Search This Blog

Tuesday, April 9, 2019

Facial recognition system

From Wikipedia, the free encyclopedia

Swiss European surveillance: face recognition and vehicle make, model, color and license plate reader
 
Close-up of the infrared illuminator. The light is invisible to the human eye, but creates a day-like environment for the surveillance cameras.
 
A facial recognition system is a technology capable of identifying or verifying a person from a digital image or a video frame from a video source. There are multiple methods in which facial recognition systems work, but in general, they work by comparing selected facial features from given image with faces within a database. It is also described as a Biometric Artificial Intelligence based application that can uniquely identify a person by analysing patterns based on the person's facial textures and shape.

While initially a form of computer application, it has seen wider uses in recent times on mobile platforms and in other forms of technology, such as robotics. It is typically used as access control in security systems and can be compared to other biometrics such as fingerprint or eye iris recognition systems. Although the accuracy of facial recognition system as a biometric technology is lower than iris recognition and fingerprint recognition, it is widely adopted due to its contactless and non-invasive process. Recently, it has also become popular as a commercial identification and marketing tool. Other applications include advanced human-computer interaction, video surveillance, automatic indexing of images, and video database, among others.

History of facial recognition technology

Pioneers of automated face recognition include Woody Bledsoe, Helen Chan Wolf, and Charles Bisson

During 1964 and 1965, Bledsoe, along with Helen Chan and Charles Bisson, worked on using the computer to recognize human faces (Bledsoe 1966a, 1966b; Bledsoe and Chan 1965). He was proud of this work, but because the funding was provided by an unnamed intelligence agency that did not allow much publicity, little of the work was published. Based on the available references, it was revealed that the Bledsoe's initial approach involved the manual marketing of various landmarks on the face such as the eye centers, mouth, etc., and these were mathematically rotated by computer to compensate for pose variation. The distances between landmarks were also automatically computed and compared between images to determine identity.

Given a large database of images (in effect, a book of mug shots) and a photograph, the problem was to select from the database a small set of records such that one of the image records matched the photograph. The success of the method could be measured in terms of the ratio of the answer list to the number of records in the database. Bledsoe (1966a) described the following difficulties: 

This recognition problem is made difficult by the great variability in head rotation and tilt, lighting intensity and angle, facial expression, aging, etc. Some other attempts at face recognition by machine have allowed for little or no variability in these quantities. Yet the method of correlation (or pattern matching) of unprocessed optical data, which is often used by some researchers, is certain to fail in cases where the variability is great. In particular, the correlation is very low between two pictures of the same person with two different head rotations.
— Woody Bledsoe, 1966

This project was labeled man-machine because the human extracted the coordinates of a set of features from the photographs, which were then used by the computer for recognition. Using a graphics tablet (GRAFACON or RAND TABLET), the operator would extract the coordinates of features such as the center of pupils, the inside corner of eyes, the outside corner of eyes, point of widows peak, and so on. From these coordinates, a list of 20 distances, such as the width of mouth and width of eyes, pupil to pupil, were computed. These operators could process about 40 pictures an hour. When building the database, the name of the person in the photograph was associated with the list of computed distances and stored in the computer. In the recognition phase, the set of distances was compared with the corresponding distance for each photograph, yielding a distance between the photograph and the database record. The closest records are returned. 

Because it is unlikely that any two pictures would match in head rotation, lean, tilt, and scale (distance from the camera), each set of distances is normalized to represent the face in a frontal orientation. To accomplish this normalization, the program first tries to determine the tilt, the lean, and the rotation. Then, using these angles, the computer undoes the effect of these transformations on the computed distances. To compute these angles, the computer must know the three-dimensional geometry of the head. Because the actual heads were unavailable, Bledsoe (1964) used a standard head derived from measurements on seven heads. 

After Bledsoe left PRI in 1966, this work was continued at the Stanford Research Institute, primarily by Peter Hart. In experiments performed on a database of over 2000 photographs, the computer consistently outperformed humans when presented with the same recognition tasks (Bledsoe 1968). Peter Hart (1996) enthusiastically recalled the project with the exclamation, "It really worked!" 

By about 1997, the system developed by Christoph von der Malsburg and graduate students of the University of Bochum in Germany and the University of Southern California in the United States outperformed most systems with those of Massachusetts Institute of Technology and the University of Maryland rated next. The Bochum system was developed through funding by the United States Army Research Laboratory. The software was sold as ZN-Face and used by customers such as Deutsche Bank and operators of airports and other busy locations. The software was "robust enough to make identifications from less-than-perfect face views. It can also often see through such impediments to identification as mustaches, beards, changed hairstyles and glasses—even sunglasses".

In 2006, the performance of the latest face recognition algorithms was evaluated in the Face Recognition Grand Challenge (FRGC). High-resolution face images, 3-D face scans, and iris images were used in the tests. The results indicated that the new algorithms are 10 times more accurate than the face recognition algorithms of 2002 and 100 times more accurate than those of 1995. Some of the algorithms were able to outperform human participants in recognizing faces and could uniquely identify identical twins.

U.S. Government-sponsored evaluations and challenge problems have helped spur over two orders-of-magnitude in face-recognition system performance. Since 1993, the error rate of automatic face-recognition systems has decreased by a factor of 272. The reduction applies to systems that match people with face images captured in studio or mugshot environments. In Moore's law terms, the error rate decreased by one-half every two years.

Low-resolution images of faces can be enhanced using face hallucination.

Techniques for face acquisition

Essentially, the process of face recognition is performed in two steps. The first involves feature extraction and selection and, the second is the classification of objects. Later developments introduced varying technologies to the procedure. Some of the most notable include the following techniques:

Traditional

Some face recognition algorithms identify facial features by extracting landmarks, or features, from an image of the subject's face. For example, an algorithm may analyze the relative position, size, and/or shape of the eyes, nose, cheekbones, and jaw. These features are then used to search for other images with matching features.

Other algorithms normalize a gallery of face images and then compress the face data, only saving the data in the image that is useful for face recognition. A probe image is then compared with the face data. One of the earliest successful systems is based on template matching techniques applied to a set of salient facial features, providing a sort of compressed face representation. 

