Search This Blog

Friday, September 14, 2018

History of paleontology

From Wikipedia, the free encyclopedia
 
Duria Antiquior – A more Ancient Dorset is a watercolor painted in 1830 by the geologist Henry De la Beche based on fossils found by Mary Anning. The late 18th and early 19th century was a time of rapid and dramatic changes in ideas about the history of life on earth.

The history of paleontology traces the history of the effort to understand the history of life on Earth by studying the fossil record left behind by living organisms. Since it is concerned with understanding living organisms of the past, paleontology can be considered to be a field of biology, but its historical development has been closely tied to geology and the effort to understand the history of Earth itself.

In ancient times, Xenophanes (570–480 BC), Herodotus (484–425 BC), Eratosthenes (276–194 BC), and Strabo (64 BC-24 AD) wrote about fossils of marine organisms, indicating that land was once under water. During the Middle Ages, fossils were discussed by Persian naturalist Ibn Sina (known as Avicenna in Europe) in The Book of Healing (1027), which proposed a theory of petrifying fluids that Albert of Saxony would elaborate on in the 14th century. The Chinese naturalist Shen Kuo (1031–1095) would propose a theory of climate change based on evidence from petrified bamboo.

In early modern Europe, the systematic study of fossils emerged as an integral part of the changes in natural philosophy that occurred during the Age of Reason. The nature of fossils and their relationship to life in the past became better understood during the 17th and 18th centuries, and at the end of the 18th century, the work of Georges Cuvier had ended a long running debate about the reality of extinction, leading to the emergence of paleontology- in association with comparative anatomy- as a scientific discipline. The expanding knowledge of the fossil record also played an increasing role in the development of geology, and stratigraphy in particular.

In 1822, the word "paleontology" was used by the editor of a French scientific journal to refer to the study of ancient living organisms through fossils, and the first half of the 19th century saw geological and paleontological activity become increasingly well organized with the growth of geologic societies and museums and an increasing number of professional geologists and fossil specialists. This contributed to a rapid increase in knowledge about the history of life on Earth, and progress towards definition of the geologic time scale largely based on fossil evidence. As knowledge of life's history continued to improve, it became increasingly obvious that there had been some kind of successive order to the development of life. This would encourage early evolutionary theories on the transmutation of species. After Charles Darwin published Origin of Species in 1859, much of the focus of paleontology shifted to understanding evolutionary paths, including human evolution, and evolutionary theory.

The last half of the 19th century saw a tremendous expansion in paleontological activity, especially in North America. The trend continued in the 20th century with additional regions of the Earth being opened to systematic fossil collection, as demonstrated by a series of important discoveries in China near the end of the 20th century. Many transitional fossils have been discovered, and there is now considered to be abundant evidence of how all classes of vertebrates are related, much of it in the form of transitional fossils. The last few decades of the 20th century saw a renewed interest in mass extinctions and their role in the evolution of life on Earth. There was also a renewed interest in the Cambrian explosion that saw the development of the body plans of most animal phyla. The discovery of fossils of the Ediacaran biota and developments in paleobiology extended knowledge about the history of life back far before the Cambrian.

Prior to the 17th century

As early as the 6th century BC, the Greek philosopher Xenophanes of Colophon (570–480 BC) recognized that some fossil shells were remains of shellfish, which he used to argue that what was at the time dry land was once under the sea. Leonardo da Vinci (1452–1519), in an unpublished notebook, also concluded that some fossil sea shells were the remains of shellfish. However, in both cases, the fossils were complete remains of shellfish species that closely resembled living species, and were therefore easy to classify.

In 1027, the Persian naturalist, Ibn Sina (known as Avicenna in Europe), proposed an explanation of how the stoniness of fossils was caused in The Book of Healing. He modified an idea of Aristotle's, which explained it in terms of vaporous exhalations. Ibn Sina modified this into the theory of petrifying fluids (succus lapidificatus), which was elaborated on by Albert of Saxony in the 14th century and was accepted in some form by most naturalists by the 16th century.

Shen Kuo (Chinese: 沈括) (1031–1095) of the Song Dynasty used marine fossils found in the Taihang Mountains to infer the existence of geological processes such as geomorphology and the shifting of seashores over time. Using his observation of preserved petrified bamboos found underground in Yan'an, Shanbei region, Shaanxi province, he argued for a theory of gradual climate change, since Shaanxi was part of a dry climate zone that did not support a habitat for the growth of bamboos.

As a result of a new emphasis on observing, classifying, and cataloging nature, 16th century natural philosophers in Europe began to establish extensive collections of fossil objects (as well as collections of plant and animal specimens), which were often stored in specially built cabinets to help organize them. Conrad Gesner published a 1565 work on fossils that contained one of the first detailed descriptions of such a cabinet and collection. The collection belonged to a member of the extensive network of correspondents that Gesner drew on for his works. Such informal correspondence networks among natural philosophers and collectors became increasingly important during the course of the 16th century and were direct forerunners of the scientific societies that would begin to form in the 17th century. These cabinet collections and correspondence networks played an important role in the development of natural philosophy.

However, most 16th-century Europeans did not recognize that fossils were the remains of living organisms. The etymology of the word fossil comes from the Latin for things having been dug up. As this indicates, the term was applied to a wide variety of stone and stone-like objects without regard to whether they might have an organic origin. 16th-century writers such as Gesner and Georg Agricola were more interested in classifying such objects by their physical and mystical properties than they were in determining the objects' origins. In addition, the natural philosophy of the period encouraged alternative explanations for the origin of fossils. Both the Aristotelian and Neoplatonic schools of philosophy provided support for the idea that stony objects might grow within the earth to resemble living things. Neoplatonic philosophy maintained that there could be affinities between living and non-living objects that could cause one to resemble the other. The Aristotelian school maintained that the seeds of living organisms could enter the ground and generate objects resembling those organisms.

