Search This Blog

Thursday, December 13, 2018

Kuiper belt (updated)

From Wikipedia, the free encyclopedia

Known objects in the Kuiper belt beyond the orbit of Neptune. (Scale in AU; epoch as of January 2015.)
  Sun
  Jupiter trojans
  Giant planets: J · S · U · N
  Centaurs
  Kuiper belt
  Scattered disc
  Neptune trojans
 
Distances but not sizes are to scale
Source: Minor Planet Center, www.cfeps.net and others

The Kuiper belt (/ˈkpər/), occasionally called the Edgeworth–Kuiper belt, is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune (at 30 AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times as wide and 20 to 200 times as massive. Like the asteroid belt, it consists mainly of small bodies or remnants from when the Solar System formed. While many asteroids are composed primarily of rock and metal, most Kuiper belt objects are composed largely of frozen volatiles (termed "ices"), such as methane, ammonia and water. The Kuiper belt is home to three officially recognized dwarf planets: Pluto, Haumea and Makemake. Some of the Solar System's moons, such as Neptune's Triton and Saturn's Phoebe, may have originated in the region.

The Kuiper belt was named after Dutch-American astronomer Gerard Kuiper, though he did not predict its existence. In 1992, Albion was discovered, the first Kuiper belt object (KBO) since Pluto and Charon. Since its discovery, the number of known KBOs has increased to over a thousand, and more than 100,000 KBOs over 100 km (62 mi) in diameter are thought to exist. The Kuiper belt was initially thought to be the main repository for periodic comets, those with orbits lasting less than 200 years. Studies since the mid-1990s have shown that the belt is dynamically stable and that comets' true place of origin is the scattered disc, a dynamically active zone created by the outward motion of Neptune 4.5 billion years ago; scattered disc objects such as Eris have extremely eccentric orbits that take them as far as 100 AU from the Sun.

The Kuiper belt is distinct from the theoretical Oort cloud, which is a thousand times more distant and is mostly spherical. The objects within the Kuiper belt, together with the members of the scattered disc and any potential Hills cloud or Oort cloud objects, are collectively referred to as trans-Neptunian objects (TNOs). Pluto is the largest and most massive member of the Kuiper belt, and the largest and the second-most-massive known TNO, surpassed only by Eris in the scattered disc. Originally considered a planet, Pluto's status as part of the Kuiper belt caused it to be reclassified as a dwarf planet in 2006. It is compositionally similar to many other objects of the Kuiper belt and its orbital period is characteristic of a class of KBOs, known as "plutinos", that share the same 2:3 resonance with Neptune.

History

After the discovery of Pluto in 1930, many speculated that it might not be alone. The region now called the Kuiper belt was hypothesized in various forms for decades. It was only in 1992 that the first direct evidence for its existence was found. The number and variety of prior speculations on the nature of the Kuiper belt have led to continued uncertainty as to who deserves credit for first proposing it.

Hypotheses

The first astronomer to suggest the existence of a trans-Neptunian population was Frederick C. Leonard. Soon after Pluto's discovery by Clyde Tombaugh in 1930, Leonard pondered whether it was "not likely that in Pluto there has come to light the first of a series of ultra-Neptunian bodies, the remaining members of which still await discovery but which are destined eventually to be detected". That same year, astronomer Armin O. Leuschner suggested that Pluto "may be one of many long-period planetary objects yet to be discovered."

Astronomer Gerard Kuiper, after whom the Kuiper belt is named

In 1943, in the Journal of the British Astronomical Association, Kenneth Edgeworth hypothesized that, in the region beyond Neptune, the material within the primordial solar nebula was too widely spaced to condense into planets, and so rather condensed into a myriad of smaller bodies. From this he concluded that "the outer region of the solar system, beyond the orbits of the planets, is occupied by a very large number of comparatively small bodies" and that, from time to time, one of their number "wanders from its own sphere and appears as an occasional visitor to the inner solar system", becoming a comet

In 1951, in a paper in Astrophysics: A Topical Symposium, Gerard Kuiper speculated on a similar disc having formed early in the Solar System's evolution, but he did not think that such a belt still existed today. Kuiper was operating on the assumption, common in his time, that Pluto was the size of Earth and had therefore scattered these bodies out toward the Oort cloud or out of the Solar System. Were Kuiper's hypothesis correct, there would not be a Kuiper belt today.

The hypothesis took many other forms in the following decades. In 1962, physicist Al G.W. Cameron postulated the existence of "a tremendous mass of small material on the outskirts of the solar system". In 1964, Fred Whipple, who popularised the famous "dirty snowball" hypothesis for cometary structure, thought that a "comet belt" might be massive enough to cause the purported discrepancies in the orbit of Uranus that had sparked the search for Planet X, or, at the very least, massive enough to affect the orbits of known comets. Observation ruled out this hypothesis.

In 1977, Charles Kowal discovered 2060 Chiron, an icy planetoid with an orbit between Saturn and Uranus. He used a blink comparator, the same device that had allowed Clyde Tombaugh to discover Pluto nearly 50 years before. In 1992, another object, 5145 Pholus, was discovered in a similar orbit. Today, an entire population of comet-like bodies, called the centaurs, is known to exist in the region between Jupiter and Neptune. The centaurs' orbits are unstable and have dynamical lifetimes of a few million years. From the time of Chiron's discovery in 1977, astronomers have speculated that the centaurs therefore must be frequently replenished by some outer reservoir.

Further evidence for the existence of the Kuiper belt later emerged from the study of comets. That comets have finite lifespans has been known for some time. As they approach the Sun, its heat causes their volatile surfaces to sublimate into space, gradually dispersing them. In order for comets to continue to be visible over the age of the Solar System, they must be replenished frequently. One such area of replenishment is the Oort cloud, a spherical swarm of comets extending beyond 50,000 AU from the Sun first hypothesised by Dutch astronomer Jan Oort in 1950. The Oort cloud is thought to be the point of origin of long-period comets, which are those, like Hale–Bopp, with orbits lasting thousands of years.

There is another comet population, known as short-period or periodic comets, consisting of those comets that, like Halley's Comet, have orbital periods of less than 200 years. By the 1970s, the rate at which short-period comets were being discovered was becoming increasingly inconsistent with their having emerged solely from the Oort cloud. For an Oort cloud object to become a short-period comet, it would first have to be captured by the giant planets. In a paper published in Monthly Notices of the Royal Astronomical Society in 1980, Uruguayan astronomer Julio Fernández stated that for every short-period comet to be sent into the inner Solar System from the Oort cloud, 600 would have to be ejected into interstellar space. He speculated that a comet belt from between 35 and 50 AU would be required to account for the observed number of comets. Following up on Fernández's work, in 1988 the Canadian team of Martin Duncan, Tom Quinn and Scott Tremaine ran a number of computer simulations to determine if all observed comets could have arrived from the Oort cloud. They found that the Oort cloud could not account for all short-period comets, particularly as short-period comets are clustered near the plane of the Solar System, whereas Oort-cloud comets tend to arrive from any point in the sky. With a "belt", as Fernández described it, added to the formulations, the simulations matched observations. Reportedly because the words "Kuiper" and "comet belt" appeared in the opening sentence of Fernández's paper, Tremaine named this hypothetical region the "Kuiper belt".