Recognition algorithms can be divided into two main approaches, geometric, which looks at distinguishing features, or photometric, which is a statistical approach that distills an image into values and compares the values with templates to eliminate variances. Some classify these algorithms into two broad categories: holistic and feature-based models. The former attempts to recognize the face in its entirety while the feature-based subdivide into components such as according to features and analyze each as well as its spatial location with respect to other features.

Popular recognition algorithms include principal component analysis using eigenfaces, linear discriminant analysis, elastic bunch graph matching using the Fisherface algorithm, the hidden Markov model, the multilinear subspace learning using tensor representation, and the neuronal motivated dynamic link matching.

3-Dimensional recognition

Three-dimensional face recognition technique uses 3D sensors to capture information about the shape of a face. This information is then used to identify distinctive features on the surface of a face, such as the contour of the eye sockets, nose, and chin.

One advantage of 3D face recognition is that it is not affected by changes in lighting like other techniques. It can also identify a face from a range of viewing angles, including a profile view. Three-dimensional data points from a face vastly improve the precision of face recognition. 3D research is enhanced by the development of sophisticated sensors that do a better job of capturing 3D face imagery. The sensors work by projecting structured light onto the face. Up to a dozen or more of these image sensors can be placed on the same CMOS chip—each sensor captures a different part of the spectrum...

Even a perfect 3D matching technique could be sensitive to expressions. For that goal a group at the Technion applied tools from metric geometry to treat expressions as isometries.

A new method is to introduce a way to capture a 3D picture by using three tracking cameras that point at different angles; one camera will be pointing at the front of the subject, second one to the side, and third one at an angle. All these cameras will work together so it can track a subject’s face in real time and be able to face detect and recognize.

Skin texture analysis

Another emerging trend uses the visual details of the skin, as captured in standard digital or scanned images. This technique, called Skin Texture Analysis, turns the unique lines, patterns, and spots apparent in a person’s skin into a mathematical space.

Surface Texture Analysis works much the same way facial recognition does. A picture is taken of a patch of skin, called a skinprint. That patch is then broken up into smaller blocks. Using algorithms to turn the patch into a mathematical, measurable space, the system will then distinguish any lines, pores and the actual skin texture. It can identify the contrast between identical pairs, which are not yet possible using facial recognition software alone.

Tests have shown that with the addition of skin texture analysis, performance in recognizing faces can increase 20 to 25 percent.

Facial recognition combining different techniques

As every method has its advantages and disadvantages, technology companies have amalgamated the traditional, 3D recognition and Skin Textual Analysis, to create recognition systems that have higher rates of success. 

Combined techniques have an advantage over other systems. It is relatively insensitive to changes in expression, including blinking, frowning or smiling and has the ability to compensate for mustache or beard growth and the appearance of eyeglasses. The system is also uniform with respect to race and gender.

Thermal cameras

A different form of taking input data for face recognition is by using thermal cameras, by this procedure the cameras will only detect the shape of the head and it will ignore the subject accessories such as glasses, hats, or makeup. Unlike conventional cameras, thermal cameras can capture facial imagery even in low-light and nighttime conditions without using a flash and exposing the position of the camera. However, a problem with using thermal pictures for face recognition is that the databases for face recognition is limited. Diego Socolinsky and Andrea Selinger (2004) research the use of thermal face recognition in real life and operation sceneries, and at the same time build a new database of thermal face images. The research uses low-sensitive, low-resolution ferroelectric electrics sensors that are capable of acquiring longwave thermal infrared (LWIR). The results show that a fusion of LWIR and regular visual cameras has greater results in outdoor probes. Indoor results show that visual has a 97.05% accuracy, while LWIR has 93.93%, and the Fusion has 98.40%, however on the outdoor proves visual has 67.06%, LWIR 83.03%, and fusion has 89.02%. The study used 240 subjects over a period of 10 weeks to create a new database. The data was collected on sunny, rainy, and cloudy days.

In 2018, researchers from the U.S. Army Research Laboratory (ARL) developed a technique that would allow them to match facial imagery obtained using a thermal camera with those in databases that were captured using a conventional camera. This approach utilized artificial intelligence and machine learning to allow researchers to visibly compare conventional and thermal facial imagery. Known as a cross-spectrum synthesis method due to how it bridges facial recognition from two different imaging modalities, this method synthesize a single image by analyzing multiple facial regions and details. It consists of a non-linear regression model that maps a specific thermal image into a corresponding visible facial image and an optimization issue that projects the latent projection back into the image space.

ARL scientists have noted that the approach works by combining global information (i.e. features across the entire face) with local information (i.e. features regarding the eyes, nose, and mouth). In addition to enhancing the discriminability of the synthesized image, the facial recognition system can be used to transform a thermal face signature into a refined visible image of a face. According to performance tests conducted at ARL, researchers found that the multi-region cross-spectrum synthesis model demonstrated a performance improvement of about 30% over baseline methods and about 5% over state-of-the-art methods. It has also been tested for landmark detection for thermal images.

Application

Mobile platforms

Social media

Social media platforms have adopted facial recognition capabilities to diversify their functionalities in order to attract a wider user base amidst stiff competition from different applications. 

Founded in 2013, Looksery went on to raise money for its face modification app on Kickstarter. After successful crowdfunding, Looksery launched in October 2014. The application allows video chat with others through a special filter for faces that modifies the look of users. While there is image augmenting applications such as FaceTune and Perfect365, they are limited to static images, whereas Looksery allowed augmented reality to live videos. In late 2015, SnapChat purchased Looksery, which would then become its landmark lenses function.

SnapChat's animated lenses, which used facial recognition technology, revolutionized and redefined the selfie, by allowing users to add filters to change the way they look. The selection of filters changes every day, some examples include one that makes users look like an old and wrinkled version of themselves, one that airbrushes their skin, and one that places a virtual flower crown on top of their head. The dog filter is the most popular filter that helped propel the continual success of SnapChat, with popular celebrities such as Gigi Hadid, Kim Kardashian and the likes regularly posting videos of themselves with the dog filter. 