17th century

Johann Jakob Scheuchzer tried to explain fossils using Biblical floods in his Herbarium of the Deluge (1709)

During the Age of Reason, fundamental changes in natural philosophy were reflected in the analysis of fossils. In 1665 Athanasius Kircher attributed giant bones to extinct races of giant humans in his Mundus subterraneus. In the same year Robert Hooke published Micrographia, an illustrated collection of his observations with a microscope. One of these observations was entitled "Of Petrify'd wood, and other Petrify'd bodies", which included a comparison between petrified and ordinary wood. He concluded that petrified wood was ordinary wood that had been soaked with "water impregnated with stony and earthy particles". He then suggested that several kinds of fossil sea shells were formed from ordinary shells by a similar process. He argued against the prevalent view that such objects were "Stones form'd by some extraordinary Plastick virtue latent in the Earth itself". Hooke believed that fossils provided evidence about the history of life on Earth writing in 1668:
...if the finding of Coines, Medals, Urnes, and other Monuments of famous persons, or Towns, or Utensils, be admitted for unquestionable Proofs, that such Persons or things have, in former times had a being, certainly those Petrifactions may be allowed to be of equal Validity and Evidence, that there have formerly been such Vegetables or Animals... and are true universal Characters legible to all rational Men.
Illustration from Steno's 1667 paper shows a shark head and its teeth along with a fossil tooth for comparison.

Hooke was prepared to accept the possibility that some such fossils represented species that had become extinct, possibly in past geological catastrophes.

In 1667 Nicholas Steno wrote a paper about a shark head he had dissected. He compared the teeth of the shark with the common fossil objects known as "tongue stones" or glossopetrae. He concluded that the fossils must have been shark teeth. Steno then took an interest in the question of fossils, and to address some of the objections to their organic origin he began studying rock strata. The result of this work was published in 1669 as Forerunner to a Dissertation on a solid naturally enclosed in a solid. In this book, Steno drew a clear distinction between objects such as rock crystals that really were formed within rocks and those such as fossil shells and shark teeth that were formed outside of those rocks. Steno realized that certain kinds of rock had been formed by the successive deposition of horizontal layers of sediment and that fossils were the remains of living organisms that had become buried in that sediment. Steno who, like almost all 17th century natural philosophers, believed that the earth was only a few thousand years old, resorted to the Biblical flood as a possible explanation for fossils of marine organisms that were far from the sea.

Despite the considerable influence of Forerunner, naturalists such as Martin Lister (1638–1712) and John Ray (1627–1705) continued to question the organic origin of some fossils. They were particularly concerned about objects such as fossil Ammonites, which Hooke claimed were organic in origin, that did not resemble any known living species. This raised the possibility of extinction, which they found difficult to accept for philosophical and theological reasons. In 1695 Ray wrote to the Welsh naturalist Edward Lluyd complaining of such views: "... there follows such a train of consequences, as seem to shock the Scripture-History of the novity of the World; at least they overthrow the opinion received, & not without good reason, among Divines and Philosophers, that since the first Creation there have been no species of Animals or Vegetables lost, no new ones produced."

18th century

A drawing comparing jaws was added in 1799 when Cuvier's 1796 presentation on living and fossil elephants was published.

In his 1778 work Epochs of Nature Georges Buffon referred to fossils, in particular the discovery of fossils of tropical species such as elephants and rhinoceros in northern Europe, as evidence for the theory that the earth had started out much warmer than it currently was and had been gradually cooling.

In 1796 Georges Cuvier presented a paper on living and fossil elephants comparing skeletal remains of Indian and African elephants to fossils of mammoths and of an animal he would later name mastodon utilizing comparative anatomy. He established for the first time that Indian and African elephants were different species, and that mammoths differed from both and must be extinct. He further concluded that the mastodon was another extinct species that also differed from Indian or African elephants, more so than mammoths. Cuvier made another powerful demonstration of the power of comparative anatomy in paleontology when he presented a second paper in 1796 on a large fossil skeleton from Paraguay, which he named Megatherium and identified as a giant sloth by comparing its skull to those of two living species of tree sloth. Cuvier’s ground-breaking work in paleontology and comparative anatomy led to the widespread acceptance of extinction. It also led Cuvier to advocate the geological theory of catastrophism to explain the succession of organisms revealed by the fossil record. He also pointed out that since mammoths and woolly rhinoceros were not the same species as the elephants and rhinoceros currently living in the tropics, their fossils could not be used as evidence for a cooling earth.

Illustration from William Smith's 1815 Strata by Organized Fossils

In a pioneering application of stratigraphy, William Smith, a surveyor and mining engineer, made extensive use of fossils to help correlate rock strata in different locations. He created the first geological map of England during the late 1790s and early 19th century. He established the principle of faunal succession, the idea that each strata of sedimentary rock would contain particular types of fossils, and that these would succeed one another in a predictable way even in widely separated geologic formations. At the same time, Cuvier and Alexandre Brongniart, an instructor at the Paris school of mine engineering, used similar methods in an influential study of the geology of the region around Paris.

Early to mid-19th century

The age of reptiles

Illustration of fossil Iguanodon teeth with a modern iguana jaw for comparison from Mantell's 1825 paper describing Iguanodon

In 1808, Cuvier identified a fossil found in Maastricht as a giant marine reptile that would later be named Mosasaurus. He also identified, from a drawing, another fossil found in Bavaria as a flying reptile and named it Pterodactylus. He speculated, based on the strata in which these fossils were found, that large reptiles had lived prior to what he was calling "the age of mammals". Cuvier's speculation would be supported by a series of finds that would be made in Great Britain over the course of the next two decades. Mary Anning, a professional fossil collector since age eleven, collected the fossils of a number of marine reptiles from the Jurassic marine strata at Lyme Regis. These included the first ichthyosaur skeleton to be recognized as such, which was collected in 1811, and the first two plesiosaur skeletons ever found in 1821 and 1823. Many of her discoveries would be described scientifically by the geologists William Conybeare, Henry De la Beche, and William Buckland. It was Anning who observed that stony objects known as "bezoar stones" were often found in the abdominal region of ichthyosaur skeletons, and she noted that if such stones were broken open they often contained fossilized fish bones and scales as well as sometimes bones from small ichthyosaurs. This led her to suggest to Buckland that they were fossilized feces, which he named coprolites, and which he used to better understand ancient food chains.

