOP++AUnimit.)*V(Cust.+Info.)*cc

where:

  • ∑SYN.Act = the sum of the synergistic actions adopted (by the economic actor)
  • ∑ R- = the amount of unpurchased but necessary resources
  • ICRed = the imperative for cost reductions
  • ICOOP+ = the imperative for deep cooperation (functional interdependence)
  • IAUnimit. = the imperative for purchasing unimitable competitive advantages (for the economic actor)
  • VCust = the necessity of customer value in purchasing future profits and competitive advantages VInfo = the necessity of informational value in purchasing future profits and competitive advantages
  • cc = the specific competitive conditions in which the economic actor operates

Synergistic networks and systems

The synergistic network represents an integrated part of the economic system which, through the coordination and control functions (of the undertaken economic actions), agrees synergies. The networks which promote synergistic actions can be divided in horizontal synergistic networks and vertical synergistic networks.

Synergy effects

The synergy effects are difficult (even impossible) to imitate by competitors and difficult to reproduce by their authors because these effects depend on the combination of factors with time-varying characteristics. The synergy effects are often called "synergistic benefits", representing the direct and implied result of the developed/adopted synergistic actions.

Computers

Synergy can also be defined as the combination of human strengths and computer strengths, such as advanced chess. Computers can process data much more quickly than humans, but lack the ability to respond meaningfully to arbitrary stimuli.

Synergy in literature

Etymologically, the "synergy" term was first used around 1600, deriving from the Greek word “synergos”, which means “to work together” or “to cooperate”. If during this period the synergy concept was mainly used in the theological field (describing “the cooperation of human effort with divine will”), in the 19th and 20th centuries, "synergy" was promoted in physics and biochemistry, being implemented in the study of the open economic systems only in the 1960 and 1970s.

In 1938, J. R. R. Tolkien wrote an essay titled On Fairy Stores, delivered at an Andrew Lang Lecture, and reprinted in his book, The Tolkien Reader, published in 1966. In it, he made two references to synergy, although he did not use that term. He wrote:

Faerie cannot be caught in a net of words; for it is one of its qualities to be indescribable, though not imperceptible. It has many ingredients, but analysis will not necessarily discover the secret of the whole.

And more succinctly, in a footnote, about the "part of producing the web of an intricate story", he wrote:

It is indeed easier to unravel a single thread — an incident, a name, a motive — than to trace the history of any picture defined by many threads. For with the picture in the tapestry a new element has come in: the picture is greater than, and not explained by, the sum of the component threads.

Synergy as a book

Synergy, a book: DION, Eric (2017), Synergy; A Theoretical Model of Canada's Comprehensive Approach, iUniverse, 308 pp.

Synergy in the media

The informational synergies which can be applied also in media involve a compression of transmission, access and use of information’s time, the flows, circuits and means of handling information being based on a complementary, integrated, transparent and coordinated use of knowledge.

In media economics, synergy is the promotion and sale of a product (and all its versions) throughout the various subsidiaries of a media conglomerate, e.g. films, soundtracks or video games. Walt Disney pioneered synergistic marketing techniques in the 1930s by granting dozens of firms the right to use his Mickey Mouse character in products and ads, and continued to market Disney media through licensing arrangements. These products can help advertise the film itself and thus help to increase the film's sales. For example, the Spider-Man films had toys of webshooters and figures of the characters made, as well as posters and games. The NBC sitcom 30 Rock often shows the power of synergy, while also poking fun at the use of the term in the corporate world. There are also different forms of synergy in popular card games like Magic: The Gathering, Yu-Gi-Oh!, Cardfight!! Vanguard, and Future Card Buddyfight.

Information theory

When multiple sources of information taken together provide more information than the sum of the information provided by each source alone, there is said to be a synergy in the sources. This in contrast to the case in which the sources provide less information, in which case there is said to be a redundancy in the sources.

Punctuated equilibrium

From Wikipedia, the free encyclopedia
 
 
 
The punctuated equilibrium model (top) consists of morphological stability followed by rare bursts of evolutionary change via rapid cladogenesis. It is contrasted (below) to phyletic gradualism, the more gradual, continuous model of evolution. On diagram we see equilibrium states separated by a jump phase.

In evolutionary biology, punctuated equilibrium (also called punctuated equilibria) is a theory that proposes that once a species appears in the fossil record, the population will become stable, showing little evolutionary change for most of its geological history. This state of little or no morphological change is called stasis. When significant evolutionary change occurs, the theory proposes that it is generally restricted to rare and geologically rapid events of branching speciation called cladogenesis. Cladogenesis is the process by which a species splits into two distinct species, rather than one species gradually transforming into another.