DeepFace is a deep learning facial recognition system created by a research group at Facebook. It identifies human faces in digital images. It employs a nine-layer neural net with over 120 million connection weights, and was trained on four million images uploaded by Facebook users. The system is said to be 97% accurate, compared to 85% for the FBI's Next Generation Identification system. One of the creators of the software, Yaniv Taigman, came to Facebook via their acquisition of Face.com.

ID Verification Solutions

Emerging use of Facial recognition is in use of ID verification services. Many companies are working in the market now to provide these services to banks, ICOs, and other e-businesses.

Face ID

Apple introduced Face ID on the flagship iPhone X as a biometric authentication successor to the Touch ID, a fingerprint based system. Face ID has a facial recognition sensor that consists of two parts: a "Romeo" module that projects more than 30,000 infrared dots onto the user's face, and a "Juliet" module that reads the pattern. The pattern is sent to a local "Secure Enclave" in the device's central processing unit (CPU) to confirm a match with the phone owner's face. The facial pattern is not accessible by Apple. The system will not work with eyes closed, in an effort to prevent unauthorized access.

The technology learns from changes in a user's appearance, and therefore works with hats, scarves, glasses, and many sunglasses, beard and makeup.

It also works in the dark. This is done by using a "Flood Illuminator", which is a dedicated infrared flash that throws out invisible infrared light onto the user's face to properly read the 30,000 facial points.

Deployment in security services

Policing

The Australian Border Force and New Zealand Customs Service have set up an automated border processing system called SmartGate that uses face recognition, which compares the face of the traveller with the data in the e-passport microchip. All Canadian international airports use facial recognition as part of the Primary Inspection Kiosk program that compares a traveler face to their photo stored on the ePassport. This program first came to Vancouver International Airport in early 2017 and was rolled up to all remaining international airports in 2018-2019. The Tocumen International Airport in Panama operates an airport-wide surveillance system using hundreds of live face recognition cameras to identify wanted individuals passing through the airport.

Police forces in the United Kingdom have been trialling live facial recognition technology at public events since 2015. However, a recent report and investigation by Big Brother Watch found that these systems were up to 98% inaccurate.

National security

The U.S. Department of State operates one of the largest face recognition systems in the world with a database of 117 million American adults, with photos typically drawn from driver's license photos. Although it is still far from completion, it is being put to use in certain cities to give clues as to who was in the photo. The FBI uses the photos as an investigative tool, not for positive identification. As of 2016, facial recognition was being used to identify people in photos taken by police in San Diego and Los Angeles (not on real-time video, and only against booking photos) and use was planned in West Virginia and Dallas.

In recent years Maryland has used face recognition by comparing people's faces to their driver's license photos. The system drew controversy when it was used in Baltimore to arrest unruly protesters after the death of Freddie Gray in police custody. Many other states are using or developing a similar system however some states have laws prohibiting its use. 

The FBI has also instituted its Next Generation Identification program to include face recognition, as well as more traditional biometrics like fingerprints and iris scans, which can pull from both criminal and civil databases.

In 2017, Time & Attendance company ClockedIn released facial recognition as a form of attendance tracking for businesses and organizations looking to have a more automated system of keeping track of hours worked as well as for security and health and safety control.

In May 2017, a man was arrested using an automatic facial recognition (AFR) system mounted on a van operated by the South Wales Police. Ars Technica reported that "this appears to be the first time [AFR] has led to an arrest".

As of late 2017, China has deployed facial recognition technology in Xinjiang. Reporters visiting the region found surveillance cameras installed every hundred meters or so in several cities, as well as facial recognition checkpoints at areas like gas stations, shopping centers, and mosque entrances.

Automatic Facial Recognition systems resemble other mobile CCTV systems

Additional uses

In addition to being used for security systems, authorities have found a number of other applications for face recognition systems. While earlier post-9/11 deployments were well-publicized trials, more recent deployments are rarely written about due to their covert nature.

At Super Bowl XXXV in January 2001, police in Tampa Bay, Florida used Viisage face recognition software to search for potential criminals and terrorists in attendance at the event. 19 people with minor criminal records were potentially identified.

In the 2000 Mexican presidential election, the Mexican government employed face recognition software to prevent voter fraud. Some individuals had been registering to vote under several different names, in an attempt to place multiple votes. By comparing new face images to those already in the voter database, authorities were able to reduce duplicate registrations. Similar technologies are being used in the United States to prevent people from obtaining fake identification cards and driver’s licenses.

Face recognition has been leveraged as a form of biometric authentication for various computing platforms and devices; Android 4.0 "Ice Cream Sandwich" added facial recognition using a smartphone's front camera as a means of unlocking devices, while Microsoft introduced face recognition login to its Xbox 360 video game console through its Kinect accessory, as well as Windows 10 via its "Windows Hello" platform (which requires an infrared-illuminated camera). Apple's iPhone X smartphone introduced facial recognition to the product line with its "Face ID" platform, which uses an infrared illumination system.

Face recognition systems have also been used by photo management software to identify the subjects of photographs, enabling features such as searching images by person, as well as suggesting photos to be shared with a specific contact if their presence were detected in a photo.

Facial recognition is used as added security in certain websites, phone applications, and payment methods. 

The United States' popular music and country music celebrity Taylor Swift surreptitiously employed facial recognition technology at a concert in 2018. The camera was embedded in a kiosk near a ticket booth and scanned concert-goers as they entered the facility for known stalkers.

Advantages and disadvantages

Compared to other biometric systems

One key advantage of a facial recognition system that it is able to person mass identification as it does not require the cooperation of the test subject to work. Properly designed systems installed in airports, multiplexes, and other public places can identify individuals among the crowd, without passers-by even being aware of the system.

However, as compared to other biometric techniques, face recognition may not be most reliable and efficient. Quality measures are very important in facial recognition systems as large degrees of variations are possible in face images. Factors such as illumination, expression, pose and noise during face capture can affect the performance of facial recognition systems. Among all biometric systems, facial recognition has the highest false acceptance and rejection rates, thus questions have been raised on the effectiveness of face recognition software in cases of railway and airport security.