In 1824, Buckland found and described a lower jaw from Jurassic deposits from Stonesfield. He determined that the bone belonged to a carnivorous land-dwelling reptile he called Megalosaurus. That same year Gideon Mantell realized that some large teeth he had found in 1822, in Cretaceous rocks from Tilgate, belonged to a giant herbivorous land-dwelling reptile. He called it Iguanodon, because the teeth resembled those of an iguana. All of this led Mantell to publish an influential paper in 1831 entitled "The Age of Reptiles" in which he summarized the evidence for there having been an extended time during which the earth had teemed with large reptiles, and he divided that era, based in what rock strata different types of reptiles first appeared, into three intervals that anticipated the modern periods of the Triassic, Jurassic, and Cretaceous. In 1832 Mantell would find, in Tilgate, a partial skeleton of an armored reptile he would call Hylaeosaurus. In 1841 the English anatomist Richard Owen would create a new order of reptiles, which he called Dinosauria, for Megalosaurus, Iguanodon, and Hylaeosaurus.

Illustration of the fossil jaw of the Stonesfield mammal from Gideon Mantell's 1848 Wonders of Geology

This evidence that giant reptiles had lived on Earth in the past caused great excitement in scientific circles, and even among some segments of the general public. Buckland did describe the jaw of a small primitive mammal, Phascolotherium, that was found in the same strata as Megalosaurus. This discovery, known as the Stonesfield mammal, was a much discussed anomaly. Cuvier at first thought it was a marsupial, but Buckland later realized it was a primitive placental mammal. Due to its small size and primitive nature, Buckland did not believe it invalidated the overall pattern of an age of reptiles, when the largest and most conspicuous animals had been reptiles rather than mammals.

Paleobotany and the origin of the word paleontology

In 1828 Alexandre Brongniart's son, the botanist Adolphe Brongniart, published the introduction to a longer work on the history of fossil plants. Adolphe Brongniart concluded that the history of plants could roughly be divided into four parts. The first period was characterized by cryptogams. The second period was characterized by the appearance of the conifers. The third period brought emergence of the cycads, and the fourth by the development of the flowering plants (such as the dicotyledons). The transitions between each of these periods was marked by sharp discontinuities in the fossil record, with more gradual changes within the periods. Brongniart's work is the foundation of paleobotany and reinforced the theory that life on earth had a long and complex history, and different groups of plants and animals made their appearances in successive order. It also supported the idea that the Earth's climate had changed over time as Brongniart concluded that plant fossils showed that during the Carboniferous the climate of Northern Europe must have been tropical.

The increasing attention being paid to fossil plants in the first decades of the 19th century would trigger a significant change in the terminology for the study of past life. The editor of the influential French scientific journal, Journal de Physique, a student of Cuvier's named Henri Marie Ducrotay de Blainville, coined the term "paleozoologie" in 1817 to refer to the work Cuvier and others were doing to reconstruct extinct animals from fossil bones. However, Blainville began looking for a term that could refer to the study of both fossil animal and plant remains. After trying some unsuccessful alternatives, he hit on "palaeontologie" in 1822. Blainville's term for the study of the fossilized organisms quickly became popular and was anglicized into "paleontology". The term "paleobotany" was coined in 1884 and "palynology" in 1944.

Catastrophism, uniformitarianism and the fossil record

In Cuvier's landmark 1796 paper on living and fossil elephants, he referred to a single catastrophe that destroyed life to be replaced by the current forms. As a result of his studies of extinct mammals, he realized that animals such as Palaeotherium had lived before the time of the mammoths, which led him to write in terms of multiple geological catastrophes that had wiped out a series of successive faunas. By 1830, a scientific consensus had formed around his ideas as a result of paleobotany and the dinosaur and marine reptile discoveries in Britain. In Great Britain, where natural theology was very influential in the early 19th century, a group of geologists that included Buckland, and Robert Jameson insisted on explicitly linking the most recent of Cuvier's catastrophes to the biblical flood. Catastrophism had a religious overtone in Britain that was absent elsewhere.

Partly in response to what he saw as unsound and unscientific speculations by William Buckland and other practitioners of flood geology, Charles Lyell advocated the geological theory of uniformitarianism in his influential work Principles of Geology. Lyell amassed evidence, both from his own field research and the work of others, that most geological features could be explained by the slow action of present-day forces, such as vulcanism, earthquakes, erosion, and sedimentation rather than past catastrophic events. Lyell also claimed that the apparent evidence for catastrophic changes in the fossil record, and even the appearance of directional succession in the history of life, were illusions caused by imperfections in that record. For instance he argued that the absence of birds and mammals from the earliest fossil strata was merely an imperfection in the fossil record attributable to the fact that marine organisms were more easily fossilized. Also Lyell pointed to the Stonesfield mammal as evidence that mammals had not necessarily been preceded by reptiles, and to the fact that certain Pleistocene strata showed a mixture of extinct and still surviving species, which he said showed that extinction occurred piecemeal rather than as a result of catastrophic events. Lyell was successful in convincing geologists of the idea that the geological features of the earth were largely due to the action of the same geologic forces that could be observed in the present day, acting over an extended period of time. He was not successful in gaining support for his view of the fossil record, which he believed did not support a theory of directional succession.

