From Wikipedia, the free encyclopedia
In
Einstein's theory of
general relativity, the
Schwarzschild metric (also known as the
Schwarzschild vacuum or
Schwarzschild solution) is the solution to the
Einstein field equations that describes the
gravitational field outside a spherical mass, on the assumption that the
electric charge of the mass,
angular momentum of the mass, and universal
cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many
stars and
planets, including Earth and the Sun. The solution is named after
Karl Schwarzschild, who first published the solution in 1916.
According to
Birkhoff's theorem, the Schwarzschild metric is the most general
spherically symmetric,
vacuum solution of the Einstein field equations. A
Schwarzschild black hole or
static black hole is a
black hole
that has neither electric charge nor angular momentum. A Schwarzschild
black hole is described by the Schwarzschild metric, and cannot be
distinguished from any other Schwarzschild black hole except by its
mass.
The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the
event horizon, which is situated at the
Schwarzschild radius,
often called the radius of a black hole. The boundary is not a physical
surface, and if a person fell through the event horizon (before being
torn apart by tidal forces), they would not notice any physical surface
at that position; it is a mathematical surface which is significant in
determining the black hole's properties. Any non-rotating and
non-charged mass that is smaller than its Schwarzschild radius forms a
black hole. The solution of the Einstein field equations is valid for
any mass
M,
so in principle (according to general relativity theory) a
Schwarzschild black hole of any mass could exist if conditions became
sufficiently favorable to allow for its formation.
The Schwarzschild metric
In
Schwarzschild coordinates, with signature
(1, −1, −1, −1), the
line element for the Schwarzschild metric has the form
where
- when dτ2 is positive, τ is the proper time (time measured by a clock moving along the same world line with the test particle),
- c is the speed of light,
- t is the time coordinate (measured by a stationary clock located infinitely far from the massive body),
- r is the radial coordinate (measured as the circumference, divided by 2π, of a sphere centered around the massive body),
- θ is the colatitude (angle from north, in units of radians),
- φ is the longitude (also in radians), and
- rs is the Schwarzschild radius of the massive body, a scale factor which is related to its mass M by rs = 2GM/c2, where G is the gravitational constant.[1]
The analogue of this solution in classical Newtonian theory of
gravity corresponds to the gravitational field around a point particle.
[2]
The radial coordinate turns out to have physical significance as the
"proper distance between two events that occur simultaneously relative
to the radially moving geodesic clocks, the two events lying on the same
radial coordinate line".
[3]
In practice, the ratio
rs/r is almost always extremely small. For example, the Schwarzschild radius
rs of the Earth is roughly
8.9 mm, while the Sun, which is
3.3×105 times as massive
[4]
has a Schwarzschild radius of approximately 3.0 km. Even at the surface
of the Earth, the corrections to Newtonian gravity are only one part in
a billion. The ratio becomes large only in relatively close proximity
to
black holes and other ultra-dense objects such as
neutron stars.
[citation needed]
The Schwarzschild metric is a solution of
Einstein's field equations in empty space, meaning that it is valid only
outside the gravitating body. That is, for a spherical body of radius
R the solution is valid for
r > R.
To describe the gravitational field both inside and outside the
gravitating body the Schwarzschild solution must be matched with some
suitable interior solution at
r = R,
[5] such as the
interior Schwarzschild metric.
History
The Schwarzschild solution is named in honour of
Karl Schwarzschild, who found the exact solution in 1915 and published it in January 1916,
[6] a little more than a month after the publication of Einstein's theory of general relativity. It was the first
exact solution of the Einstein field equations other than the trivial
flat space solution. Schwarzschild died shortly after his paper was published, as a result of a disease he contracted while serving in the
German army during
World War I.
[7]
Johannes Droste in 1916
[8] independently produced the same solution as Schwarzschild, using a simpler, more direct derivation.
[9]
In the early years of general relativity there was a lot of confusion
about the nature of the singularities found in the Schwarzschild and
other solutions of the
Einstein field equations. In Schwarzschild's original paper, he put what we now call the event horizon at the origin of his coordinate system.
[10] In this paper he also introduced what is now known as the Schwarzschild radial coordinate (
r
in the equations above), as an auxiliary variable. In his equations,
Schwarzschild was using a different radial coordinate that was zero at
the Schwarzschild radius.