Discovery

The array of telescopes atop Mauna Kea, with which the Kuiper belt was discovered
 
In 1987, astronomer David Jewitt, then at MIT, became increasingly puzzled by "the apparent emptiness of the outer Solar System". He encouraged then-graduate student Jane Luu to aid him in his endeavour to locate another object beyond Pluto's orbit, because, as he told her, "If we don't, nobody will." Using telescopes at the Kitt Peak National Observatory in Arizona and the Cerro Tololo Inter-American Observatory in Chile, Jewitt and Luu conducted their search in much the same way as Clyde Tombaugh and Charles Kowal had, with a blink comparator. Initially, examination of each pair of plates took about eight hours, but the process was sped up with the arrival of electronic charge-coupled devices or CCDs, which, though their field of view was narrower, were not only more efficient at collecting light (they retained 90% of the light that hit them, rather than the 10% achieved by photographs) but allowed the blinking process to be done virtually, on a computer screen. Today, CCDs form the basis for most astronomical detectors. In 1988, Jewitt moved to the Institute of Astronomy at the University of Hawaii. Luu later joined him to work at the University of Hawaii's 2.24 m telescope at Mauna Kea. Eventually, the field of view for CCDs had increased to 1024 by 1024 pixels, which allowed searches to be conducted far more rapidly. Finally, after five years of searching, Jewitt and Luu announced on August 30, 1992 the "Discovery of the candidate Kuiper belt object" 15760 Albion. Six months later, they discovered a second object in the region, (181708) 1993 FW.

Studies conducted since the trans-Neptunian region was first charted have shown that the region now called the Kuiper belt is not the point of origin of short-period comets, but that they instead derive from a linked population called the scattered disc. The scattered disc was created when Neptune migrated outward into the proto-Kuiper belt, which at the time was much closer to the Sun, and left in its wake a population of dynamically stable objects that could never be affected by its orbit (the Kuiper belt proper), and a population whose perihelia are close enough that Neptune can still disturb them as it travels around the Sun (the scattered disc). Because the scattered disc is dynamically active and the Kuiper belt relatively dynamically stable, the scattered disc is now seen as the most likely point of origin for periodic comets.

Name

Astronomers sometimes use the alternative name Edgeworth–Kuiper belt to credit Edgeworth, and KBOs are occasionally referred to as EKOs. Brian G. Marsden claims that neither deserves true credit: "Neither Edgeworth nor Kuiper wrote about anything remotely like what we are now seeing, but Fred Whipple did". David Jewitt comments: "If anything... Fernández most nearly deserves the credit for predicting the Kuiper Belt."

KBOs are sometimes called "kuiperoids", a name suggested by Clyde Tombaugh. The term "trans-Neptunian object" (TNO) is recommended for objects in the belt by several scientific groups because the term is less controversial than all others—it is not an exact synonym though, as TNOs include all objects orbiting the Sun past the orbit of Neptune, not just those in the Kuiper belt.

Structure

Dust in the Kuiper belt creates a faint infrared disc. (Click on the "play" button to watch the video.)

At its fullest extent (but excluding the scattered disc), including its outlying regions, the Kuiper belt stretches from roughly 30 to 55 AU. The main body of the belt is generally accepted to extend from the 2:3 mean-motion resonance at 39.5 AU to the 1:2 resonance at roughly 48 AU. The Kuiper belt is quite thick, with the main concentration extending as much as ten degrees outside the ecliptic plane and a more diffuse distribution of objects extending several times farther. Overall it more resembles a torus or doughnut than a belt. Its mean position is inclined to the ecliptic by 1.86 degrees.

The presence of Neptune has a profound effect on the Kuiper belt's structure due to orbital resonances. Over a timescale comparable to the age of the Solar System, Neptune's gravity destabilises the orbits of any objects that happen to lie in certain regions, and either sends them into the inner Solar System or out into the scattered disc or interstellar space. This causes the Kuiper belt to have pronounced gaps in its current layout, similar to the Kirkwood gaps in the asteroid belt. In the region between 40 and 42 AU, for instance, no objects can retain a stable orbit over such times, and any observed in that region must have migrated there relatively recently.

The various dynamical classes of trans-Neptunian objects.

Classical belt

Between the 2:3 and 1:2 resonances with Neptune, at approximately 42–48 AU, the gravitational interactions with Neptune occur over an extended timescale, and objects can exist with their orbits essentially unaltered. This region is known as the classical Kuiper belt, and its members comprise roughly two thirds of KBOs observed to date. Because the first modern KBO discovered (Albion, but long called (15760) 1992 QB1), is considered the prototype of this group, classical KBOs are often referred to as cubewanos ("Q-B-1-os"). The guidelines established by the IAU demand that classical KBOs be given names of mythological beings associated with creation.

The classical Kuiper belt appears to be a composite of two separate populations. The first, known as the "dynamically cold" population, has orbits much like the planets; nearly circular, with an orbital eccentricity of less than 0.1, and with relatively low inclinations up to about 10° (they lie close to the plane of the Solar System rather than at an angle). The cold population also contain a concentration of objects, referred to as the kernel, with semi-major axes at 44–44.5 AU. The second, the "dynamically hot" population, has orbits much more inclined to the ecliptic, by up to 30°. The two populations have been named this way not because of any major difference in temperature, but from analogy to particles in a gas, which increase their relative velocity as they become heated up. Not only are the two populations in different orbits, the cold population also differs in color and albedo, being redder and brighter, has a larger fraction of binary objects, has a different size distribution, and lacks very large objects. The difference in colors may be a reflection of different compositions, which suggests they formed in different regions. The hot population is proposed to have formed near Neptune's original orbit and to have been scattered out during the migration of the giant planets. The cold population, on the other hand, has been proposed to have formed more or less in its current position because the loose binaries would be unlikely to survive encounters with Neptune. Although the Nice model appears to be able to at least partially explain a compositional difference, it has also been suggested the color difference may reflect differences in surface evolution.

Resonances

Distribution of cubewanos (blue), Resonant trans-Neptunian objects (red), Sednoids (yellow) and scattered objects (grey)
 
Orbit classification (schematic of semi-major axes)
 
When an object's orbital period is an exact ratio of Neptune's (a situation called a mean-motion resonance), then it can become locked in a synchronised motion with Neptune and avoid being perturbed away if their relative alignments are appropriate. If, for instance, an object orbits the Sun twice for every three Neptune orbits, and if it reaches perihelion with Neptune a quarter of an orbit away from it, then whenever it returns to perihelion, Neptune will always be in about the same relative position as it began, because it will have completed ​1 12 orbits in the same time. This is known as the 2:3 (or 3:2) resonance, and it corresponds to a characteristic semi-major axis of about 39.4 AU. This 2:3 resonance is populated by about 200 known objects, including Pluto together with its moons. In recognition of this, the members of this family are known as plutinos. Many plutinos, including Pluto, have orbits that cross that of Neptune, though their resonance means they can never collide. Plutinos have high orbital eccentricities, suggesting that they are not native to their current positions but were instead thrown haphazardly into their orbits by the migrating Neptune. IAU guidelines dictate that all plutinos must, like Pluto, be named for underworld deities. The 1:2 resonance (whose objects complete half an orbit for each of Neptune's) corresponds to semi-major axes of ~47.7AU, and is sparsely populated. Its residents are sometimes referred to as twotinos. Other resonances also exist at 3:4, 3:5, 4:7 and 2:5. Neptune has a number of trojan objects, which occupy its Lagrangian points, gravitationally stable regions leading and trailing it in its orbit. Neptune trojans are in a 1:1 mean-motion resonance with Neptune and often have very stable orbits. 

Additionally, there is a relative absence of objects with semi-major axes below 39 AU that cannot apparently be explained by the present resonances. The currently accepted hypothesis for the cause of this is that as Neptune migrated outward, unstable orbital resonances moved gradually through this region, and thus any objects within it were swept up, or gravitationally ejected from it.

Kuiper cliff

Histogram of the semi-major axes of Kuiper belt objects with inclinations above and below 5 degrees. Spikes from the plutinos and the ‘kernel’ are visible at 39–40 AU and 44 AU.
 