Transmutation of species and the fossil record

In the early 19th century Jean Baptiste Lamarck used fossils to argue for his theory of the transmutation of species. Fossil finds, and the emerging evidence that life had changed over time, fueled speculation on this topic during the next few decades. Robert Chambers used fossil evidence in his 1844 popular science book Vestiges of the Natural History of Creation, which advocated an evolutionary origin for the cosmos as well as for life on earth. Like Lamarck's theory it maintained that life had progressed from the simple to the complex. These early evolutionary ideas were widely discussed in scientific circles but were not accepted into the scientific mainstream. Many of the critics of transmutational ideas used fossil evidence in their arguments. In the same paper that coined the term dinosaur Richard Owen pointed out that dinosaurs were at least as sophisticated and complex as modern reptiles, which he claimed contradicted transmutational theories. Hugh Miller would make a similar argument, pointing out that the fossil fish found in the Old Red Sandstone formation were fully as complex as any later fish, and not the primitive forms alleged by Vestiges. While these early evolutionary theories failed to become accepted as mainstream science, the debates over them would help pave the way for the acceptance of Darwin's theory of evolution by natural selection a few years later.

Geologic time scale from an 1861 book by Richard Owen shows the appearance of major animal types.

Geological time scale and the history of life

Geologists such as Adam Sedgwick, and Roderick Murchison continued, in the course of disputes such as The Great Devonian Controversy, to make advances in stratigraphy. They described newly recognized geological periods, such as the Cambrian, the Silurian, the Devonian, and the Permian.  Increasingly, such progress in stratigraphy depended on the opinions of experts with specialized knowledge of particular types of fossils such as William Lonsdale (fossil corals), and John Lindley (fossil plants) who both played a role in the Devonian controversy and its resolution. By the early 1840s much of the geologic time scale had been developed. In 1841, John Phillips formally divided the geologic column into three major eras, the Paleozoic, Mesozoic, and Cenozoic, based on sharp breaks in the fossil record. He identified the three periods of the Mesozoic era and all the periods of the Paleozoic era except the Ordovician. His definition of the geological time scale is still used today. It remained a relative time scale with no method of assigning any of the periods' absolute dates. It was understood that not only had there been an "age of reptiles" preceding the current "age of mammals", but there had been a time (during the Cambrian and the Silurian) when life had been restricted to the sea, and a time (prior to the Devonian) when invertebrates had been the largest and most complex forms of animal life.

Expansion and professionalization of geology and paleontology

This rapid progress in geology and paleontology during the 1830s and 1840s was aided by a growing international network of geologists and fossil specialists whose work was organized and reviewed by an increasing number of geological societies. Many of these geologists and paleontologists were now paid professionals working for universities, museums and government geological surveys. The relatively high level of public support for the earth sciences was due to their cultural impact, and their proven economic value in helping to exploit mineral resources such as coal.

Another important factor was the development in the late 18th and early 19th centuries of museums with large natural history collections. These museums received specimens from collectors around the world and served as centers for the study of comparative anatomy and morphology. These disciplines played key roles in the development of a more technically sophisticated form of natural history. One of the first and most important examples was the Museum of Natural History in Paris, which was at the center of many of the developments in natural history during the first decades of the 19th century. It was founded in 1793 by an act of the French National Assembly, and was based on an extensive royal collection plus the private collections of aristocrats confiscated during the French revolution, and expanded by material seized in French military conquests during the Napoleonic Wars. The Paris museum was the professional base for Cuvier, and his professional rival Geoffroy Saint-Hilaire. The English anatomists Robert Grant and Richard Owen both spent time studying there. Owen would go on to become the leading British morphologist while working at the museum of the Royal College of Surgeons.

Late 19th century

Evolution

Photograph of the second Archaeopteryx skeleton to be found, taken in 1881 at the Natural History Museum, Berlin

Charles Darwin's publication of the On the Origin of Species in 1859 was a watershed event in all the life sciences, especially paleontology. Fossils had played a role in the development of Darwin's theory. In particular he had been impressed by fossils he had collected in South America during the voyage of the Beagle of giant armadillos, giant sloths, and what at the time he thought were giant llamas that seemed to be related to species still living on the continent in modern times. The scientific debate that started immediately after the publication of Origin led to a concerted effort to look for transitional fossils and other evidence of evolution in the fossil record. There were two areas where early success attracted considerable public attention, the transition between reptiles and birds, and the evolution of the modern single-toed horse. In 1861 the first specimen of Archaeopteryx, an animal with both teeth and feathers and a mix of other reptilian and avian features, was discovered in a limestone quarry in Bavaria and described by Richard Owen. Another would be found in the late 1870s and put on display at the Natural History Museum, Berlin in 1881. Other primitive toothed birds were found by Othniel Marsh in Kansas in 1872. Marsh also discovered fossils of several primitive horses in the Western United States that helped trace the evolution of the horse from the small 5-toed Hyracotherium of the Eocene to the much larger single-toed modern horses of the genus Equus. Thomas Huxley would make extensive use of both the horse and bird fossils in his advocacy of evolution. Acceptance of evolution occurred rapidly in scientific circles, but acceptance of Darwin's proposed mechanism of natural selection as the driving force behind it was much less universal. In particular some paleontologists such as Edward Drinker Cope and Henry Fairfield Osborn preferred alternatives such as neo-Lamarckism, the inheritance of characteristics acquired during life, and orthogenesis, an innate drive to change in a particular direction, to explain what they perceived as linear trends in evolution.

Diagram by O.C. Marsh of the evolution of horse feet and teeth, reproduced in T. H. Huxley's 1876 book, Professor Huxley in America

There was also great interest in human evolution. Neanderthal fossils were discovered in 1856, but at the time it was not clear that they represented a different species from modern humans. Eugene Dubois created a sensation with his discovery of Java Man, the first fossil evidence of a species that seemed clearly intermediate between humans and apes, in 1891.

Developments in North America

A major development in the second half of the 19th century was a rapid expansion of paleontology in North America. In 1858 Joseph Leidy described a Hadrosaurus skeleton, which was the first North American dinosaur to be described from good remains. However, it was the massive westward expansion of railroads, military bases, and settlements into Kansas and other parts of the Western United States following the American Civil War that really fueled the expansion of fossil collection. The result was an increased understanding of the natural history of North America, including the discovery of the Western Interior Sea that had covered Kansas and much of the rest of the Midwestern United States during parts of the Cretaceous, the discovery of several important fossils of primitive birds and horses, and the discovery of a number of new dinosaur genera including Allosaurus, Stegosaurus, and Triceratops. Much of this activity was part of a fierce personal and professional rivalry between two men, Othniel Marsh, and Edward Cope, which has become known as the Bone Wars.