Weaknesses

Ralph Gross, a researcher at the Carnegie Mellon Robotics Institute in 2008, describes one obstacle related to the viewing angle of the face: "Face recognition has been getting pretty good at full frontal faces and 20 degrees off, but as soon as you go towards profile, there've been problems." Besides the pose variations, low-resolution face images are also very hard to recognize. This is one of the main obstacles of face recognition in surveillance systems.

Face recognition is less effective if facial expressions vary. A big smile can render the system less effective. For instance: Canada, in 2009, allowed only neutral facial expressions in passport photos.

There is also inconstancy in the datasets used by researchers. Researchers may use anywhere from several subjects to scores of subjects and a few hundred images to thousands of images. It is important for researchers to make available the datasets they used to each other, or have at least a standard dataset.

Data privacy is the main concern when it comes to storing biometrics data in companies. Data stores about face or biometrics can be accessed by the third party if not stored properly or hacked. In the Techworld, Parris adds (2017), “Hackers will already be looking to replicate people's faces to trick facial recognition systems, but the technology has proved harder to hack than fingerprint or voice recognition technology in the past.”

Ineffectiveness

Critics of the technology complain that the London Borough of Newham scheme has, as of 2004, never recognized a single criminal, despite several criminals in the system's database living in the Borough and the system has been running for several years. "Not once, as far as the police know, has Newham's automatic face recognition system spotted a live target." This information seems to conflict with claims that the system was credited with a 34% reduction in crime (hence why it was rolled out to Birmingham also). However it can be explained by the notion that when the public is regularly told that they are under constant video surveillance with advanced face recognition technology, this fear alone can reduce the crime rate, whether the face recognition system technically works or does not. This has been the basis for several other face recognition based security systems, where the technology itself does not work particularly well but the user's perception of the technology does. 

An experiment in 2002 by the local police department in Tampa, Florida, had similarly disappointing results.

A system at Boston's Logan Airport was shut down in 2003 after failing to make any matches during a two-year test period.

In 2014, Facebook stated that in a standardized two-option facial recognition test, its online system scored 97.25% accuracy, compared to the human benchmark of 97.5%.

In 2018, a report by the civil liberties and rights campaigning organisation Big Brother Watch revealed that two UK police forces, South Wales Police and the Metropolitan Police, were using live facial recognition at public events and in public spaces, but with an accuracy rate as low as 2%. Their report also warned of significant potential human rights violations. It received widespread press coverage in the UK.

Systems are often advertised as having accuracy near 100%; this is misleading as the studies often use much smaller sample sizes than would be necessary for large scale applications. Because facial recognition is not completely accurate, it creates a list of potential matches. A human operator must then look through these potential matches and studies show the operators pick the correct match out of the list only about half the time. This causes the issue of targeting the wrong suspect.

Controversies

Privacy violations

Civil rights right organizations and privacy campaigners such as the Electronic Frontier Foundation, Big Brother Watch and the ACLU express concern that privacy is being compromised by the use of surveillance technologies. Some fear that it could lead to a “total surveillance society,” with the government and other authorities having the ability to know the whereabouts and activities of all citizens around the clock. This knowledge has been, is being, and could continue to be deployed to prevent the lawful exercise of rights of citizens to criticize those in office, specific government policies or corporate practices. Many centralized power structures with such surveillance capabilities have abused their privileged access to maintain control of the political and economic apparatus, and to curtail populist reforms.

Face recognition can be used not just to identify an individual, but also to unearth other personal data associated with an individual – such as other photos featuring the individual, blog posts, social networking profiles, Internet behavior, travel patterns, etc. – all through facial features alone. Concerns have been raised over who would have access to the knowledge of one's whereabouts and people with them at any given time. Moreover, individuals have limited ability to avoid or thwart face recognition tracking unless they hide their faces. This fundamentally changes the dynamic of day-to-day privacy by enabling any marketer, government agency, or random stranger to secretly collect the identities and associated personal information of any individual captured by the face recognition system. Consumers may not understand or be aware of what their data is being used for, which denies them the ability to consent to how their personal information gets shared.

Face recognition was used in Russia to harass women allegedly involved in online pornography. In Russia there is an app 'FindFace' which can identify faces with about 70% accuracy using the social media app called VK. This app would not be possible in other countries which do not use VK as their social media platform photos are not stored the same way as with VK.

In July 2012, a hearing was held before the Subcommittee on Privacy, Technology and the Law of the Committee on the Judiciary, United States Senate, to address issues surrounding what face recognition technology means for privacy and civil liberties.

In 2014, the National Telecommunications and Information Association (NTIA) began a multi-stakeholder process to engage privacy advocates and industry representatives to establish guidelines regarding the use of face recognition technology by private companies. In June 2015, privacy advocates left the bargaining table over what they felt was an impasse based on the industry representatives being unwilling to agree to consent requirements for the collection of face recognition data. The NTIA and industry representatives continued without the privacy representatives, and draft rules are expected to be presented in the spring of 2016.

In July 2015, the United States Government Accountability Office conducted a Report to the Ranking Member, Subcommittee on Privacy, Technology and the Law, Committee on the Judiciary, U.S. Senate. The report discussed facial recognition technology's commercial uses, privacy issues, and the applicable federal law. It states that previously, issues concerning facial recognition technology were discussed and represent the need for updated federal privacy laws that continually match the degree and impact of advanced technologies. Also, some industry, government, and private organizations are in the process of developing, or have developed, "voluntary privacy guidelines". These guidelines vary between the groups, but overall aim to gain consent and inform citizens of the intended use of facial recognition technology. This helps counteract the privacy issues that arise when citizens are unaware of where their personal, privacy data gets put to use as the report indicates as a prevalent issue.

The largest concern with the development of biometric technology, and more specifically facial recognition has to do with privacy. The rise in facial recognition technologies has led people to be concerned that large companies, such as Google or Apple, or even Government agencies will be using it for mass surveillance of the public. Regardless of whether or not they have committed a crime, in general people do not wish to have their every action watched or track. People tend to believe that, since we live in a free society, we should be able to go out in public without the fear of being identified and surveilled. People worry that with the rising prevalence of facial recognition, they will begin to lose their anonymity.