Punctuated equilibrium is commonly contrasted against phyletic gradualism, the idea that evolution generally occurs uniformly and by the steady and gradual transformation of whole lineages (called anagenesis). In this view, evolution is seen as generally smooth and continuous.

In 1972, paleontologists Niles Eldredge and Stephen Jay Gould published a landmark paper developing their theory and called it punctuated equilibria. Their paper built upon Ernst Mayr's model of geographic speciation, I. Michael Lerner's theories of developmental and genetic homeostasis, and their own empirical research. Eldredge and Gould proposed that the degree of gradualism commonly attributed to Charles Darwin is virtually nonexistent in the fossil record, and that stasis dominates the history of most fossil species.

History

Punctuated equilibrium originated as a logical consequence of Ernst Mayr's concept of genetic revolutions by allopatric and especially peripatric speciation as applied to the fossil record. Although the sudden appearance of species and its relationship to speciation was proposed and identified by Mayr in 1954, historians of science generally recognize the 1972 Eldredge and Gould paper as the basis of the new paleobiological research program. Punctuated equilibrium differs from Mayr's ideas mainly in that Eldredge and Gould placed considerably greater emphasis on stasis, whereas Mayr was concerned with explaining the morphological discontinuity (or "sudden jumps") found in the fossil record. Mayr later complimented Eldredge and Gould's paper, stating that evolutionary stasis had been "unexpected by most evolutionary biologists" and that punctuated equilibrium "had a major impact on paleontology and evolutionary biology."

A year before their 1972 Eldredge and Gould paper, Niles Eldredge published a paper in the journal Evolution which suggested that gradual evolution was seldom seen in the fossil record and argued that Ernst Mayr's standard mechanism of allopatric speciation might suggest a possible resolution.

The Eldredge and Gould paper was presented at the Annual Meeting of the Geological Society of America in 1971. The symposium focused its attention on how modern microevolutionary studies could revitalize various aspects of paleontology and macroevolution. Tom Schopf, who organized that year's meeting, assigned Gould the topic of speciation. Gould recalls that "Eldredge's 1971 publication [on Paleozoic trilobites] had presented the only new and interesting ideas on the paleontological implications of the subject—so I asked Schopf if we could present the paper jointly." According to Gould "the ideas came mostly from Niles, with yours truly acting as a sounding board and eventual scribe. I coined the term punctuated equilibrium and wrote most of our 1972 paper, but Niles is the proper first author in our pairing of Eldredge and Gould." In his book Time Frames Eldredge recalls that after much discussion the pair "each wrote roughly half. Some of the parts that would seem obviously the work of one of us were actually first penned by the other—I remember for example, writing the section on Gould's snails. Other parts are harder to reconstruct. Gould edited the entire manuscript for better consistency. We sent it in, and Schopf reacted strongly against it—thus signaling the tenor of the reaction it has engendered, though for shifting reasons, down to the present day."

John Wilkins and Gareth Nelson have argued that French architect Pierre Trémaux proposed an "anticipation of the theory of punctuated equilibrium of Gould and Eldredge."

Evidence from the fossil record

Fossils in Evolutionary Biology.png

The fossil record includes well documented examples of both phyletic gradualism and punctuational evolution. As such, much debate persists over the prominence of stasis in the fossil record. Before punctuated equilibrium, most evolutionists considered stasis to be rare or unimportant. The paleontologist George Gaylord Simpson, for example, believed that phyletic gradual evolution (called horotely in his terminology) comprised 90% of evolution. More modern studies, including a meta-analysis examining 58 published studies on speciation patterns in the fossil record showed that 71% of species exhibited stasis, and 63% were associated with punctuated patterns of evolutionary change. According to Michael Benton, "it seems clear then that stasis is common, and that had not been predicted from modern genetic studies." A paramount example of evolutionary stasis is the fern Osmunda claytoniana. Based on paleontological evidence it has remained unchanged, even at the level of fossilized nuclei and chromosomes, for at least 180 million years.

Theoretical mechanisms

Punctuational change

When Eldredge and Gould published their 1972 paper, allopatric speciation was considered the "standard" model of speciation. This model was popularized by Ernst Mayr in his 1954 paper "Change of genetic environment and evolution," and his classic volume Animal Species and Evolution (1963).