Overview of developments in the 20th century

Developments in geology

Two 20th century developments in geology had a big effect on paleontology. The first was the development of radiometric dating, which allowed absolute dates to be assigned to the geologic timescale. The second was the theory of plate tectonics, which helped make sense of the geographical distribution of ancient life.

Geographical expansion of paleontology

During the 20th century, paleontological exploration intensified everywhere and ceased to be a largely European and North American activity. In the 135 years between Buckland's first discovery and 1969 a total of 170 dinosaur genera were described. In the 25 years after 1969 that number increased to 315. Much of this increase was due to the examination of new rock exposures, particularly in previously little-explored areas in South America and Africa. Near the end of the 20th century the opening of China to systematic exploration for fossils has yielded a wealth of material on dinosaurs and the origin of birds and mammals. Also study of the Chengjiang fauna, a Cambrian fossil site in China, during the 1990s has provided important clues to the origin of vertebrates.

Mass extinctions

The 20th century saw a major renewal of interest in mass extinction events and their effect on the course of the history of life. This was particularly true after 1980 when Luis and Walter Alvarez put forward the Alvarez hypothesis claiming that an impact event caused the Cretaceous–Paleogene extinction event, which killed off the non-avian dinosaurs along with many other living things. Also in the early 1980s Jack Sepkoski and David M. Raup published papers with statistical analysis of the fossil record of marine invertebrates that revealed a pattern (possibly cyclical) of repeated mass extinctions with significant implications for the evolutionary history of life.

Evolutionary paths and theory

Fossil of the Taung child discovered in South Africa in 1924

Throughout the 20th century new fossil finds continued to contribute to understanding the paths taken by evolution. Examples include major taxonomic transitions such as finds in Greenland, starting in the 1930s (with more major finds in the 1980s), of fossils illustrating the evolution of tetrapods from fish, and fossils in China during the 1990s that shed light on the dinosaur-bird relationship. Other events that have attracted considerable attention have included the discovery of a series of fossils in Pakistan that have shed light on whale evolution, and most famously of all a series of finds throughout the 20th century in Africa (starting with Taung child in 1924) and elsewhere have helped illuminate the course of human evolution. Increasingly, at the end of the 20th century, the results of paleontology and molecular biology were being brought together to reveal detailed phylogenetic trees.

The results of paleontology have also contributed to the development of evolutionary theory. In 1944 George Gaylord Simpson published Tempo and Mode in Evolution, which used quantitative analysis to show that the fossil record was consistent with the branching, non-directional, patterns predicted by the advocates of evolution driven by natural selection and genetic drift rather than the linear trends predicted by earlier advocates of neo-Lamarckism and orthogenesis. This integrated paleontology into the modern evolutionary synthesis. In 1972 Niles Eldredge and Stephen Jay Gould used fossil evidence to advocate the theory of punctuated equilibrium, which maintains that evolution is characterized by long periods of relative stasis and much shorter periods of relatively rapid change.

Cambrian explosion

A complete Anomalocaris fossil from the Burgess shale

One area of paleontology that has seen a lot of activity during the 1980s, 1990s, and beyond is the study of the Cambrian explosion during which many of the various phyla of animals with their distinctive body plans first appear. The well-known Burgess Shale Cambrian fossil site was found in 1909 by Charles Doolittle Walcott, and another important site in Chengjiang China was found in 1912. However, new analysis in the 1980s by Harry B. Whittington, Derek Briggs, Simon Conway Morris and others sparked a renewed interest and a burst of activity including discovery of an important new fossil site, Sirius Passet, in Greenland, and the publication of a popular and controversial book, Wonderful Life by Stephen Jay Gould in 1989.

Pre-Cambrian fossils

A Spriggina fossil from the Ediacaran

Prior to 1950 there was no widely accepted fossil evidence of life before the Cambrian period. When Charles Darwin wrote The Origin of Species he acknowledged that the lack of any fossil evidence of life prior to the relatively complex animals of the Cambrian was a potential argument against the theory of evolution, but expressed the hope that such fossils would be found in the future. In the 1860s there were claims of the discovery of pre-Cambrian fossils, but these would later be shown not to have an organic origin. In the late 19th century Charles Doolittle Walcott would discover stromatolites and other fossil evidence of pre-Cambrian life, but at the time the organic origin of those fossils was also disputed. This would start to change in the 1950s with the discovery of more stromatolites along with microfossils of the bacteria that built them, and the publication of a series of papers by the Soviet scientist Boris Vasil'evich Timofeev announcing the discovery of microscopic fossil spores in pre-Cambrian sediments. A key breakthrough would come when Martin Glaessner would show that fossils of soft bodied animals discovered by Reginald Sprigg during the late 1940s in the Ediacaran hills of Australia were in fact pre-Cambrian not early Cambrian as Sprigg had originally believed, making the Ediacaran biota the oldest animals known. By the end of the 20th century, paleobiology had established that the history of life extended back at least 3.5 billion years.

History of geology

From Wikipedia, the free encyclopedia
The history of geology is concerned with the development of the natural science of geology. Geology is the scientific study of the origin, history, and structure of the Earth.

Scotsman James Hutton is considered to be the father of modern geology

Antiquity

A mosquito and a fly in this Baltic amber necklace are between 40 and 60 million years old
 
A clear octahedral stone protrudes from a black rock.
The slightly misshapen octahedral shape of this rough diamond crystal in matrix is typical of the mineral. Its lustrous faces also indicate that this crystal is from a primary deposit.
 
Some of the first geological thoughts were about the origin of the Earth. Ancient Greece developed some primary geological concepts concerning the origin of the Earth. Additionally, in the 4th century BC Aristotle made critical observations of the slow rate of geological change. He observed the composition of the land and formulated a theory where the Earth changes at a slow rate and that these changes cannot be observed during one person’s lifetime. Aristotle developed one of the first evidentially based concepts connected to the geological realm regarding the rate at which the Earth physically changes.