A more complete analysis of the singularity structure was given by
David Hilbert[11] in the following year, identifying the singularities both at
r = 0 and
r = rs. Although there was general consensus that the singularity at
r = 0 was a 'genuine' physical singularity, the nature of the singularity at
r = rs remained unclear.
[12]
In 1921
Paul Painlevé and in 1922
Allvar Gullstrand
independently produced a metric, a spherically symmetric solution of
Einstein's equations, which we now know is coordinate transformation of
the Schwarzschild metric,
Gullstrand–Painlevé coordinates, in which there was no singularity at
r = rs. They, however, did not recognize that their solutions were just
coordinate transforms, and in fact used their solution to argue that
Einstein's theory was wrong. In 1924
Arthur Eddington produced the first coordinate transformation (
Eddington–Finkelstein coordinates) that showed that the singularity at
r = rs was a coordinate artifact, although he also seems to have been unaware of the significance of this discovery. Later, in 1932,
Georges Lemaître gave a different coordinate transformation (
Lemaître coordinates) to the same effect and was the first to recognize that this implied that the singularity at
r = rs was not physical. In 1939
Howard Robertson showed that a free falling observer descending in the Schwarzschild metric would cross the
r = rs singularity in a finite amount of
proper time even though this would take an infinite amount of time in terms of coordinate time
t.
[12]
In 1950,
John Synge produced a paper
[13] that showed the maximal
analytic extension of the Schwarzschild metric, again showing that the singularity at
r = rs was a coordinate artifact and that it represented two horizons. A similar result was later rediscovered by
George Szekeres,
[14] and independently
Martin Kruskal.
[15] The new coordinates nowadays known as
Kruskal-Szekeres coordinates
were much simpler than Synge's but both provided a single set of
coordinates that covered the entire spacetime. However, perhaps due to
the obscurity of the journals in which the papers of Lemaître and Synge
were published their conclusions went unnoticed, with many of the major
players in the field including Einstein believing that singularity at
the Schwarzschild radius was physical.
[12]
Real progress was made in the 1960s when the more exact tools of
differential geometry entered the field of general relativity, allowing more exact definitions of what it means for a
Lorentzian manifold to be singular. This led to definitive identification of the
r = rs singularity in the Schwarzschild metric as an
event horizon (a hypersurface in spacetime that can be crossed in only one direction).
[12]
Singularities and black holes
The Schwarzschild solution appears to have
singularities at
r = 0 and
r = rs;
some of the metric components "blow up" (entail division by zero or
division by infinity) at these radii. Since the Schwarzschild metric is
expected to be valid only for those radii larger than the radius
R of the gravitating body, there is no problem as long as
R > rs. For ordinary stars and planets this is always the case. For example, the radius of the
Sun is approximately
700000 km, while its Schwarzschild radius is only
3 km.
The singularity at
r = rs divides the Schwarzschild coordinates in two
disconnected patches. The
exterior Schwarzschild solution with
r > rs is the one that is related to the gravitational fields of stars and planets. The
interior Schwarzschild solution with
0 ≤ r < rs, which contains the singularity at
r = 0, is completely separated from the outer patch by the singularity at
r = rs.
The Schwarzschild coordinates therefore give no physical connection
between the two patches, which may be viewed as separate solutions. The
singularity at
r = rs is an illusion however; it is an instance of what is called a
coordinate singularity. As the name implies, the singularity arises from a bad choice of coordinates or
coordinate conditions. When changing to a different coordinate system (for example
Lemaitre coordinates,
Eddington–Finkelstein coordinates,
Kruskal–Szekeres coordinates, Novikov coordinates, or
Gullstrand–Painlevé coordinates) the metric becomes regular at
r = rs and can extend the external patch to values of
r smaller than
rs. Using a different coordinate transformation one can then relate the extended external patch to the inner patch.
[16]
The case
r = 0 is different, however. If one asks that the solution be valid for all
r one runs into a true physical singularity, or
gravitational singularity,
at the origin. To see that this is a true singularity one must look at
quantities that are independent of the choice of coordinates. One such
important quantity is the
Kretschmann invariant, which is given by
At
r = 0 the curvature becomes
infinite, indicating the presence of a singularity. At this point the
metric, and spacetime itself, is no longer well-defined. For a long time
it was thought that such a solution was non-physical. However, a
greater understanding of general relativity led to the realization that
such singularities were a generic feature of the theory and not just an
exotic special case.