The 1:2 resonance, location of the twotinos at 47.8 AU, appears to be an edge beyond which few objects are known. It is not clear whether it is actually the outer edge of the classical belt or just the beginning of a broad gap. Objects have been detected at the 2:5 resonance at roughly 55 AU, well outside the classical belt; predictions of a large number of bodies in classical orbits between these resonances have not been verified through observation.

Based on estimations of the primordial mass required to form Uranus and Neptune, as well as bodies as large as Pluto, earlier models of the Kuiper belt had suggested that the number of large objects would increase by a factor of two beyond 50 AU, so this sudden drastic falloff, known as the Kuiper cliff, was unexpected, and to date its cause is unknown. In 2003, Bernstein, Trilling, et al. found evidence that the rapid decline in objects of 100 km or more in radius beyond 50 AU is real, and not due to observational bias. Possible explanations include that material at that distance was too scarce or too scattered to accrete into large objects, or that subsequent processes removed or destroyed those that did. Patryk Lykawka of Kobe University claimed that the gravitational attraction of an unseen large planetary object, perhaps the size of Earth or Mars, might be responsible.

Origin

Simulation showing outer planets and Kuiper belt: a) before Jupiter/Saturn 1:2 resonance, b) scattering of Kuiper belt objects into the Solar System after the orbital shift of Neptune, c) after ejection of Kuiper belt bodies by Jupiter
 
The precise origins of the Kuiper belt and its complex structure are still unclear, and astronomers are awaiting the completion of several wide-field survey telescopes such as Pan-STARRS and the future LSST, which should reveal many currently unknown KBOs. These surveys will provide data that will help determine answers to these questions.

The Kuiper belt is thought to consist of planetesimals, fragments from the original protoplanetary disc around the Sun that failed to fully coalesce into planets and instead formed into smaller bodies, the largest less than 3,000 kilometres (1,900 mi) in diameter. Studies of the crater counts on Pluto and Charon revealed a scarcity of small craters suggesting that such objects formed directly as sizeable objects in the range of tens of kilometers in diameter rather than being accreted from much smaller, roughly kilometer scale bodies. Hypothetical mechanisms for the formation of these larger bodies include the gravitational collapse of clouds of pebbles concentrated between eddies in a turbulent protoplanetary disk or in streaming instabilities. These collapsing clouds may fragment, forming binaries.

Modern computer simulations show the Kuiper belt to have been strongly influenced by Jupiter and Neptune, and also suggest that neither Uranus nor Neptune could have formed in their present positions, because too little primordial matter existed at that range to produce objects of such high mass. Instead, these planets are estimated to have formed closer to Jupiter. Scattering of planetesimals early in the Solar System's history would have led to migration of the orbits of the giant planets: Saturn, Uranus, and Neptune drifted outwards, whereas Jupiter drifted inwards. Eventually, the orbits shifted to the point where Jupiter and Saturn reached an exact 1:2 resonance; Jupiter orbited the Sun twice for every one Saturn orbit. The gravitational repercussions of such a resonance ultimately destabilized the orbits of Uranus and Neptune, causing them to be scattered outward onto high-eccentricity orbits that crossed the primordial planetesimal disc. While Neptune's orbit was highly eccentric, its mean-motion resonances overlapped and the orbits of the planetesimals evolved chaotically, allowing planetesimals to wander outward as far as Neptune's 1:2 resonance to form a dynamically cold belt of low-inclination objects. Later, after its eccentricity decreased, Neptune's orbit expanded outward toward its current position. Many planetesimals were captured into and remain in resonances during this migration, others evolved onto higher-inclination and lower-eccentricity orbits and escaped from the resonances onto stable orbits. Many more planetesimals were scattered inward, with small fractions being captured as Jupiter trojans, as irregular satellites orbiting the giant planets, and as outer belt asteroids. The remainder were scattered outward again by Jupiter and in most cases ejected from the Solar System reducing the primordial Kuiper belt population by 99% or more.

The original version of the currently most popular model, the "Nice model", reproduces many characteristics of the Kuiper belt such as the "cold" and "hot" populations, resonant objects, and a scattered disc, but it still fails to account for some of the characteristics of their distributions. The model predicts a higher average eccentricity in classical KBO orbits than is observed (0.10–0.13 versus 0.07) and its predicted inclination distribution contains too few high inclination objects. In addition, the frequency of binary objects in the cold belt, many of which are far apart and loosely bound, also poses a problem for the model. These are predicted to have been separated during encounters with Neptune, leading some to propose that the cold disc formed at its current location, representing the only truly local population of small bodies in the solar system.

A recent modification of the Nice model has the Solar System begin with five giant planets, including an additional ice giant, in a chain of mean-motion resonances. About 400 million years after the formation of the Solar System the resonance chain is broken. Instead of being scattered into the disc, the ice giants first migrate outward several AU. This divergent migration eventually leads to a resonance crossing, destabilizing the orbits of the planets. The extra ice giant encounters Saturn and is scattered inward onto a Jupiter-crossing orbit and after a series of encounters is ejected from the Solar System. The remaining planets then continue their migration until the planetesimal disc is nearly depleted with small fractions remaining in various locations.

As in the original Nice model, objects are captured into resonances with Neptune during its outward migration. Some remain in the resonances, others evolve onto higher-inclination, lower-eccentricity orbits, and are released onto stable orbits forming the dynamically hot classical belt. The hot belt's inclination distribution can be reproduced if Neptune migrated from 24 AU to 30 AU on a 30 Myr timescale. When Neptune migrates to 28 AU, it has a gravitational encounter with the extra ice giant. Objects captured from the cold belt into the 1:2 mean-motion resonance with Neptune are left behind as a local concentration at 44 AU when this encounter causes Neptune's semi-major axis to jump outward. The objects deposited in the cold belt include some loosely bound 'blue' binaries originating from closer than the cold belt's current location. If Neptune's eccentricity remains small during this encounter, the chaotic evolution of orbits of the original Nice model is avoided and a primordial cold belt is preserved. In the later phases of Neptune's migration, a slow sweeping of mean-motion resonances removes the higher-eccentricity objects from the cold belt, truncating its eccentricity distribution.

Composition

The infrared spectra of both Eris and Pluto, highlighting their common methane absorption lines

Being distant from the Sun and major planets, Kuiper belt objects are thought to be relatively unaffected by the processes that have shaped and altered other Solar System objects; thus, determining their composition would provide substantial information on the makeup of the earliest Solar System. Due to their small size and extreme distance from Earth, the chemical makeup of KBOs is very difficult to determine. The principal method by which astronomers determine the composition of a celestial object is spectroscopy. When an object's light is broken into its component colors, an image akin to a rainbow is formed. This image is called a spectrum. Different substances absorb light at different wavelengths, and when the spectrum for a specific object is unravelled, dark lines (called absorption lines) appear where the substances within it have absorbed that particular wavelength of light. Every element or compound has its own unique spectroscopic signature, and by reading an object's full spectral "fingerprint", astronomers can determine its composition. 

Analysis indicates that Kuiper belt objects are composed of a mixture of rock and a variety of ices such as water, methane, and ammonia. The temperature of the belt is only about 50 K, so many compounds that would be gaseous closer to the Sun remain solid. The densities and rock–ice fractions are known for only a small number of objects for which the diameters and the masses have been determined. The diameter can be determined by imaging with a high-resolution telescope such as the Hubble Space Telescope, by the timing of an occultation when an object passes in front of a star or, most commonly, by using the albedo of an object calculated from its infrared emissions. The masses are determined using the semi-major axes and periods of satellites, which are therefore known only for a few binary objects. The densities range from less than 0.4 to 2.6 g/cm3. The least dense objects are thought to be largely composed of ice and have significant porosity. The densest objects are likely composed of rock with a thin crust of ice. There is a trend of low densities for small objects and high densities for the largest objects. One possible explanation for this trend is that ice was lost from the surface layers when differentiated objects collided to form the largest objects.