However, it was his successor at the Lyceum, the philosopher Theophrastus, who made the greatest progress in antiquity in his work On Stones. He described many minerals and ores both from local mines such as those at Laurium near Athens, and further afield. He also quite naturally discussed types of marble and building materials like limestones, and attempted a primitive classification of the properties of minerals by their properties such as hardness.

Much later in the Roman period, Pliny the Elder produced a very extensive discussion of many more minerals and metals then widely used for practical ends. He was among the first to correctly identify the origin of amber as a fossilized resin from trees by the observation of insects trapped within some pieces. He also laid the basis of crystallography by recognising the octahedral habit of diamond.

Middle Ages

Abu al-Rayhan al-Biruni (AD 973–1048) was one of the earliest Muslim geologists, whose works included the earliest writings on the geology of India, hypothesizing that the Indian subcontinent was once a sea:

Ibn Sina (Avicenna, 981–1037), a Persian polymath, made significant contributions to geology and the natural sciences (which he called Attabieyat) along with other natural philosophers such as Ikhwan AI-Safa and many others. Ibn Sina wrote an encyclopaedic work entitled “Kitab al-Shifa” (the Book of Cure, Healing or Remedy from ignorance), in which Part 2, Section 5, contains his commentary on Aristotle's Mineralogy and Meteorology, in six chapters: Formation of mountains, The advantages of mountains in the formation of clouds; Sources of water; Origin of earthquakes; Formation of minerals; The diversity of earth’s terrain.

In medieval China, one of the most intriguing naturalists was Shen Kuo (1031–1095), a polymath personality who dabbled in many fields of study in his age. In terms of geology, Shen Kuo is one of the first naturalists to have formulated a theory of geomorphology. This was based on his observations of sedimentary uplift, soil erosion, deposition of silt, and marine fossils found in the Taihang Mountains, located hundreds of miles from the Pacific Ocean. He also formulated a theory of gradual climate change, after his observation of ancient petrified bamboos found in a preserved state underground near Yanzhou (modern Yan'an), in the dry northern climate of Shaanxi province. He formulated a hypothesis for the process of land formation: based on his observation of fossil shells in a geological stratum in a mountain hundreds of miles from the ocean, he inferred that the land was formed by erosion of the mountains and by deposition of silt.

17th century

A portrait of Whiston with a diagram demonstrating his theories of cometary catastrophism best described in A New Theory of the Earth

It was not until the 17th century that geology made great strides in its development. At this time, geology became its own entity in the world of natural science. It was discovered by the Christian world that different translations of the Bible contained different versions of the biblical text. The one entity that remained consistent through all of the interpretations was that the Deluge had formed the world’s geology and geography. To prove the Bible’s authenticity, individuals felt the need to demonstrate with scientific evidence that the Great Flood had in fact occurred. With this enhanced desire for data came an increase in observations of the Earth’s composition, which in turn led to the discovery of fossils. Although theories that resulted from the heightened interest in the Earth’s composition were often manipulated to support the concept of the Deluge, a genuine outcome was a greater interest in the makeup of the Earth. Due to the strength of Christian beliefs during the 17th century, the theory of the origin of the Earth that was most widely accepted was A New Theory of the Earth published in 1696, by William Whiston. Whiston used Christian reasoning to “prove” that the Great Flood had occurred and that the flood had formed the rock strata of the Earth.

During the 17th century, the heated debate between religion and science over the Earth’s origin further propelled interest in the Earth and brought about more systematic identification techniques of the Earth’s strata. The Earth’s strata can be defined as horizontal layers of rock having approximately the same composition throughout. An important pioneer in the science was Nicolas Steno. Steno was trained in the classical texts on science; however, by 1659 he seriously questioned accepted knowledge of the natural world. Importantly, he questioned the idea that fossils grew in the ground, as well as common explanations of rock formation. His investigations and his subsequent conclusions on these topics have led scholars to consider him one of the founders of modern stratigraphy and geology.

18th century

From this increased interest in the nature of the Earth and its origin, came a heightened attention to minerals and other components of the Earth’s crust. Moreover, the increasing economic importance of mining in Europe during the mid to late 18th century made the possession of accurate knowledge about ores and their natural distribution vital. Scholars began to study the makeup of the Earth in a systematic manner, with detailed comparisons and descriptions not only of the land itself, but of the semi-precious metals it contained, which had great commercial value. For example, in 1774 Abraham Gottlob Werner published the book Von den äusserlichen Kennzeichen der Fossilien (On the External Characters of Minerals), which brought him widespread recognition because he presented a detailed system for identifying specific minerals based on external characteristics. The more efficiently productive land for mining could be identified and the semi-precious metals could be found, the more money could be made. This drive for economic gain propelled geology into the limelight and made it a popular subject to pursue. With an increased number of people studying it, came more detailed observations and more information about the Earth.

Also during the eighteenth century, aspects of the history of the Earth—namely the divergences between the accepted religious concept and factual evidence—once again became a popular topic for discussion in society. In 1749, the French naturalist Georges-Louis Leclerc, Comte de Buffon published his Histoire Naturelle, in which he attacked the popular Biblical accounts given by Whiston and other ecclesiastical theorists of the history of Earth. From experimentation with cooling globes, he found that the age of the Earth was not only 4,000 or 5,500 years as inferred from the Bible, but rather 75,000 years. Another individual who described the history of the Earth with reference to neither God nor the Bible was the philosopher Immanuel Kant, who published his Universal Natural History and Theory of the Heavens (Allgemeine Naturgeschichte und Theorie des Himmels) in 1755. From the works of these respected men, as well as others, it became acceptable by the mid eighteenth century to question the age of the Earth. This questioning represented a turning point in the study of the Earth. It was now possible to study the history of the Earth from a scientific perspective without religious preconceptions.