Allopatric speciation suggests that species with large central populations are stabilized by their large volume and the process of gene flow. New and even beneficial mutations are diluted by the population's large size and are unable to reach fixation, due to such factors as constantly changing environments. If this is the case, then the transformation of whole lineages should be rare, as the fossil record indicates. Smaller populations on the other hand, which are isolated from the parental stock, are decoupled from the homogenizing effects of gene flow. In addition, pressure from natural selection is especially intense, as peripheral isolated populations exist at the outer edges of ecological tolerance. If most evolution happens in these rare instances of allopatric speciation then evidence of gradual evolution in the fossil record should be rare. This hypothesis was alluded to by Mayr in the closing paragraph of his 1954 paper:

Rapidly evolving peripherally isolated populations may be the place of origin of many evolutionary novelties. Their isolation and comparatively small size may explain phenomena of rapid evolution and lack of documentation in the fossil record, hitherto puzzling to the palaeontologist.

Although punctuated equilibrium generally applies to sexually reproducing organisms, some biologists have applied the model to non-sexual species like viruses, which cannot be stabilized by conventional gene flow. As time went on biologists like Gould moved away from wedding punctuated equilibrium to allopatric speciation, particularly as evidence accumulated in support of other modes of speciation. Gould, for example, was particularly attracted to Douglas Futuyma's work on the importance of reproductive isolating mechanisms.

Stasis

Many hypotheses have been proposed to explain the putative causes of stasis. Gould was initially attracted to I. Michael Lerner's theories of developmental and genetic homeostasis. However this hypothesis was rejected over time, as evidence accumulated against it. Other plausible mechanisms which have been suggested include: habitat tracking, stabilizing selection, the Stenseth-Maynard Smith stability hypothesis, constraints imposed by the nature of subdivided populations, normalizing clade selection, and koinophilia.

Evidence for stasis has also been corroborated from the genetics of sibling species, species which are morphologically indistinguishable, but whose proteins have diverged sufficiently to suggest they have been separated for millions of years. Fossil evidence of reproductively isolated extant species of sympatric Olive Shells (Amalda sp.) also confirm morphological stasis in multiple lineages over three million years.

According to Gould, "stasis may emerge as the theory's most important contribution to evolutionary science." Philosopher Kim Sterelny in clarifying the meaning of stasis adds, "In claiming that species typically undergo no further evolutionary change once speciation is complete, they are not claiming that there is no change at all between one generation and the next. Lineages do change. But the change between generations does not accumulate. Instead, over time, the species wobbles about its phenotypic mean. Jonathan Weiner's The Beak of the Finch describes this very process."

Hierarchical evolution

Punctuated equilibrium has also been cited as contributing to the hypothesis that species are Darwinian individuals, and not just classes, thereby providing a stronger framework for a hierarchical theory of evolution.

Common misconceptions

Much confusion has arisen over what proponents of punctuated equilibrium actually argued, what mechanisms they advocated, how fast the punctuations were, what taxonomic scale their theory applied to, how revolutionary their claims were intended to be, and how punctuated equilibrium related to other ideas like saltationism, quantum evolution, and mass extinction.

Saltationism

Alternative explanations for the punctuated pattern of evolution observed in the fossil record. Both macromutation and relatively rapid episodes of gradual evolution could give the appearance of instantaneous change, since 10,000 years seldom registers in the geological record.

The punctuational nature of punctuated equilibrium has engendered perhaps the most confusion over Eldredge and Gould's theory. Gould's sympathetic treatment of Richard Goldschmidt, the controversial geneticist who advocated the idea of "hopeful monsters," led some biologists to conclude that Gould's punctuations were occurring in single-generation jumps. This interpretation has frequently been used by creationists to characterize the weakness of the paleontological record, and to portray contemporary evolutionary biology as advancing neo-saltationism. In an often quoted remark, Gould stated, "Since we proposed punctuated equilibria to explain trends, it is infuriating to be quoted again and again by creationists—whether through design or stupidity, I do not know—as admitting that the fossil record includes no transitional forms. Transitional forms are generally lacking at the species level, but they are abundant between larger groups." Although there exist some debate over how long the punctuations last, supporters of punctuated equilibrium generally place the figure between 50,000 and 100,000 years.