Artist’s impression of plutino and possible former C-type asteroid 2004 EW95
 
Initially, detailed analysis of KBOs was impossible, and so astronomers were only able to determine the most basic facts about their makeup, primarily their color. These first data showed a broad range of colors among KBOs, ranging from neutral grey to deep red. This suggested that their surfaces were composed of a wide range of compounds, from dirty ices to hydrocarbons. This diversity was startling, as astronomers had expected KBOs to be uniformly dark, having lost most of the volatile ices from their surfaces to the effects of cosmic rays. Various solutions were suggested for this discrepancy, including resurfacing by impacts or outgassing. Jewitt and Luu's spectral analysis of the known Kuiper belt objects in 2001 found that the variation in color was too extreme to be easily explained by random impacts. The radiation from the Sun is thought to have chemically altered methane on the surface of KBOs, producing products such as tholins. Makemake has been shown to possess a number of hydrocarbons derived from the radiation-processing of methane, including ethane, ethylene and acetylene.

Although to date most KBOs still appear spectrally featureless due to their faintness, there have been a number of successes in determining their composition. In 1996, Robert H. Brown et al. acquired spectroscopic data on the KBO 1993 SC, which revealed that its surface composition is markedly similar to that of Pluto, as well as Neptune's moon Triton, with large amounts of methane ice. For the smaller objects, only colors and in some cases the albedos have been determined. These objects largely fall into two classes: gray with low albedos, or very red with higher albedos. The difference in colors and albedos is hypothesized to be due to the retention or the loss of hydrogen sulfide (H2S) on the surface of these objects, with the surfaces of those that formed far enough from the Sun to retain H2S being reddened due to irradiation.

The largest KBOs, such as Pluto and Quaoar, have surfaces rich in volatile compounds such as methane, nitrogen and carbon monoxide; the presence of these molecules is likely due to their moderate vapor pressure in the 30–50 K temperature range of the Kuiper belt. This allows them to occasionally boil off their surfaces and then fall again as snow, whereas compounds with higher boiling points would remain solid. The relative abundances of these three compounds in the largest KBOs is directly related to their surface gravity and ambient temperature, which determines which they can retain. Water ice has been detected in several KBOs, including members of the Haumea family such as 1996 TO66, mid-sized objects such as 38628 Huya and 20000 Varuna, and also on some small objects. The presence of crystalline ice on large and mid-sized objects, including 50000 Quaoar where ammonia hydrate has also been detected, may indicate past tectonic activity aided by melting point lowering due to the presence of ammonia.

Mass and size distribution

Illustration of the power law

Despite its vast extent, the collective mass of the Kuiper belt is relatively low. The total mass is estimated to range between 1/25 and 1/10 the mass of the Earth. Conversely, models of the Solar System's formation predict a collective mass for the Kuiper belt of 30 Earth masses. This missing >99% of the mass can hardly be dismissed, because it is required for the accretion of any KBOs larger than 100 km (62 mi) in diameter. If the Kuiper belt had always had its current low density, these large objects simply could not have formed by the collision and mergers of smaller planetesimals. Moreover, the eccentricity and inclination of current orbits makes the encounters quite "violent" resulting in destruction rather than accretion. It appears that either the current residents of the Kuiper belt have been created closer to the Sun, or some mechanism dispersed the original mass. Neptune's current influence is too weak to explain such a massive "vacuuming", though the Nice model proposes that it could have been the cause of mass removal in the past. Although the question remains open, the conjectures vary from a passing star scenario to grinding of smaller objects, via collisions, into dust small enough to be affected by solar radiation. The extent of mass loss by collisional grinding is limited by the presence of loosely bound binaries in the cold disk, which are likely to be disrupted in collisions.

Bright objects are rare compared with the dominant dim population, as expected from accretion models of origin, given that only some objects of a given size would have grown further. This relationship between N(D) (the number of objects of diameter greater than D) and D, referred to as brightness slope, has been confirmed by observations. The slope is inversely proportional to some power of the diameter D:
where the current measures give q = 4 ±0.5.
This implies (assuming q is not 1) that
(The constant may be non-zero only if the power law doesn't apply at high values of D.) 

Less formally, if q is 4, for example, there are 8 (=23) times more objects in the 100–200 km range than in the 200–400 km range, and for every object with a diameter between 1000 and 1010 km there should be around 1000 (=103) objects with diameter of 100 to 101 km. 

If q was 1 or less, the law would imply an infinite number and mass of large objects in the Kuiper belt. If 1<q≤4 there will be a finite number of objects greater than a given size, but the expected value of their combined mass would be infinite. If q is 4 or more, the law would imply an infinite mass of small objects. More accurate models find that the "slope" parameter q is in effect greater at large diameters and lesser at small diameters. It seems that Pluto is somewhat unexpectedly large, having several percent of the total mass of the Kuiper belt. It is not expected that anything larger than Pluto exists in the Kuiper belt, and in fact most of the brightest (largest) objects at inclinations less than 5° have probably been found.

For most TNOs, only the absolute magnitude is actually known, the size is inferred assuming a given albedo (not a safe assumption for larger objects). 

Recent research has revealed that the size distributions of the hot classical and cold classical objects have differing slopes. The slope for the hot objects is q = 5.3 at large diameters and q = 2.0 at small diameters with the change in slope at 110 km. The slope for the cold objects is q = 8.2 at large diameters and q = 2.9 at small diameters with a change in slope at 140 km. The size distributions of the scattering objects, the plutinos, and the Neptune trojans have slopes similar to the other dynamically hot populations, but may instead have a divot, a sharp decrease in the number of objects below a specific size. This divot is hypothesized to be due to either the collisional evolution of the population, or to be due to the population having formed with no objects below this size, with the smaller objects being fragments of the original objects.

As of December 2009, the smallest Kuiper belt object detected is 980 m across. It is too dim (magnitude 35) to be seen by Hubble directly, but it was detected by Hubble's star tracking system when it occulted a star.

Scattered objects

Comparison of the orbits of scattered disc objects (black), classical KBOs (blue), and 2:5 resonant objects (green). Orbits of other KBOs are gray. (Orbital axes have been aligned for comparison.)

The scattered disc is a sparsely populated region, overlapping with the Kuiper belt but extending to beyond 100 AU. Scattered disc objects (SDOs) have very elliptical orbits, often also very inclined to the ecliptic. Most models of Solar System formation show both KBOs and SDOs first forming in a primordial belt, with later gravitational interactions, particularly with Neptune, sending the objects outward, some into stable orbits (the KBOs) and some into unstable orbits, the scattered disc. Due to its unstable nature, the scattered disc is suspected to be the point of origin of many of the Solar System's short-period comets. Their dynamic orbits occasionally force them into the inner Solar System, first becoming centaurs, and then short-period comets.

According to the Minor Planet Center, which officially catalogues all trans-Neptunian objects, a KBO, strictly speaking, is any object that orbits exclusively within the defined Kuiper belt region regardless of origin or composition. Objects found outside the belt are classed as scattered objects. In some scientific circles the term "Kuiper belt object" has become synonymous with any icy minor planet native to the outer Solar System assumed to have been part of that initial class, even if its orbit during the bulk of Solar System history has been beyond the Kuiper belt (e.g. in the scattered-disc region). They often describe scattered disc objects as "scattered Kuiper belt objects". Eris, which is known to be more massive than Pluto, is often referred to as a KBO, but is technically an SDO. A consensus among astronomers as to the precise definition of the Kuiper belt has yet to be reached, and this issue remains unresolved. 