Facebook DeepFace

Social media web sites such as Facebook have very large numbers of photographs of people, annotated with names. This represents a database which may be abused by governments for face recognition purposes. Facebook's DeepFace has become the subject of several class action lawsuits under the Biometric Information Privacy Act, with claims alleging that Facebook is collecting and storing face recognition data of its users without obtaining informed consent, in direct violation of the Biometric Information Privacy Act. The most recent case was dismissed in January 2016 because the court lacked jurisdiction. Therefore, it is still unclear if the Biometric Information Privacy Act will be effective in protecting biometric data privacy rights.

In December 2017, Facebook rolled out a new feature that notifies a user when someone uploads a photo that includes what Facebook thinks is their face, even if they are not tagged. Facebook has attempted to frame the new functionality in a positive light, amidst prior backlashes. Facebook’s head of privacy, Rob Sherman, addressed this new feature as one that gives people more control over their photos online. “We’ve thought about this as a really empowering feature,” he says. “There may be photos that exist that you don’t know about.” 

Imperfect technology in law enforcement

All over the world, law enforcement agencies have begun using facial recognition software to aid in the identifying of criminals. For example, the Chinese police force were able to identify twenty-five wanted suspects using facial recognition equipment at the Qingdao International Beer Festival, one of which had been on the run for 10 years. The equipment works by recording a 15 second video clip and taking multiple snapshots of the subject. That data is compared and analyzed with images from the police department’s database and within 20 minutes, the subject can be identified with a 98.1% accuracy. In the UK, the police's use of facial recognition technology has been found to be up to 98% inaccurate.

Facial recognition technology has been proven to work less accurately on people of color. One study by Joy Buolamwini (MIT Media Lab) and Timnit Gebru (Microsoft Research) found that the error rate for gender recognition for women of color within three commercial facial recognition systems ranged from 23.8% to 36%, whereas for lighter-skinned men it was between 0.0 and 1.6%. Overall accuracy rates for identifying men (91.9%) were higher than for women (79.4%), and none of the systems accommodated a non-binary understanding of gender.

Experts fear that the new technology may actually be hurting the communities the police claims they are trying to protect. It is considered an imperfect biometric, and in a study conducted by Georgetown University researcher Clare Garvie, she concluded that "there’s no consensus in the scientific community that it provides a positive identification of somebody.”

It is believed that with such large margins of error in this technology, both legal advocates and facial recognition software companies say that the technology should only supply a portion of the case – no evidence that can lead to an arrest of an individual. 

The lack of regulations holding facial recognition technology companies to requirements of racially biased testing can be a significant flaw in the adoption of use in law enforcement. CyberExtruder, a company that markets itself to law enforcement said that they had not performed testing or research on bias in their software. CyberExtruder did note that some skin colors are more difficult for the software to recognize with current limitations of the technology. “Just as individuals with very dark skin are hard to identify with high significance via facial recognition, individuals with very pale skin are the same,” said Blake Senftner, a senior software engineer at CyberExtruder.

Facial recognition technology market worth a staggering $4.6bn in 2019 - and set to grow by another 25% over next 9 years.

Emotion detection

Facial recognition systems have been used for emotion recognition In 2016 Facebook acquired emotion detection startup FacioMetrics.

Anti-facial recognition systems

In January 2013 Japanese researchers from the National Institute of Informatics created 'privacy visor' glasses that use nearly infrared light to make the face underneath it unrecognizable to face recognition software. The latest version uses a titanium frame, light-reflective material and a mask which uses angles and patterns to disrupt facial recognition technology through both absorbing and bouncing back light sources. In December 2016 a form of anti-CCTV and facial recognition sunglasses called 'reflectacles' were invented by a custom-spectacle-craftsman based in Chicago named Scott Urban. They reflect infrared and, optionally, visible light which makes the users face a white blur to cameras.

Another method to protect from facial recognition systems are specific haircuts and make-up patterns that prevent the used algorithms to detect a face, known as computer vision dazzle.

Computer vision

From Wikipedia, the free encyclopedia

Computer vision is an interdisciplinary scientific field that deals with how computers can be made to gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human visual system can do.
 
Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g., in the forms of decisions. Understanding in this context means the transformation of visual images (the input of the retina) into descriptions of the world that can interface with other thought processes and elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory.

As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences, views from multiple cameras, or multi-dimensional data from a medical scanner. As a technological discipline, computer vision seeks to apply its theories and models for the construction of computer vision systems.

Sub-domains of computer vision include scene reconstruction, event detection, video tracking, object recognition, 3D pose estimation, learning, indexing, motion estimation, and image restoration.

Definition

Computer vision is an interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human visual system can do. "Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images. It involves the development of a theoretical and algorithmic basis to achieve automatic visual understanding." As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences, views from multiple cameras, or multi-dimensional data from a medical scanner. As a technological discipline, computer vision seeks to apply its theories and models for the construction of computer vision systems.

History

In the late 1960s, computer vision began at universities that were pioneering artificial intelligence. It was meant to mimic the human visual system, as a stepping stone to endowing robots with intelligent behavior. In 1966, it was believed that this could be achieved through a summer project, by attaching a camera to a computer and having it "describe what it saw".

What distinguished computer vision from the prevalent field of digital image processing at that time was a desire to extract three-dimensional structure from images with the goal of achieving full scene understanding. Studies in the 1970s formed the early foundations for many of the computer vision algorithms that exist today, including extraction of edges from images, labeling of lines, non-polyhedral and polyhedral modeling, representation of objects as interconnections of smaller structures, optical flow, and motion estimation.

The next decade saw studies based on more rigorous mathematical analysis and quantitative aspects of computer vision. These include the concept of scale-space, the inference of shape from various cues such as shading, texture and focus, and contour models known as snakes. Researchers also realized that many of these mathematical concepts could be treated within the same optimization framework as regularization and Markov random fields. By the 1990s, some of the previous research topics became more active than the others. Research in projective 3-D reconstructions led to better understanding of camera calibration. With the advent of optimization methods for camera calibration, it was realized that a lot of the ideas were already explored in bundle adjustment theory from the field of photogrammetry. This led to methods for sparse 3-D reconstructions of scenes from multiple images. Progress was made on the dense stereo correspondence problem and further multi-view stereo techniques. At the same time, variations of graph cut were used to solve image segmentation. This decade also marked the first time statistical learning techniques were used in practice to recognize faces in images. Toward the end of the 1990s, a significant change came about with the increased interaction between the fields of computer graphics and computer vision. This included image-based rendering, image morphing, view interpolation, panoramic image stitching and early light-field rendering.