Quantum evolution

Quantum evolution was a controversial hypothesis advanced by Columbia University paleontologist George Gaylord Simpson, who was regarded by Gould as "the greatest and most biologically astute paleontologist of the twentieth century." Simpson's conjecture was that according to the geological record, on very rare occasions evolution would proceed very rapidly to form entirely new families, orders, and classes of organisms. This hypothesis differs from punctuated equilibrium in several respects. First, punctuated equilibrium was more modest in scope, in that it was addressing evolution specifically at the species level. Simpson's idea was principally concerned with evolution at higher taxonomic groups. Second, Eldredge and Gould relied upon a different mechanism. Where Simpson relied upon a synergistic interaction between genetic drift and a shift in the adaptive fitness landscape, Eldredge and Gould relied upon ordinary speciation, particularly Ernst Mayr's concept of allopatric speciation. Lastly, and perhaps most significantly, quantum evolution took no position on the issue of stasis. Although Simpson acknowledged the existence of stasis in what he called the bradytelic mode, he considered it (along with rapid evolution) to be unimportant in the larger scope of evolution. In his Major Features of Evolution Simpson stated, "Evolutionary change is so nearly the universal rule that a state of motion is, figuratively, normal in evolving populations. The state of rest, as in bradytely, is the exception and it seems that some restraint or force must be required to maintain it." Despite such differences between the two models, earlier critiques—from such eminent commentators as Sewall Wright as well as Simpson himself—have argued that punctuated equilibrium is little more than quantum evolution relabeled.

Multiple meanings of gradualism

Punctuated equilibrium is often portrayed to oppose the concept of gradualism, when it is actually a form of gradualism. This is because even though evolutionary change appears instantaneous between geological sedimentary layers, change is still occurring incrementally, with no great change from one generation to the next. To this end, Gould later commented that "Most of our paleontological colleagues missed this insight because they had not studied evolutionary theory and either did not know about allopatric speciation or had not considered its translation to geological time. Our evolutionary colleagues also failed to grasp the implication(s), primarily because they did not think at geological scales".

Richard Dawkins dedicated a chapter in The Blind Watchmaker to correcting, in his view, the wide confusion regarding rates of change. His first point is to argue that phyletic gradualism—understood in the sense that evolution proceeds at a single uniform rate of speed, called "constant speedism" by Dawkins—is a "caricature of Darwinism" and "does not really exist". His second argument, which follows from the first, is that once the caricature of "constant speedism" is dismissed, we are left with one logical alternative, which Dawkins terms "variable speedism". Variable speedism may also be distinguished one of two ways: "discrete variable speedism" and "continuously variable speedism". Eldredge and Gould, proposing that evolution jumps between stability and relative rapidity, are described as "discrete variable speedists", and "in this respect they are genuinely radical." They assert that evolution generally proceeds in bursts, or not at all. "Continuously variable speedists", on the other hand, advance that "evolutionary rates fluctuate continuously from very fast to very slow and stop, with all intermediates. They see no particular reason to emphasize certain speeds more than others. In particular, stasis, to them, is just an extreme case of ultra-slow evolution. To a punctuationist, there is something very special about stasis." Dawkins therefore commits himself here to an empirical claim about the geological record, in contrast to his earlier claim that "The paleontological evidence can be argued about, and I am not qualified to judge it." It is this particular commitment that Eldredge and Gould have aimed to overturn.

Criticism

Richard Dawkins regards the apparent gaps represented in the fossil record to document migratory events rather than evolutionary events. According to Dawkins, evolution certainly occurred but "probably gradually" elsewhere. However, the punctuational equilibrium model may still be inferred from both the observation of stasis and examples of rapid and episodic speciation events documented in the fossil record.

Dawkins also emphasizes that punctuated equilibrium has been "oversold by some journalists", but partly due to Eldredge and Gould's "later writings". Dawkins contends that the hypothesis "does not deserve a particularly large measure of publicity". It is a "minor gloss," an "interesting but minor wrinkle on the surface of neo-Darwinian theory," and "lies firmly within the neo-Darwinian synthesis".

In his book Darwin's Dangerous Idea, philosopher Daniel Dennett is especially critical of Gould's presentation of punctuated equilibrium. Dennett argues that Gould alternated between revolutionary and conservative claims, and that each time Gould made a revolutionary statement—or appeared to do so—he was criticized, and thus retreated to a traditional neo-Darwinian position. Gould responded to Dennett's claims in The New York Review of Books, and in his technical volume The Structure of Evolutionary Theory.

