Search This Blog

Wednesday, March 15, 2023

Standardization

From Wikipedia, the free encyclopedia

History

Early examples

Standard weights and measures were developed by the Indus Valley civilization. The centralized weight and measure system served the commercial interest of Indus merchants as smaller weight measures were used to measure luxury goods while larger weights were employed for buying bulkier items, such as food grains etc. Weights existed in multiples of a standard weight and in categories. Technical standardisation enabled gauging devices to be effectively used in angular measurement and measurement for construction. Uniform units of length were used in the planning of towns such as Lothal, Surkotada, Kalibangan, Dolavira, Harappa, and Mohenjo-daro. The weights and measures of the Indus civilization also reached Persia and Central Asia, where they were further modified. Shigeo Iwata describes the excavated weights unearthed from the Indus civilization:

A total of 558 weights were excavated from Mohenjodaro, Harappa, and Chanhu-daro, not including defective weights. They did not find statistically significant differences between weights that were excavated from five different layers, each measuring about 1.5 m in depth. This was evidence that strong control existed for at least a 500-year period. The 13.7-g weight seems to be one of the units used in the Indus valley. The notation was based on the binary and decimal systems. 83% of the weights which were excavated from the above three cities were cubic, and 68% were made of chert.

18th century attempts

Henry Maudslay's famous early screw-cutting lathes of circa 1797 and 1800.

The implementation of standards in industry and commerce became highly important with the onset of the Industrial Revolution and the need for high-precision machine tools and interchangeable parts.

Henry Maudslay developed the first industrially practical screw-cutting lathe in 1800. This allowed for the standardization of screw thread sizes for the first time and paved the way for the practical application of interchangeability (an idea that was already taking hold) to nuts and bolts.

Before this, screw threads were usually made by chipping and filing (that is, with skilled freehand use of chisels and files). Nuts were rare; metal screws, when made at all, were usually for use in wood. Metal bolts passing through wood framing to a metal fastening on the other side were usually fastened in non-threaded ways (such as clinching or upsetting against a washer). Maudslay standardized the screw threads used in his workshop and produced sets of taps and dies that would make nuts and bolts consistently to those standards, so that any bolt of the appropriate size would fit any nut of the same size. This was a major advance in workshop technology.

National standard

Maudslay's work, as well as the contributions of other engineers, accomplished a modest amount of industry standardization; some companies' in-house standards spread a bit within their industries.

Graphic representation of formulae for the pitches of threads of screw bolts

Joseph Whitworth's screw thread measurements were adopted as the first (unofficial) national standard by companies around the country in 1841. It came to be known as the British Standard Whitworth, and was widely adopted in other countries.

This new standard specified a 55° thread angle and a thread depth of 0.640327p and a radius of 0.137329p, where p is the pitch. The thread pitch increased with diameter in steps specified on a chart. An example of the use of the Whitworth thread is the Royal Navy's Crimean War gunboats. These were the first instance of "mass-production" techniques being applied to marine engineering.

With the adoption of BSW by British railway lines, many of which had previously used their own standard both for threads and for bolt head and nut profiles, and improving manufacturing techniques, it came to dominate British manufacturing.

American Unified Coarse was originally based on almost the same imperial fractions. The Unified thread angle is 60° and has flattened crests (Whitworth crests are rounded). Thread pitch is the same in both systems except that the thread pitch for the 12 in. (inch) bolt is 12 threads per inch (tpi) in BSW versus 13 tpi in the UNC.

National standards body

By the end of the 19th century, differences in standards between companies, was making trade increasingly difficult and strained. For instance, an iron and steel dealer recorded his displeasure in The Times: "Architects and engineers generally specify such unnecessarily diverse types of sectional material or given work that anything like economical and continuous manufacture becomes impossible. In this country no two professional men are agreed upon the size and weight of a girder to employ for given work."

The Engineering Standards Committee was established in London in 1901 as the world's first national standards body. It subsequently extended its standardization work and became the British Engineering Standards Association in 1918, adopting the name British Standards Institution in 1931 after receiving its Royal Charter in 1929. The national standards were adopted universally throughout the country, and enabled the markets to act more rationally and efficiently, with an increased level of cooperation.