Recent work has seen the resurgence of feature-based methods, used in conjunction with machine learning techniques and complex optimization frameworks.

Related fields

Artificial intelligence

Areas of artificial intelligence deal with autonomous planning or deliberation for robotical systems to navigate through an environment. A detailed understanding of these environments is required to navigate through them. Information about the environment could be provided by a computer vision system, acting as a vision sensor and providing high-level information about the environment and the robot. 

Artificial intelligence and computer vision share other topics such as pattern recognition and learning techniques. Consequently, computer vision is sometimes seen as a part of the artificial intelligence field or the computer science field in general.

Information engineering

Computer vision is often considered to be part of information engineering.

Solid-state physics

Solid-state physics is another field that is closely related to computer vision. Most computer vision systems rely on image sensors, which detect electromagnetic radiation, which is typically in the form of either visible or infra-red light. The sensors are designed using quantum physics. The process by which light interacts with surfaces is explained using physics. Physics explains the behavior of optics which are a core part of most imaging systems. Sophisticated image sensors even require quantum mechanics to provide a complete understanding of the image formation process. Also, various measurement problems in physics can be addressed using computer vision, for example motion in fluids.

Neurobiology

A third field which plays an important role is neurobiology, specifically the study of the biological vision system. Over the last century, there has been an extensive study of eyes, neurons, and the brain structures devoted to processing of visual stimuli in both humans and various animals. This has led to a coarse, yet complicated, description of how "real" vision systems operate in order to solve certain vision-related tasks. These results have led to a subfield within computer vision where artificial systems are designed to mimic the processing and behavior of biological systems, at different levels of complexity. Also, some of the learning-based methods developed within computer vision (e.g. neural net and deep learning based image and feature analysis and classification) have their background in biology. 

Some strands of computer vision research are closely related to the study of biological vision – indeed, just as many strands of AI research are closely tied with research into human consciousness, and the use of stored knowledge to interpret, integrate and utilize visual information. The field of biological vision studies and models the physiological processes behind visual perception in humans and other animals. Computer vision, on the other hand, studies and describes the processes implemented in software and hardware behind artificial vision systems. Interdisciplinary exchange between biological and computer vision has proven fruitful for both fields.

Signal processing

Yet another field related to computer vision is signal processing. Many methods for processing of one-variable signals, typically temporal signals, can be extended in a natural way to processing of two-variable signals or multi-variable signals in computer vision. However, because of the specific nature of images there are many methods developed within computer vision which have no counterpart in processing of one-variable signals. Together with the multi-dimensionality of the signal, this defines a subfield in signal processing as a part of computer vision.

Other fields

Beside the above-mentioned views on computer vision, many of the related research topics can also be studied from a purely mathematical point of view. For example, many methods in computer vision are based on statistics, optimization or geometry. Finally, a significant part of the field is devoted to the implementation aspect of computer vision; how existing methods can be realized in various combinations of software and hardware, or how these methods can be modified in order to gain processing speed without losing too much performance. Computer vision is also used in fashion ecommerce, inventory management, patent search, furniture, and the beauty industry.

Distinctions

The fields most closely related to computer vision are image processing, image analysis and machine vision. There is a significant overlap in the range of techniques and applications that these cover. This implies that the basic techniques that are used and developed in these fields are similar, something which can be interpreted as there is only one field with different names. On the other hand, it appears to be necessary for research groups, scientific journals, conferences and companies to present or market themselves as belonging specifically to one of these fields and, hence, various characterizations which distinguish each of the fields from the others have been presented.

Computer graphics produces image data from 3D models, computer vision often produces 3D models from image data. There is also a trend towards a combination of the two disciplines, e.g., as explored in augmented reality

The following characterizations appear relevant but should not be taken as universally accepted:
  • Image processing and image analysis tend to focus on 2D images, how to transform one image to another, e.g., by pixel-wise operations such as contrast enhancement, local operations such as edge extraction or noise removal, or geometrical transformations such as rotating the image. This characterization implies that image processing/analysis neither require assumptions nor produce interpretations about the image content.
  • Computer vision includes 3D analysis from 2D images. This analyzes the 3D scene projected onto one or several images, e.g., how to reconstruct structure or other information about the 3D scene from one or several images. Computer vision often relies on more or less complex assumptions about the scene depicted in an image.
  • Machine vision is the process of applying a range of technologies & methods to provide imaging-based automatic inspection, process control and robot guidance in industrial applications. Machine vision tends to focus on applications, mainly in manufacturing, e.g., vision-based robots and systems for vision-based inspection, measurement, or picking (such as bin picking). This implies that image sensor technologies and control theory often are integrated with the processing of image data to control a robot and that real-time processing is emphasised by means of efficient implementations in hardware and software. It also implies that the external conditions such as lighting can be and are often more controlled in machine vision than they are in general computer vision, which can enable the use of different algorithms.
  • There is also a field called imaging which primarily focuses on the process of producing images, but sometimes also deals with processing and analysis of images. For example, medical imaging includes substantial work on the analysis of image data in medical applications.
  • Finally, pattern recognition is a field which uses various methods to extract information from signals in general, mainly based on statistical approaches and artificial neural networks. A significant part of this field is devoted to applying these methods to image data.
Photogrammetry also overlaps with computer vision, e.g., stereophotogrammetry vs. computer stereo vision.