With the application of scientific methods to the investigation of the Earth's history, the study of geology could become a distinct field of science. To begin with, the terminology and definition of what constituted geological study had to be worked out. The term "geology" was first used technically in publications by two Genevan naturalists, Jean-André Deluc and Horace-Bénédict de Saussure, though "geology" was not well received as a term until it was taken up in the very influential compendium, the Encyclopédie, published beginning in 1751 by Denis Diderot. Once the term was established to denote the study of the Earth and its history, geology slowly became more generally recognized as a distinct science that could be taught as a field of study at educational institutions. In 1741 the best-known institution in the field of natural history, the National Museum of Natural History in France, created the first teaching position designated specifically for geology. This was an important step in further promoting knowledge of geology as a science and in recognizing the value of widely disseminating such knowledge.

By the 1770s, chemistry was starting to play a pivotal role in the theoretical foundation of geology and two opposite theories with committed followers emerged. These contrasting theories offered differing explanations of how the rock layers of the Earth’s surface had formed. One suggested that a liquid inundation, perhaps like the biblical deluge, had created all geological strata. The theory extended chemical theories that had been developing since the seventeenth century and was promoted by Scotland's John Walker, Sweden's Johan Gottschalk Wallerius and Germany's Abraham Werner. Of these names, Werner's views become internationally influential around 1800. He argued that the Earth’s layers, including basalt and granite, had formed as a precipitate from an ocean that covered the entire Earth. Werner’s system was influential and those who accepted his theory were known as Diluvianists or Neptunists. The Neptunist thesis was the most popular during the late eighteenth century, especially for those who were chemically trained. However, another thesis slowly gained currency from the 1780s forward. Instead of water, some mid eighteenth-century naturalists such as Buffon had suggested that strata had been formed through heat (or fire). The thesis was modified and expanded by the Scottish naturalist James Hutton during the 1780s. He argued against the theory of Neptunism, proposing instead the theory of based on heat. Those who followed this thesis during the early nineteenth century referred to this view as Plutonism: the formation of the Earth through the gradual solidification of a molten mass at a slow rate by the same processes that had occurred throughout history and continued in the present day. This led him to the conclusion that the Earth was immeasurably old and could not possibly be explained within the limits of the chronology inferred from the Bible. Plutonists believed that volcanic processes were the chief agent in rock formation, not water from a Great Flood.

19th century

Bust of William Smith, in the Oxford University Museum of Natural History.
 
Engraving from William Smith's 1815 monograph on identifying strata by fossils
 
In the early 19th century, the mining industry and Industrial Revolution stimulated the rapid development of the stratigraphic column - “the sequence of rock formations arranged according to their order of formation in time.” In England, the mining surveyor William Smith, starting in the 1790s, found empirically that fossils were a highly effective means of distinguishing between otherwise similar formations of the landscape as he travelled the country working on the canal system and produced the first geological map of Britain. At about the same time, the French comparative anatomist Georges Cuvier assisted by his colleague Alexandre Brogniart at the École des Mines de Paris realized that the relative ages of fossils could be determined from a geological standpoint; in terms of what layer of rock the fossils are located and the distance these layers of rock are from the surface of the Earth. Through the synthesis of their findings, Brogniart and Cuvier realized that different strata could be identified by fossil contents and thus each stratum could be assigned to a unique position in a sequence. After the publication of Cuvier and Brongniart’s book, “Description Geologiques des Environs de Paris” in 1811, which outlined the concept, stratigraphy became very popular amongst geologists; many hoped to apply this concept to all the rocks of the Earth. During this century various geologists further refined and completed the stratigraphic column. For instance, in 1833 while Adam Sedgwick was mapping rocks that he had established were from the Cambrian Period, Charles Lyell was elsewhere suggesting a subdivision of the Tertiary Period; whilst Roderick Murchison, mapping into Wales from a different direction, was assigning the upper parts of Sedgwick's Cambrian to the lower parts of his own Silurian Period. The stratigraphic column was significant because it supplied a method to assign a relative age of these rocks by slotting them into different positions in their stratigraphical sequence. This created a global approach to dating the age of the Earth and allowed for further correlations to be drawn from similarities found in the makeup of the Earth’s crust in various countries.

Geological map of Great Britain by William Smith, published 1815.

In early nineteenth-century Britain, catastrophism was adapted with the aim of reconciling geological science with religious traditions of the biblical Great Flood. In the early 1820s English geologists including William Buckland and Adam Sedgwick interpreted "diluvial" deposits as the outcome of Noah's flood, but by the end of the decade they revised their opinions in favour of local inundations. Charles Lyell challenged catastrophism with the publication in 1830 of the first volume of his book Principles of Geology which presented a variety of geological evidence from England, France, Italy and Spain to prove Hutton’s ideas of gradualism correct. He argued that most geological change had been very gradual in human history. Lyell provided evidence for Uniformitarianism; a geological doctrine that processes occur at the same rates in the present as they did in the past and account for all of the Earth’s geological features. Lyell’s works were popular and widely read, the concept of Uniformitarianism had taken a strong hold in geological society.

During the same time that the stratigraphic column was being completed, imperialism drove several countries in the early to mid 19th century to explore distant lands to expand their empires. This gave naturalists the opportunity to collect data on these voyages. In 1831 Captain Robert FitzRoy, given charge of the coastal survey expedition of HMS Beagle, sought a suitable naturalist to examine the land and give geological advice. This fell to Charles Darwin, who had just completed his BA degree and had accompanied Sedgwick on a two-week Welsh mapping expedition after taking his Spring course on geology. Fitzroy gave Darwin Lyell’s Principles of Geology, and Darwin became Lyell's first disciple, inventively theorising on uniformitarian principles about the geological processes he saw, and challenging some of Lyell's ideas. He speculated about the Earth expanding to explain uplift, then on the basis of the idea that ocean areas sank as land was uplifted, theorised that coral atolls grew from fringing coral reefs round sinking volcanic islands. This idea was confirmed when the Beagle surveyed the Cocos (Keeling) Islands, and in 1842 he published his theory on The Structure and Distribution of Coral Reefs. Darwin's discovery of giant fossils helped to establish his reputation as a geologist, and his theorising about the causes of their extinction led to his theory of evolution by natural selection published in On the Origin of Species in 1859.