The centaurs, which are not normally considered part of the Kuiper belt, are also thought to be scattered objects, the only difference being that they were scattered inward, rather than outward. The Minor Planet Center groups the centaurs and the SDOs together as scattered objects.

Triton

Neptune's moon Triton
 
During its period of migration, Neptune is thought to have captured a large KBO, Triton, which is the only large moon in the Solar System with a retrograde orbit (it orbits opposite to Neptune's rotation). This suggests that, unlike the large moons of Jupiter, Saturn and Uranus, which are thought to have coalesced from rotating discs of material around their young parent planets, Triton was a fully formed body that was captured from surrounding space. Gravitational capture of an object is not easy: it requires some mechanism to slow down the object enough to be caught by the larger object's gravity. A possible explanation is that Triton was part of a binary when it encountered Neptune. (Many KBOs are members of binaries. Ejection of the other member of the binary by Neptune could then explain Triton's capture. Triton is only 14% larger than Pluto, and spectral analysis of both worlds shows that their surfaces are largely composed of similar materials, such as methane and carbon monoxide. All this points to the conclusion that Triton was once a KBO that was captured by Neptune during its outward migration.

Largest KBOs

Artistic comparison of Pluto, Eris, Haumea, 2007 OR10, Makemake, Quaoar, Sedna, 2002 MS4, Orcus, Salacia, and Earth along with the Moon.

Since 2000, a number of KBOs with diameters of between 500 and 1,500 km (932 mi), more than half that of Pluto (diameter 2370 km), have been discovered. 50000 Quaoar, a classical KBO discovered in 2002, is over 1,200 km across. Makemake and Haumea, both announced on July 29, 2005, are larger still. Other objects, such as 28978 Ixion (discovered in 2001) and 20000 Varuna (discovered in 2000), measure roughly 500 km (311 mi) across.

Pluto

The discovery of these large KBOs in orbits similar to Pluto's led many to conclude that, aside from its relative size, Pluto was not particularly different from other members of the Kuiper belt. Not only are these objects similar to Pluto in size, but many also have satellites, and are of similar composition (methane and carbon monoxide have been found both on Pluto and on the largest KBOs). Thus, just as Ceres was considered a planet before the discovery of its fellow asteroids, some began to suggest that Pluto might also be reclassified. 

The issue was brought to a head by the discovery of Eris, an object in the scattered disc far beyond the Kuiper belt, that is now known to be 27% more massive than Pluto. (Eris was originally thought to be larger than Pluto by volume, but the New Horizons mission found this not to be the case.) In response, the International Astronomical Union (IAU) was forced to define what a planet is for the first time, and in so doing included in their definition that a planet must have "cleared the neighbourhood around its orbit". As Pluto shares its orbit with many other sizable objects, it was deemed not to have cleared its orbit, and was thus reclassified from a planet to a dwarf planet, making it a member of the Kuiper belt. 

Although Pluto is currently the largest known KBO, there is at least one known larger object currently outside the Kuiper belt that probably originated in it: Neptune's moon Triton (which, as explained above, is probably a captured KBO). 

As of 2008, only five objects in the Solar System (Ceres, Eris, and the KBOs Pluto, Makemake and Haumea) are listed as dwarf planets by the IAU. 90482 Orcus, 28978 Ixion and many other Kuiper-belt objects are large enough to be in hydrostatic equilibrium; most of them will probably qualify when more is known about them.

Satellites

The six largest TNOs (Eris, Pluto, 2007 OR10, Makemake, Haumea and Quaoar) are all known to have satellites, and two have more than one. A higher percentage of the larger KBOs have satellites than the smaller objects in the Kuiper belt, suggesting that a different formation mechanism was responsible. There are also a high number of binaries (two objects close enough in mass to be orbiting "each other") in the Kuiper belt. The most notable example is the Pluto–Charon binary, but it is estimated that around 11% of KBOs exist in binaries.

Exploration

Kuiper belt object—possible target of New Horizons spacecraft (artist's concept)
 
The KBO 2014 MU69 (green circles), the selected target for the New Horizons Kuiper belt object mission.
 
Diagram showing the location of 2014 MU69 and trajectory for rendezvous

On January 19, 2006, the first spacecraft to explore the Kuiper belt, New Horizons, was launched, which flew by Pluto on July 14, 2015. Beyond the Pluto flyby, the mission's goal was to locate and investigate other, farther objects in the Kuiper belt.

On October 15, 2014, it was revealed that Hubble had uncovered three potential targets, provisionally designated PT1 ("potential target 1"), PT2 and PT3 by the New Horizons team. The objects' diameters were estimated to be in the 30–55 km range; too small to be seen by ground telescopes, at distances from the Sun of 43–44 AU, which would put the encounters in the 2018–2019 period. The initial estimated probabilities that these objects were reachable within New Horizons' fuel budget were 100%, 7%, and 97%, respectively. All were members of the "cold" (low-inclination, low-eccentricity) classical Kuiper belt, and thus very different from Pluto. PT1 (given the temporary designation "1110113Y" on the HST web site), the most favorably situated object, was magnitude 26.8, 30–45 km in diameter, and will be encountered around January 2019. Once sufficient orbital information was provided, the Minor Planet Center gave official designations to the three target KBOs: 2014 MU69 (PT1), 2014 OS393 (PT2), and 2014 PN70 (PT3). By the fall of 2014, a possible fourth target, 2014 MT69, had been eliminated by follow-up observations. PT2 was out of the running before the Pluto flyby.

On August 26, 2015, the first target, 2014 MU69, was chosen. Course adjustment took place in late October and early November 2015, leading to a flyby in January 2019. On July 1, 2016, NASA approved additional funding for New Horizons to visit the object.

On December 2, 2015, New Horizons detected 1994 JR1 from 270 million kilometres (170×106 mi) away, and the photographs show the shape of the object and one or two details.

No follow up missions for New Horizons are planned, though at least two concepts for missions that would return to orbit or land on Pluto have been studied. Beyond Pluto, there exist many large KBOs that cannot be visited with New Horizons, such as the dwarf planets Makemake and Haumea. New missions would be tasked to explore and study these objects in detail. Thales Alenia Space has studied the logistics of an orbiter mission to Haumea, a high priority scientific target due to its status as the parent body of a collisional family that includes several other TNOs, as well as Haumea's ring and two moons. The lead author, Joel Poncy, has advocated for new technology that would allow spacecraft to reach and orbit KBOs in 10–20 years or less. New Horizons Principal Investigator Alan Stern has informally suggested missions that would flyby the planets Uranus or Neptune before visiting new KBO targets, thus furthering the exploration of the Kuiper belt while also visiting these ice giant planets for the first time since the Voyager 2 flybys in the 1980s. 

Quaoar would make a particularly attractive flyby target for a probe tasked with exploring the interstellar medium, as it currently lies near the heliospheric nose; Pontus Brandt at Johns Hopkins Applied Physics Laboratory and his colleagues have studied a probe that would flyby Quaoar in the 2030s before continuing to the intersellar medium through the heliospheric nose. Quaoar is also an attractive target due to a likely disappearing methane atmosphere and cyro-volcanism. The mission studied by Brandt and his colleagues would launch using SLS and achieve 30 km/s using a Jupiter flyby. Alternatively, for an orbiter mission, a study published in 2012 concluded that Ixion and Huya are among the most feasible targets. For instance, the authors calculated that an orbiter mission could reach Ixion after 17 years cruise time if launched in 2039.

Extrasolar Kuiper belts

Debris discs around the stars HD 139664 and HD 53143 – black circle from camera hides star to display discs.