Applications

Applications range from tasks such as industrial machine vision systems which, say, inspect bottles speeding by on a production line, to research into artificial intelligence and computers or robots that can comprehend the world around them. The computer vision and machine vision fields have significant overlap. Computer vision covers the core technology of automated image analysis which is used in many fields. Machine vision usually refers to a process of combining automated image analysis with other methods and technologies to provide automated inspection and robot guidance in industrial applications. In many computer-vision applications, the computers are pre-programmed to solve a particular task, but methods based on learning are now becoming increasingly common. Examples of applications of computer vision include systems for:

Learning 3D shapes has been a challenging task in computer vision. Recent advances in deep learning has enabled researchers to build models that are able to generate and reconstruct 3D shapes from single or multi-view depth maps or silhouettes seamlessly and efficiently 
One of the most prominent application fields is medical computer vision, or medical image processing, characterized by the extraction of information from image data to diagnose a patient. An example of this is detection of tumours, arteriosclerosis or other malign changes; measurements of organ dimensions, blood flow, etc. are another example. It also supports medical research by providing new information: e.g., about the structure of the brain, or about the quality of medical treatments. Applications of computer vision in the medical area also includes enhancement of images interpreted by humans—ultrasonic images or X-ray images for example—to reduce the influence of noise. 

A second application area in computer vision is in industry, sometimes called machine vision, where information is extracted for the purpose of supporting a manufacturing process. One example is quality control where details or final products are being automatically inspected in order to find defects. Another example is measurement of position and orientation of details to be picked up by a robot arm. Machine vision is also heavily used in agricultural process to remove undesirable food stuff from bulk material, a process called optical sorting.

Military applications are probably one of the largest areas for computer vision. The obvious examples are detection of enemy soldiers or vehicles and missile guidance. More advanced systems for missile guidance send the missile to an area rather than a specific target, and target selection is made when the missile reaches the area based on locally acquired image data. Modern military concepts, such as "battlefield awareness", imply that various sensors, including image sensors, provide a rich set of information about a combat scene which can be used to support strategic decisions. In this case, automatic processing of the data is used to reduce complexity and to fuse information from multiple sensors to increase reliability. 

Artist's concept of a Mars Exploration Rover, an example of an unmanned land-based vehicle. Notice the stereo cameras mounted on top of the rover.
 
One of the newer application areas is autonomous vehicles, which include submersibles, land-based vehicles (small robots with wheels, cars or trucks), aerial vehicles, and unmanned aerial vehicles (UAV). The level of autonomy ranges from fully autonomous (unmanned) vehicles to vehicles where computer-vision-based systems support a driver or a pilot in various situations. Fully autonomous vehicles typically use computer vision for navigation, e.g. for knowing where it is, or for producing a map of its environment (SLAM) and for detecting obstacles. It can also be used for detecting certain task specific events, e.g., a UAV looking for forest fires. Examples of supporting systems are obstacle warning systems in cars, and systems for autonomous landing of aircraft. Several car manufacturers have demonstrated systems for autonomous driving of cars, but this technology has still not reached a level where it can be put on the market. There are ample examples of military autonomous vehicles ranging from advanced missiles to UAVs for recon missions or missile guidance. Space exploration is already being made with autonomous vehicles using computer vision, e.g., NASA's Mars Exploration Rover and ESA's ExoMars Rover. 

Other application areas include:

Typical tasks

Each of the application areas described above employ a range of computer vision tasks; more or less well-defined measurement problems or processing problems, which can be solved using a variety of methods. Some examples of typical computer vision tasks are presented below. 

Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g., in the forms of decisions. Understanding in this context means the transformation of visual images (the input of the retina) into descriptions of the world that can interface with other thought processes and elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory.

Recognition

The classical problem in computer vision, image processing, and machine vision is that of determining whether or not the image data contains some specific object, feature, or activity. Different varieties of the recognition problem are described in the literature:
  • Object recognition (also called object classification) – one or several pre-specified or learned objects or object classes can be recognized, usually together with their 2D positions in the image or 3D poses in the scene. Blippar, Google Goggles and LikeThat provide stand-alone programs that illustrate this functionality.
  • Identification – an individual instance of an object is recognized. Examples include identification of a specific person's face or fingerprint, identification of handwritten digits, or identification of a specific vehicle.
  • Detection – the image data are scanned for a specific condition. Examples include detection of possible abnormal cells or tissues in medical images or detection of a vehicle in an automatic road toll system. Detection based on relatively simple and fast computations is sometimes used for finding smaller regions of interesting image data which can be further analyzed by more computationally demanding techniques to produce a correct interpretation.
Currently, the best algorithms for such tasks are based on convolutional neural networks. An illustration of their capabilities is given by the ImageNet Large Scale Visual Recognition Challenge; this is a benchmark in object classification and detection, with millions of images and hundreds of object classes. Performance of convolutional neural networks, on the ImageNet tests, is now close to that of humans. The best algorithms still struggle with objects that are small or thin, such as a small ant on a stem of a flower or a person holding a quill in their hand. They also have trouble with images that have been distorted with filters (an increasingly common phenomenon with modern digital cameras). By contrast, those kinds of images rarely trouble humans. Humans, however, tend to have trouble with other issues. For example, they are not good at classifying objects into fine-grained classes, such as the particular breed of dog or species of bird, whereas convolutional neural networks handle this with ease. 

Several specialized tasks based on recognition exist, such as:
  • Content-based image retrieval – finding all images in a larger set of images which have a specific content. The content can be specified in different ways, for example in terms of similarity relative a target image (give me all images similar to image X), or in terms of high-level search criteria given as text input (give me all images which contains many houses, are taken during winter, and have no cars in them).
Computer vision for people counter purposes in public places, malls, shopping centres

Motion analysis

Several tasks relate to motion estimation where an image sequence is processed to produce an estimate of the velocity either at each points in the image or in the 3D scene, or even of the camera that produces the images . Examples of such tasks are:
  • Egomotion – determining the 3D rigid motion (rotation and translation) of the camera from an image sequence produced by the camera.
  • Tracking – following the movements of a (usually) smaller set of interest points or objects (e.g., vehicles, humans or other organisms) in the image sequence.
  • Optical flow – to determine, for each point in the image, how that point is moving relative to the image plane, i.e., its apparent motion. This motion is a result both of how the corresponding 3D point is moving in the scene and how the camera is moving relative to the scene.