Economic motivations for the practical use of geological data caused governments to support geological research. During the 19th century the governments of several countries including Canada, Australia, Great Britain and the United States funded geological surveying that would produce geological maps of vast areas of the countries. Geological surveying provides the location of useful minerals and such information could be used to benefit the country’s mining industry. With the government funding of geological research, more individuals could study geology with better technology and techniques, leading to the expansion of the field of geology.

In the 19th century, scientific inquiry had estimated the Age of the Earth in terms of millions of years. By the early 20th Century radiogenic isotopes had been discovered and Radiometric Dating had been developed. In 1911 Arthur Holmes dated a sample from Ceylon at 1.6 billion years old using lead isotopes. In 1921, attendees at the yearly meeting of the British Association for the Advancement of Science came to a rough consensus that the Age of the Earth was a few billion years old, and that radiometric dating was credible. Holmes published The Age of the Earth, an Introduction to Geological Ideas in 1927 in which he presented a range of 1.6 to 3.0 billion years. Subsequent dating has taken the Age of the Earth to around 4.55 billion years. Theories that did not comply with the scientific evidence that established the age of the Earth could no longer be accepted.

20th century

Alfred Wegener, around 1925
 
In 1862, the physicist William Thomson, 1st Baron Kelvin, published calculations that fixed the age of Earth at between 20 million and 400 million years. He assumed that Earth had formed as a completely molten object, and determined the amount of time it would take for the near-surface to cool to its present temperature. With the discovery of radioactive decay the age of the Earth was pushed back even further. Arthur Holmes, was a pioneer of geochronology. In 1913 Holmes was on the staff of Imperial College, when he published his famous book The Age of the Earth in which he argued strongly in favour of the use of radioactive dating methods rather than methods based on geological sedimentation or cooling of the earth (many people still clung to Lord Kelvin's calculations of less than 100 million years). Holmes estimated the oldest Archean rocks to be 1,600 million years, but did not speculate about the Earth's age. By this time the discovery of isotopes had complicated the calculations and he spent the next years grappling with these. His promotion of the theory over the next decades earned him the nickname of Father of Modern Geochronology. By 1927 he had revised this figure to 3,000 million years and in the 1940s to 4,500±100 million years, based on measurements of the relative abundance of uranium isotopes established by Alfred O. C. Nier. The general method is now known as the Holmes-Houterman model after Fritz Houtermans who published in the same year, 1946. The established age of the Earth has been refined since then but has not significantly changed.

In 1912 Alfred Wegener proposed the theory of Continental Drift. This theory suggests that the shapes of continents and matching coastline geology between some continents indicates they were joined together in the past and formed a single landmass known as Pangaea; thereafter they separated and drifted like rafts over the ocean floor, currently reaching their present position. Additionally, the theory of continental drift offered a possible explanation as to the formation of mountains; Plate Tectonics built on the theory of continental drift.

Unfortunately, Wegener provided no convincing mechanism for this drift, and his ideas were not generally accepted during his lifetime. Arthur Homes accepted Wegener’s theory and provided a mechanism: mantle convection, to cause the continents to move. However, it was not until after the Second World War that new evidence started to accumulate that supported continental drift. There followed a period of 20 extremely exciting years where the Theory of Continental Drift developed from being believed by a few to being the cornerstone of modern Geology. Beginning in 1947 research found new evidence about the ocean floor, and in 1960 Bruce C. Heezen published the concept of mid-ocean ridges.Soon after this, Robert S. Dietz and Harry H. Hess proposed that the oceanic crust forms as the seafloor spreads apart along mid-ocean ridges in seafloor spreading. This was seen as confirmation of mantle convection and so the major stumbling block to the theory was removed. Geophysical evidence suggested lateral motion of continents and that oceanic crust is younger than continental crust. This geophysical evidence also spurred the hypothesis of paleomagnetism, the record of the orientation of the Earth’s magnetic field recorded in magnetic minerals. British geophysicist S. K. Runcorn suggested the concept of paleomagnetism from his finding that the continents had moved relative to the Earth’s magnetic poles. Tuzo Wilson, who was a promoter of the sea floor spreading hypothesis and continental drift from the very beginning, added the concept of transform faults to the model, completing the classes of fault types necessary to make the mobility of the plates on the globe function. A symposium on continental drift was held at the Royal Society of London in 1965 must be regarded as the official start of the acceptance of plate tectonics by the scientific community.The abstracts from the symposium are issued as Blacket, Bullard, Runcorn;1965.In this symposium, Edward Bullard and co-workers showed with a computer calculation how the continents along both sides of the Atlantic would best fit to close the ocean, which became known as the famous "Bullard's Fit". By the late 1960s the weight of the evidence available saw Continental Drift as the generally accepted theory.

Modern geology

By applying sound stratigraphic principles to the distribution of craters on the Moon, it can be argued that almost overnight, Gene Shoemaker took the study of the Moon away from Lunar astronomers and gave it to Lunar geologists.

In recent years, geology has continued its tradition as the study of the character and origin of the Earth, its surface features and internal structure. What changed in the later 20th century is the perspective of geological study. Geology was now studied using a more integrative approach, considering the Earth in a broader context encompassing the atmosphere, biosphere and hydrosphere. Satellites located in space that take wide scope photographs of the Earth provide such a perspective. In 1972, The Landsat Program, a series of satellite missions jointly managed by NASA and the U.S. Geological Survey, began supplying satellite images that can be geologically analyzed. These images can be used to map major geological units, recognize and correlate rock types for vast regions and track the movements of Plate Tectonics. A few applications of this data include the ability to produce geologically detailed maps, locate sources of natural energy and predict possible natural disasters caused by plate shifts.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...