By 2006, astronomers had resolved dust discs thought to be Kuiper belt-like structures around nine stars other than the Sun. They appear to fall into two categories: wide belts, with radii of over 50 AU, and narrow belts (tentatively like that of the Solar System) with radii of between 20 and 30 AU and relatively sharp boundaries. Beyond this, 15–20% of solar-type stars have an observed infrared excess that is suggestive of massive Kuiper-belt-like structures. Most known debris discs around other stars are fairly young, but the two images on the right, taken by the Hubble Space Telescope in January 2006, are old enough (roughly 300 million years) to have settled into stable configurations. The left image is a "top view" of a wide belt, and the right image is an "edge view" of a narrow belt. Computer simulations of dust in the Kuiper belt suggest that when it was younger, it may have resembled the narrow rings seen around younger stars.

Triton (moon -- updated)

From Wikipedia, the free encyclopedia

Triton
Triton moon mosaic Voyager 2 (large).jpg
Voyager 2 photomosaic of Triton's sub-Neptunian hemisphere
Discovery
Discovered byWilliam Lassell
Discovery dateOctober 10, 1846
Designations
Pronunciation/ˈtrtən/
Neptune I
AdjectivesTritonian
Orbital characteristics
354759 km
Eccentricity0.000016
5.876854 d
(retrograde)
Average orbital speed
4.39 km/s
Inclination129.812° (to the ecliptic)
156.885° (to Neptune's equator)
129.608° (to Neptune's orbit)
Satellite ofNeptune
Physical characteristics
Mean radius
1353.4±0.9 km (0.2122 Earths)
23018000 km2
Volume10384000000 km3
Mass2.14×1022 kg
(0.00359 Earths)
Mean density
2.061 g/cm3
0.779 m/s2 (0.0794 g) (0.48 Moons)
1.455 km/s
synchronous
Sidereal rotation period
5 d, 21 h, 2 min, 53 s
0
Albedo0.76
Temperature38 K (−235.2 °C)
13.47
−1.2
Atmosphere
Surface pressure
1.4–1.9 Pa
(1/70000 the surface pressure on Earth)
Composition by volumenitrogen; methane traces.

Triton is the largest natural satellite of the planet Neptune, and the first Neptunian moon to be discovered. The discovery was made on October 10, 1846, by English astronomer William Lassell. It is the only large moon in the Solar System with a retrograde orbit, an orbit in the direction opposite to its planet's rotation. At 2,710 kilometres (1,680 mi) in diameter, it is the seventh-largest moon in the Solar System. Because of its retrograde orbit and composition similar to Pluto's, Triton is thought to have been a dwarf planet captured from the Kuiper belt. It has a surface of mostly frozen nitrogen, a mostly water-ice crust, an icy mantle and a substantial core of rock and metal. The core makes up two-thirds of its total mass. The mean density is 2.061 g/cm3, reflecting a composition of approximately 15–35% water ice.

Triton is one of the few moons in the Solar System known to be geologically active (the others being Jupiter's Io and Europa, and Saturn's Enceladus and Titan). As a consequence, its surface is relatively young, with few obvious impact craters. Intricate cryovolcanic and tectonic terrains suggest a complex geological history. Part of its surface has geysers erupting sublimated nitrogen gas, contributing to a tenuous nitrogen atmosphere less than 1/70,000 the pressure of Earth's atmosphere at sea level. It is the second-largest planetary moon in relation to its primary, after Earth's moon.

Discovery and naming

William Lassell, the discoverer of Triton
 
Triton was discovered by British astronomer William Lassell on October 10, 1846, just 17 days after the discovery of Neptune. He discovered Triton with his self-built, 61 cm telescope.

A brewer by trade, Lassell began making mirrors for his amateur telescope in 1820. When John Herschel received news of Neptune's discovery, he wrote to Lassell suggesting he search for possible moons. Lassell did so and discovered Triton eight days later. Lassell also claimed to have discovered rings. Although Neptune was later confirmed to have rings, they are so faint and dark that it is doubtful that he actually saw them.

Triton is named after the Greek sea god Triton (Τρίτων), the son of Poseidon (the Greek god comparable to the Roman Neptune). The name was first proposed by Camille Flammarion in his 1880 book Astronomie Populaire, and was officially adopted many decades later. Until the discovery of the second moon Nereid in 1949, Triton was commonly referred to as "the satellite of Neptune". Lassell did not name his own discovery; he later successfully suggested the name Hyperion, previously chosen by John Herschel, for the eighth moon of Saturn when he discovered it.

Orbit and rotation

The orbit of Triton (red) is opposite in direction and tilted −23° compared to a typical moon's orbit (green) in the plane of Neptune's equator.
 
Triton is unique among all large moons in the Solar System for its retrograde orbit around its planet (i.e. it orbits in a direction opposite to the planet's rotation). Most of the outer irregular moons of Jupiter and Saturn also have retrograde orbits, as do some of Uranus's outer moons. However, these moons are all much more distant from their primaries, and are small in comparison; the largest of them (Phoebe) has only 8% of the diameter (and 0.03% of the mass) of Triton. 

Triton's orbit is associated with two tilts, the inclination of Neptune's spin to Neptune's orbit, 30°, and the inclination of Triton's orbit to Neptune's spin, 157° (an inclination over 90° indicates retrograde motion). Triton's orbit precesses forward relative to Neptune's spin with a period of about 678 Earth years (4.1 Neptunian years), making its Neptune-orbit-relative inclination vary between 127° and 180° and in the past, to 173°. That inclination is currently 130°; Triton's orbit is now near its maximum departure from coplanarity with Neptune's. 

Triton's rotation is tidally locked to be synchronous with its orbit around Neptune: it keeps one face oriented toward the planet at all times. Its equator is almost exactly aligned with its orbital plane. At the present time, Triton's rotational axis is about 40° from Neptune's orbital plane, and hence at some point during Neptune's year each pole points fairly close to the Sun, almost like the poles of Uranus. As Neptune orbits the Sun, Triton's polar regions take turns facing the Sun, resulting in seasonal changes as one pole, then the other, moves into the sunlight. Such changes were observed in 2010.

Triton's revolution around Neptune has become a nearly perfect circle with an eccentricity of almost zero. Viscoelastic damping from tides alone is not thought to be capable of circularizing Triton's orbit in the time since the origin of the system, and gas drag from a prograde debris disc is likely to have played a substantial role. Tidal interactions also cause Triton's orbit, which is already closer to Neptune than the Moon's is to Earth, to gradually decay further; predictions are that 3.6 billion years from now, Triton will pass within Neptune's Roche limit. This will result in either a collision with Neptune's atmosphere or the breakup of Triton, forming a new ring system similar to that found around Saturn.

Capture

The Kuiper belt (green), in the Solar System's outskirts, is where Triton is thought to have originated.
 
Moons in retrograde orbits cannot form in the same region of the solar nebula as the planets they orbit, so Triton must have been captured from elsewhere. It might therefore have originated in the Kuiper belt, a ring of small icy objects extending from just inside the orbit of Neptune to about 50 AU from the Sun. Thought to be the point of origin for the majority of short-period comets observed from Earth, the belt is also home to several large, planet-like bodies including Pluto, which is now recognized as the largest in a population of Kuiper belt objects (the plutinos) locked in orbital step with Neptune. Triton is only slightly larger than Pluto and nearly identical in composition, which has led to the hypothesis that the two share a common origin.

The proposed capture of Triton may explain several features of the Neptunian system, including the extremely eccentric orbit of Neptune's moon Nereid and the scarcity of moons as compared to the other giant planets. Triton's initially eccentric orbit would have intersected orbits of irregular moons and disrupted those of smaller regular moons, dispersing them through gravitational interactions.