The Schwarzschild solution, taken to be valid for all
r > 0, is called a
Schwarzschild black hole. It is a perfectly valid solution of the Einstein field equations, although it has some rather bizarre properties. For
r < rs the Schwarzschild radial coordinate
r becomes
timelike and the time coordinate
t becomes
spacelike. A curve at constant
r is no longer a possible
worldline
of a particle or observer, not even if a force is exerted to try to
keep it there; this occurs because spacetime has been curved so much
that the direction of cause and effect (the particle's future
light cone) points into the singularity
[citation needed]. The surface
r = rs demarcates what is called the
event horizon
of the black hole. It represents the point past which light can no
longer escape the gravitational field. Any physical object whose radius
R becomes less than or equal to the Schwarzschild radius will undergo
gravitational collapse and become a black hole.
[17]
Flamm's paraboloid
A plot of Flamm's paraboloid. It should not be confused with the unrelated concept of a
gravity well.
The spatial curvature of the Schwarzschild solution for
r > rs can be visualized as the graphic shows. Consider a constant time equatorial slice through the Schwarzschild solution (
θ = π/2,
t = constant) and let the position of a particle moving in this plane be described with the remaining Schwarzschild coordinates
(r, φ). Imagine now that there is an additional Euclidean dimension
w, which has no physical reality (it is not part of spacetime). Then replace the
(r, φ) plane with a surface dimpled in the
w direction according to the equation (
Flamm's paraboloid)
This surface has the property that distances measured within it match
distances in the Schwarzschild metric, because with the definition of
w above,
Thus, Flamm's paraboloid is useful for visualizing the spatial
curvature of the Schwarzschild metric. It should not, however, be
confused with a
gravity well. No ordinary (massive or massless) particle can have a worldline lying on the paraboloid, since all distances on it are
spacelike (this is a cross-section at one moment of time, so any particle moving on it would have an infinite
velocity). Even a
tachyon
would not move along the path that one might naively expect from a
"rubber sheet" analogy: in particular, if the dimple is drawn pointing
upward rather than downward, the tachyon's path still curves toward the
central mass, not away. See the
gravity well article for more information.
Flamm's paraboloid may be derived as follows. The Euclidean metric in the
cylindrical coordinates (r, φ, w) is written
Letting the surface be described by the function
w = w(r), the Euclidean metric can be written as
Comparing this with the Schwarzschild metric in the equatorial plane (
θ = π/2) at a fixed time (
t = constant,
dt = 0)
yields an integral expression for
w(r):
whose solution is Flamm's paraboloid.
Orbital motion
Comparison between the orbit of a testparticle in Newtonian (left) and Schwarzschild (right) spacetime; note the
Apsidal precession on the right.
A particle orbiting in the Schwarzschild metric can have a stable circular orbit with
r > 3rs. Circular orbits with
r between
1.5rs and
3rs are unstable, and no circular orbits exist for
r < 1.5rs. The circular orbit of minimum radius
1.5rs corresponds to an orbital velocity approaching the speed of light. It is possible for a particle to have a constant value of
r between
rs and
1.5rs, but only if some force acts to keep it there.
Noncircular orbits, such as
Mercury's,
dwell longer at small radii than would be expected classically. This
can be seen as a less extreme version of the more dramatic case in which
a particle passes through the event horizon and dwells inside it
forever. Intermediate between the case of Mercury and the case of an
object falling past the event horizon, there are exotic possibilities
such as knife-edge orbits, in which the satellite can be made to execute
an arbitrarily large number of nearly circular orbits, after which it
flies back outward.
Symmetries
The group of isometries of the Schwarzschild metric is the subgroup of the ten-dimensional
Poincaré group
which takes the time axis (trajectory of the star) to itself. It omits
the spatial translations (three dimensions) and boosts (three
dimensions). It retains the time translations (one dimension) and
rotations (three dimensions). Thus it has four dimensions. Like the
Poincaré group, it has four connected components: the component of the
identity; the time reversed component; the spatial inversion component;
and the component which is both time reversed and spatially inverted.
Curvatures
The Ricci curvature scalar and the
Ricci curvature tensor are both zero. Non-zero components of the
Riemann curvature tensor are
[20]
Components which are obtainable by the symmetries of the Riemann tensor are not displayed.