English professor Heidi Scott argues that Gould's talent for writing vivid prose, his use of metaphor, and his success in building a popular audience of nonspecialist readers altered the "climate of specialized scientific discourse" favorably in his promotion of punctuated equilibrium. While Gould is celebrated for the color and energy of his prose, as well as his interdisciplinary knowledge, critics such as Scott, Richard Dawkins, and Daniel Dennett have concerns that the theory has gained undeserved credence among non-scientists because of Gould's rhetorical skills. Philosopher John Lyne and biologist Henry Howe believed punctuated equilibrium's success has much more to do with the nature of the geological record than the nature of Gould's rhetoric. They state, a "re-analysis of existing fossil data has shown, to the increasing satisfaction of the paleontological community, that Eldredge and Gould were correct in identifying periods of evolutionary stasis which are interrupted by much shorter periods of evolutionary change."

Some critics jokingly referred to the theory of punctuated equilibrium as "evolution by jerks", which reportedly prompted punctuationists to describe phyletic gradualism as "evolution by creeps."

Darwin's theory

The sudden appearance of most species in the geologic record and the lack of evidence of substantial gradual change in most species—from their initial appearance until their extinction—has long been noted, including by Charles Darwin who appealed to the imperfection of the record as the favored explanation. When presenting his ideas against the prevailing influences of catastrophism and progressive creationism, which envisaged species being supernaturally created at intervals, Darwin needed to forcefully stress the gradual nature of evolution in accordance with the gradualism promoted by his friend Charles Lyell. He privately expressed concern, noting in the margin of his 1844 Essay, "Better begin with this: If species really, after catastrophes, created in showers world over, my theory false."

It is often incorrectly assumed that he insisted that the rate of change must be constant, or nearly so, but even the first edition of On the Origin of Species states that "Species of different genera and classes have not changed at the same rate, or in the same degree. In the oldest tertiary beds a few living shells may still be found in the midst of a multitude of extinct forms... The Silurian Lingula differs but little from the living species of this genus". Lingula is among the few brachiopods surviving today but also known from fossils over 500 million years old. In the fourth edition (1866) of On the Origin of Species Darwin wrote that "the periods during which species have undergone modification, though long as measured in years, have probably been short in comparison with the periods during which they retain the same form." Thus punctuationism in general is consistent with Darwin's conception of evolution.

According to early versions of punctuated equilibrium, "peripheral isolates" are considered to be of critical importance for speciation. However, Darwin wrote, "I can by no means agree ... that immigration and isolation are necessary elements.... Although isolation is of great importance in the production of new species, on the whole I am inclined to believe that largeness of area is still more important, especially for the production of species which shall prove capable of enduring for a long period, and of spreading widely."

The importance of isolation in forming species had played a significant part in Darwin's early thinking, as shown in his Essay of 1844. But by the time he wrote the Origin he had downplayed its importance. He explained the reasons for his revised view as follows:

Throughout a great and open area, not only will there be a greater chance of favourable variations, arising from the large number of individuals of the same species there supported, but the conditions of life are much more complex from the large number of already existing species; and if some of these species become modified and improved, others will have to be improved in a corresponding degree, or they will be exterminated. Each new form, also, as soon as it has been improved, will be able to spread over the open and continuous area, and will thus come into competition with many other forms ... the new forms produced on large areas, which have already been victorious over many competitors, will be those that will spread most widely, and will give rise to the greatest number of new varieties and species. They will thus play a more important role in the changing history of the organic world.

Thus punctuated equilibrium is incongruous with some of Darwin's ideas regarding the specific mechanisms of evolution, but generally accords with Darwin's theory of evolution by natural selection.

Supplemental modes of rapid evolution

Recent work in developmental biology has identified dynamical and physical mechanisms of tissue morphogenesis that may underlie abrupt morphological transitions during evolution. Consequently, consideration of mechanisms of phylogenetic change that have been found in reality to be non-gradual is increasingly common in the field of evolutionary developmental biology, particularly in studies of the origin of morphological novelty. A description of such mechanisms can be found in the multi-authored volume Origination of Organismal Form (MIT Press; 2003).

Language change

In linguistics, R. M. W. Dixon has proposed a punctuated equilibrium model for language histories, with reference particularly to the prehistory of the indigenous languages of Australia and his objections to the proposed Pama–Nyungan language family there. Although his model has raised considerable interest, it does not command majority support within linguistics.

Separately, recent work using computational phylogenetic methods claims to show that punctuational bursts play an important factor when languages split from one another, accounting for anywhere from 10 to 33% of the total divergence in vocabulary.

Mythology

Punctuational evolution has been argued to explain changes in folktales and mythology over time.

Personality theories of addiction

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Personality_theories_of_addiction ...