Triton's eccentric post-capture orbit would have also resulted in tidal heating of its interior, which could have kept Triton fluid for a billion years; this inference is supported by evidence of differentiation in Triton's interior. This source of internal heat disappeared following tidal locking and circularization of the orbit.

Two types of mechanisms have been proposed for Triton's capture. To be gravitationally captured by a planet, a passing body must lose sufficient energy to be slowed down to a speed less than that required to escape. An early theory of how Triton may have been slowed was by collision with another object, either one that happened to be passing by Neptune (which is unlikely), or a moon or proto-moon in orbit around Neptune (which is more likely). A more recent hypothesis suggests that, before its capture, Triton was part of a binary system. When this binary encountered Neptune, it interacted in such a way that the binary dissociated, with one portion of the binary expelled, and the other, Triton, becoming bound to Neptune. This event is more likely for more massive companions. Similar mechanisms have been proposed for the capture of Mars's moons. This hypothesis is supported by several lines of evidence, including binaries being very common among the large Kuiper belt objects. The event was brief but gentle, saving Triton from collisional disruption. Events like this may have been common during the formation of Neptune, or later when it migrated outward.

However, simulations in 2017 showed that after Triton's capture and before its orbital eccentricity decreased it probably did collide with at least one other moon, and caused collisions between other moons.

Physical characteristics

Triton dominates the Neptunian moon system, with over 99.5% of its total mass. This imbalance may reflect the elimination of many of Neptune's original satellites following Triton's capture.
 
Triton (lower left) compared to the Moon (upper left) and Earth (right), to scale
 
Triton is the seventh-largest moon and sixteenth-largest object in the Solar System, and is modestly larger than the dwarf planets Pluto and Eris. It comprises more than 99.5% of all the mass known to orbit Neptune, including the planet's rings and thirteen other known moons, and is also more massive than all known moons in the Solar System smaller than itself combined. Also, with a diameter 5.5% that of Neptune, it is the largest moon of a gas giant relative to its planet in terms of diameter, although Titan is bigger relative to Saturn in terms of mass. It has a radius, density (2.061 g/cm3), temperature and chemical composition similar to those of Pluto.

Triton's surface is covered with a transparent layer of annealed frozen nitrogen. Only 40% of Triton's surface has been observed and studied, but it is possible that it is entirely covered in such a thin sheet of nitrogen ice. Like Pluto's, Triton's crust consists of 55% nitrogen ice with other ices mixed in. Water ice comprises 15–35% and frozen carbon dioxide (dry ice) the remaining 10–20%. Trace ices include 0.1% methane and 0.05% carbon monoxide. There could also be ammonia ice on the surface, as there are indications of ammonia dihydrate in the lithosphere. Triton's mean density implies that it probably consists of about 30–45% water ice (including relatively small amounts of volatile ices), with the remainder being rocky material. Triton's surface area is 23 million km2, which is 4.5% of Earth, or 15.5% of Earth's land area. Triton has a considerably and unusually high albedo, reflecting 60–95% of the sunlight that reaches it, and it has changed slightly since the first observations. By comparison, the Moon reflects only 11%. Triton's reddish colour is thought to be the result of methane ice, which is converted to tholins under exposure to ultraviolet radiation.

Because Triton's surface indicates a long history of melting, models of its interior posit that Triton is differentiated, like Earth, into a solid core, a mantle and a crust. Water, the most abundant volatile in the Solar System, comprises Triton's mantle, enveloping a core of rock and metal. There is enough rock in Triton's interior for radioactive decay to power convection in the mantle to this day. The heat may even be sufficient to maintain a global subsurface ocean similar to what is hypothesized to exist beneath the surface of Europa. The black material ejected is suspected to contain organic compounds, and if liquid water is present in Triton, it has been speculated that this could make it habitable for some form of life.

Atmosphere

Artist's impression of Triton, showing its tenuous atmosphere just over the limb.
 
Triton has a tenuous nitrogen atmosphere, with trace amounts of carbon monoxide and small amounts of methane near its surface. Like Pluto's atmosphere, the atmosphere of Triton is thought to have resulted from evaporation of nitrogen from its surface. Its surface temperature is at least 35.6 K (−237.6 °C) because Triton's nitrogen ice is in the warmer, hexagonal crystalline state, and the phase transition between hexagonal and cubic nitrogen ice occurs at that temperature. An upper limit in the low 40s (K) can be set from vapor pressure equilibrium with nitrogen gas in Triton's atmosphere. This is colder than Pluto's average equilibrium temperature of 44 K (−229 °C). Triton's surface atmospheric pressure is only about 1.4–1.9 Pa (0.014–0.019 mbar).

Clouds observed above Triton's limb by Voyager 2.
 
Turbulence at Triton's surface creates a troposphere (a "weather region") rising to an altitude of 8 km. Streaks on Triton's surface left by geyser plumes suggest that the troposphere is driven by seasonal winds capable of moving material of over a micrometre in size. Unlike other atmospheres, Triton's lacks a stratosphere, and instead has a thermosphere from altitudes of 8 to 950 km, and an exosphere above that. The temperature of Triton's upper atmosphere, at 95±5 K, is higher than that at its surface, due to heat absorbed from solar radiation and Neptune's magnetosphere. A haze permeates most of Triton's troposphere, thought to be composed largely of hydrocarbons and nitriles created by the action of sunlight on methane. Triton's atmosphere also has clouds of condensed nitrogen that lie between 1 and 3 km from its surface.

In 1997, observations from Earth were made of Triton's limb as it passed in front of stars. These observations indicated the presence of a denser atmosphere than was deduced from Voyager 2 data. Other observations have shown an increase in temperature by 5% from 1989 to 1998. These observations indicate Triton is approaching an unusually warm summer season that happens only once every few hundred years. Theories for this warming include a change of frost patterns on Triton's surface and a change in ice albedo, which would allow more heat to be absorbed. Another theory argues the changes in temperature are a result of deposition of dark, red material from geological processes. Because Triton's Bond albedo is among the highest within the Solar System, it is sensitive to small variations in spectral albedo.

Surface features

Interpretative geomorphological map of Triton
 
All detailed knowledge of the surface of Triton was acquired from a distance of 40,000 km by the Voyager 2 spacecraft during a single encounter in 1989. The 40% of Triton's surface imaged by Voyager 2 revealed blocky outcrops, ridges, troughs, furrows, hollows, plateaus, icy plains and few craters. Triton is relatively flat; its observed topography never varies beyond a kilometer. There are relatively few impact craters on Triton. Recent analysis of crater density and distribution has suggested that in geological terms, Triton's surface is extremely young, with regions varying from an estimated 50 million years old to just an estimated 6 million years old. 55% of Triton's surface is covered with frozen nitrogen, with water ice comprising 15–35% and dry ice (aka. frozen carbon dioxide) forming the remaining 10–20%. The surface shows deposits of tholins, organic compounds that may be precursor chemicals to the origin of life.

Cryovolcanism

Dark streaks across Triton's south polar cap surface, thought to be dust deposits left by eruptions of nitrogen geysers
 
Triton is geologically active; its surface is young and has relatively few impact craters. Although Triton's crust is made of various ices, its subsurface processes are similar to those that produce volcanoes and rift valleys on Earth, but with water and ammonia as opposed to liquid rock. Triton's entire surface is cut by complex valleys and ridges, probably the result of tectonics and icy volcanism. The vast majority of surface features on Triton are endogenic—the result of internal geological processes rather than external processes such as impacts. Most are volcanic and extrusive in nature, rather than tectonic.