Scene reconstruction

Given one or (typically) more images of a scene, or a video, scene reconstruction aims at computing a 3D model of the scene. In the simplest case the model can be a set of 3D points. More sophisticated methods produce a complete 3D surface model. The advent of 3D imaging not requiring motion or scanning, and related processing algorithms is enabling rapid advances in this field. Grid-based 3D sensing can be used to acquire 3D images from multiple angles. Algorithms are now available to stitch multiple 3D images together into point clouds and 3D models.

Image restoration

The aim of image restoration is the removal of noise (sensor noise, motion blur, etc.) from images. The simplest possible approach for noise removal is various types of filters such as low-pass filters or median filters. More sophisticated methods assume a model of how the local image structures look, to distinguish them from noise. By first analysing the image data in terms of the local image structures, such as lines or edges, and then controlling the filtering based on local information from the analysis step, a better level of noise removal is usually obtained compared to the simpler approaches.
An example in this field is inpainting.

System methods

The organization of a computer vision system is highly application-dependent. Some systems are stand-alone applications that solve a specific measurement or detection problem, while others constitute a sub-system of a larger design which, for example, also contains sub-systems for control of mechanical actuators, planning, information databases, man-machine interfaces, etc. The specific implementation of a computer vision system also depends on whether its functionality is pre-specified or if some part of it can be learned or modified during operation. Many functions are unique to the application. There are, however, typical functions that are found in many computer vision systems.
  • Image acquisition – A digital image is produced by one or several image sensors, which, besides various types of light-sensitive cameras, include range sensors, tomography devices, radar, ultra-sonic cameras, etc. Depending on the type of sensor, the resulting image data is an ordinary 2D image, a 3D volume, or an image sequence. The pixel values typically correspond to light intensity in one or several spectral bands (gray images or colour images), but can also be related to various physical measures, such as depth, absorption or reflectance of sonic or electromagnetic waves, or nuclear magnetic resonance.
  • Pre-processing – Before a computer vision method can be applied to image data in order to extract some specific piece of information, it is usually necessary to process the data in order to assure that it satisfies certain assumptions implied by the method. Examples are:
    • Re-sampling to assure that the image coordinate system is correct.
    • Noise reduction to assure that sensor noise does not introduce false information.
    • Contrast enhancement to assure that relevant information can be detected.
    • Scale space representation to enhance image structures at locally appropriate scales.
  • Feature extraction – Image features at various levels of complexity are extracted from the image data. Typical examples of such features are:
More complex features may be related to texture, shape or motion.
  • Detection/segmentation – At some point in the processing a decision is made about which image points or regions of the image are relevant for further processing. Examples are:
    • Selection of a specific set of interest points.
    • Segmentation of one or multiple image regions that contain a specific object of interest.
    • Segmentation of image into nested scene architecture comprising foreground, object groups, single objects or salient object parts (also referred to as spatial-taxon scene hierarchy), while the visual salience is often implemented as spatial and temporal attention.
    • Segmentation or co-segmentation of one or multiple videos into a series of per-frame foreground masks, while maintaining its temporal semantic continuity. 
  • High-level processing – At this step the input is typically a small set of data, for example a set of points or an image region which is assumed to contain a specific object. The remaining processing deals with, for example:
    • Verification that the data satisfy model-based and application-specific assumptions.
    • Estimation of application-specific parameters, such as object pose or object size.
    • Image recognition – classifying a detected object into different categories.
    • Image registration – comparing and combining two different views of the same object.
  • Decision making Making the final decision required for the application, for example:
    • Pass/fail on automatic inspection applications.
    • Match/no-match in recognition applications.
    • Flag for further human review in medical, military, security and recognition applications.

Image-understanding systems

Image-understanding systems (IUS) include three levels of abstraction as follows: low level includes image primitives such as edges, texture elements, or regions; intermediate level includes boundaries, surfaces and volumes; and high level includes objects, scenes, or events. Many of these requirements are really topics for further research.

The representational requirements in the designing of IUS for these levels are: representation of prototypical concepts, concept organization, spatial knowledge, temporal knowledge, scaling, and description by comparison and differentiation. 

While inference refers to the process of deriving new, not explicitly represented facts from currently known facts, control refers to the process that selects which of the many inference, search, and matching techniques should be applied at a particular stage of processing. Inference and control requirements for IUS are: search and hypothesis activation, matching and hypothesis testing, generation and use of expectations, change and focus of attention, certainty and strength of belief, inference and goal satisfaction.

Hardware

There are many kinds of computer vision systems; however, all of them contain these basic elements: a power source, at least one image acquisition device (camera, ccd, etc.), a processor, and control and communication cables or some kind of wireless interconnection mechanism. In addition, a practical vision system contains software, as well as a display in order to monitor the system. Vision systems for inner spaces, as most industrial ones, contain an illumination system and may be placed in a controlled environment. Furthermore, a completed system includes many accessories such as camera supports, cables and connectors. 

Most computer vision systems use visible-light cameras passively viewing a scene at frame rates of at most 60 frames per second (usually far slower). 

A few computer vision systems use image-acquisition hardware with active illumination or something other than visible light or both, such as structured-light 3D scanners, thermographic cameras, hyperspectral imagers, radar imaging, lidar scanners, magnetic resonance images, side-scan sonar, synthetic aperture sonar, etc. Such hardware captures "images" that are then processed often using the same computer vision algorithms used to process visible-light images.

While traditional broadcast and consumer video systems operate at a rate of 30 frames per second, advances in digital signal processing and consumer graphics hardware has made high-speed image acquisition, processing, and display possible for real-time systems on the order of hundreds to thousands of frames per second. For applications in robotics, fast, real-time video systems are critically important and often can simplify the processing needed for certain algorithms. When combined with a high-speed projector, fast image acquisition allows 3D measurement and feature tracking to be realised.

Egocentric vision systems are composed of a wearable camera that automatically take pictures from a first-person perspective.

As of 2016, vision processing units are emerging as a new class of processor, to complement CPUs and graphics processing units (GPUs) in this role.

Brønsted–Lowry acid–base theory

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Br%C3%B8nsted%E2%80%93Lowry_acid%E2%80%93base_theory The B...