The Voyager 2 probe observed in 1989 a handful of geyser-like eruptions of nitrogen gas and entrained dust from beneath the surface of Triton in plumes up to 8 km high. Triton is thus, along with Earth, Io, and Enceladus, one of the few bodies in the Solar System on which active eruptions of some sort have been observed. The best-observed examples are named Hili and Mahilani (after a Zulu water sprite and a Tongan sea spirit, respectively).

All the geysers observed were located between 50° and 57°S, the part of Triton's surface close to the subsolar point. This indicates that solar heating, although very weak at Triton's great distance from the Sun, plays a crucial role. It is thought that the surface of Triton probably consists of a translucent layer of frozen nitrogen overlying a darker substrate, which creates a kind of "solid greenhouse effect". Solar radiation passes through the thin surface ice sheet, slowly heating and vaporizing subsurface nitrogen until enough gas pressure accumulates for it to erupt through the crust. A temperature increase of just 4 K above the ambient surface temperature of 37 K could drive eruptions to the heights observed. Although commonly termed "cryovolcanic", this nitrogen plume activity is distinct from Triton's larger scale cryovolcanic eruptions, as well as volcanic processes on other worlds, which are powered by the internal heat of the body in question. Analogous CO2 geysers on Mars are thought to erupt from its south polar cap each spring.

Each eruption of a Triton geyser may last up to a year, driven by the sublimation of about 100 million cubic metres (3.5×109 cu ft) of nitrogen ice over this interval; dust entrained may be deposited up to 150 km downwind in visible streaks, and perhaps much farther in more diffuse deposits. Voyager 2's images of Triton's southern hemisphere show many such streaks of dark material. Between 1977 and the Voyager 2 flyby in 1989, Triton shifted from a reddish colour, similar to Pluto, to a far paler hue, suggesting that lighter nitrogen frosts had covered older reddish material. The eruption of volatiles from Triton's equator and their deposition at the poles may redistribute enough mass over the course of 10,000 years to cause polar wander.

Polar cap, plains and ridges

Triton's bright south polar cap above a region of cantaloupe terrain
 
Triton's south polar region is covered by a highly reflective cap of frozen nitrogen and methane sprinkled by impact craters and openings of geysers. Little is known about the north pole because it was on the night side during the Voyager 2 encounter, but it is thought that Triton must also have a north polar ice cap.

The high plains found on Triton's eastern hemisphere, such as Cipango Planum, cover over and blot out older features, and are therefore almost certainly the result of icy lava washing over the previous landscape. The plains are dotted with pits, such as Leviathan Patera, which are probably the vents from which this lava emerged. The composition of the lava is unknown, although a mixture of ammonia and water is suspected.

Four roughly circular "walled plains" have been identified on Triton. They are the flattest regions so far discovered, with a variance in altitude of less than 200 m. They are thought to have formed from eruption of icy lava. The plains near Triton's eastern limb are dotted with black spots, the maculae. Some maculae are simple dark spots with diffuse boundaries, and others comprise a dark central patch surrounded by a white halo with sharp boundaries. The maculae typically have diameters of about 100 km and widths of the halos of between 20 and 30 km.

There are extensive ridges and valleys in complex patterns across Triton's surface, probably the result of freeze–thaw cycles. Many also appear to be tectonic in nature and may result from extension or strike-slip faulting. There are long double ridges of ice with central troughs bearing a strong resemblance to Europan lineae (although they have a larger scale), and which may have a similar origin, possibly shear heating from strike-slip motion along faults caused by diurnal tidal stresses experienced before Triton's orbit was fully circularized. These faults with parallel ridges expelled from the interior cross complex terrain with valleys in the equatorial region. The ridges and furrows, or sulci, such as Yasu Sulci, Ho Sulci, and Lo Sulci, are thought to be of intermediate age in Triton's geological history, and in many cases to have formed concurrently. They tend to be clustered in groups or "packets".

Cantaloupe terrain

Cantaloupe terrain viewed from 130,000 km by Voyager 2, with crosscutting Europa-like double ridges. Slidr Sulci (vertical) and Tano Sulci form the prominent "X"
 
Triton's western hemisphere consists of a strange series of fissures and depressions known as "cantaloupe terrain" because of its resemblance to the skin of a cantaloupe melon. Although it has few craters, it is thought that this is the oldest terrain on Triton. It probably covers much of Triton's western half.

Cantaloupe terrain, which is mostly dirty water ice, is only known to exist on Triton. It contains depressions 30–40 km in diameter. The depressions (cavi) are probably not impact craters because they are all of similar size and have smooth curves. The leading hypothesis for their formation is diapirism, the rising of "lumps" of less dense material through a stratum of denser material. Alternative hypotheses include formation by collapses, or by flooding caused by cryovolcanism.

Impact craters

Tuonela Planitia (left) and Ruach Planitia (center) are two of Triton's cryovolcanic "walled plains". The paucity of craters is evidence of extensive, relatively recent, geologic activity.
 
Due to constant erasure and modification by ongoing geological activity, impact craters on Triton's surface are relatively rare. A census of Triton's craters imaged by Voyager 2 found only 179 that were incontestably of impact origin, compared with 835 observed for Uranus's moon Miranda, which has only three percent of Triton's surface area. The largest crater observed on Triton thought to have been created by an impact is a 27 km-diameter feature called Mazomba. Although larger craters have been observed, they are generally thought to be volcanic in nature.

The few impact craters on Triton are almost all concentrated in the leading hemisphere—that facing the direction of the orbital motion—with the majority concentrated around the equator between 30° and 70° longitude, resulting from material swept up from orbit around Neptune. Because it orbits with one side permanently facing the planet, astronomers expect that Triton should have fewer impacts on its trailing hemisphere, due to impacts on the leading hemisphere being more frequent and more violent. Voyager 2 imaged only 40% of Triton's surface, so this remains uncertain.

Observation and exploration

Neptune (top) and Triton (bottom) three days after Voyager 2's flyby
 
The orbital properties of Triton were already determined with high accuracy in the 19th century. It was found to have a retrograde orbit, at a very high angle of inclination to the plane of Neptune's orbit. The first detailed observations of Triton were not made until 1930. Little was known about the satellite until Voyager 2 flew by in 1989.

Before the flyby of Voyager 2, astronomers suspected that Triton might have liquid nitrogen seas and a nitrogen/methane atmosphere with a density as much as 30% that of Earth. Like the famous overestimates of the atmospheric density of Mars, this proved incorrect. As with Mars, a denser atmosphere is postulated for its early history.

The first attempt to measure the diameter of Triton was made by Gerard Kuiper in 1954. He obtained a value of 3,800 km. Subsequent measurement attempts arrived at values ranging from 2,500 to 6,000 km, or from slightly smaller than the Moon (3474.2 km) to nearly half the diameter of Earth. Data from the approach of Voyager 2 to Neptune on August 25, 1989, led to a more accurate estimate of Triton's diameter (2,706 km).

In the 1990s, various observations from Earth were made of the limb of Triton using the occultation of nearby stars, which indicated the presence of an atmosphere and an exotic surface. Observations in late 1997 suggests that Triton is heating up and the atmosphere has become significantly denser than when Voyager 2 flew past in 1989.

New concepts for missions to the Neptune system to be conducted in the 2010s have been brought forward by NASA scientists on numerous occasions over the last decades. All of them identified Triton as being a prime target and a separate Triton lander comparable to the Huygens probe for Titan was frequently included in those plans. No efforts aimed at Neptune and Triton went beyond the proposal phase and NASA's funding on missions to the outer Solar System is currently focused on the Jupiter and Saturn systems.

A proposed lander mission to Triton, called Triton Hopper, would mine nitrogen ice from the surface of Triton and process it to be used as small rocket propellant and fly or 'hop' across the surface.

On 5 October 2017 Triton occulted the star UCAC4 410-143659.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...