After the First World War, similar national bodies were established in other countries. The Deutsches Institut für Normung was set up in Germany in 1917, followed by its counterparts, the American National Standard Institute and the French Commission Permanente de Standardisation, both in 1918.

Regional standards organization

At a regional level (e.g. Europa, the Americas, Africa, etc) or at subregional level (e.g. Mercosur, Andean Community, South East Asia, South East Africa, etc), several Regional Standardization Organizations exist (see also Standards Organization).

The three regional standards organizations in Europe - or European Standardization Organizations (ESOs) recognised by the EU Regulation on Standardization [Regulation (EU) 1025/2012] are CEN, CENELEC and ETSI. CEN develops standards for numerous kinds of products, materials, services and processes. Some sectors covered by CEN include transport equipment and services, chemicals, construction, consumer products, defence and security, energy, food and feed, health and safety, healthcare, digital sector, machinery or services. The European Committee for Electrotechnical Standardization (CENELEC) is the European Standardization organization developing standards in the electrotechnical area and corresponding to the International Electrotechnical Commission (IEC) in Europe.

International standards

The first modern International Organization (Intergovernmental Organization) the International Telegraph Union (now International Telecommunication Union) was created in 1865 to set international standards in order to connect national telegraph networks, as a merger of two predecessor organizations (Bern and Paris treaties) that had similar objectives, but in more limited territories. With the advent of radiocommunication soon after the creation, the work of the ITU quickly expanded from the standardization of Telegraph communications, to developing standards for telecommunications in general.

International Standards Associations

By the mid to late 19th century, efforts were being made to standardize electrical measurement. Lord Kelvin was an important figure in this process, introducing accurate methods and apparatus for measuring electricity. In 1857, he introduced a series of effective instruments, including the quadrant electrometer, which cover the entire field of electrostatic measurement. He invented the current balance, also known as the Kelvin balance or Ampere balance (SiC), for the precise specification of the ampere, the standard unit of electric current.

R. E. B. Crompton became concerned by the large range of different standards and systems used by electrical engineering companies and scientists in the early 20th century. Many companies had entered the market in the 1890s and all chose their own settings for voltage, frequency, current and even the symbols used on circuit diagrams. Adjacent buildings would have totally incompatible electrical systems simply because they had been fitted out by different companies. Crompton could see the lack of efficiency in this system and began to consider proposals for an international standard for electric engineering.

In 1904, Crompton represented Britain at the International Electrical Congress, held in connection with Louisiana Purchase Exposition in Saint Louis as part of a delegation by the Institute of Electrical Engineers. He presented a paper on standardisation, which was so well received that he was asked to look into the formation of a commission to oversee the process. By 1906 his work was complete and he drew up a permanent constitution for the International Electrotechnical Commission. The body held its first meeting that year in London, with representatives from 14 countries. In honour of his contribution to electrical standardisation, Lord Kelvin was elected as the body's first President.

Memorial plaque of founding ISA in Prague.

The International Federation of the National Standardizing Associations (ISA) was founded in 1926 with a broader remit to enhance international cooperation for all technical standards and specifications. The body was suspended in 1942 during World War II.

After the war, ISA was approached by the recently formed United Nations Standards Coordinating Committee (UNSCC) with a proposal to form a new global standards body. In October 1946, ISA and UNSCC delegates from 25 countries met in London and agreed to join forces to create the new International Organization for Standardization (ISO); the new organization officially began operations in February 1947.

In general, each country or economy has a single recognized National Standards Body (NSB). Examples include ABNT, AENOR (now called UNE, Spanish Association for Standardization), AFNOR, ANSI, BSI, DGN, DIN, IRAM, JISC, KATS, SABS, SAC, SCC, SIS. An NSB is likely the sole member from that economy in ISO.

NSBs may be either public or private sector organizations, or combinations of the two. For example, the three NSBs of Canada, Mexico and the United States are respectively the Standards Council of Canada (SCC), the General Bureau of Standards (Dirección General de Normas, DGN), and the American National Standards Institute (ANSI). SCC is a Canadian Crown Corporation, DGN is a governmental agency within the Mexican Ministry of Economy, and ANSI and AENOR are a 501(c)(3) non-profit organization with members from both the private and public sectors. The determinants of whether an NSB for a particular economy is a public or private sector body may include the historical and traditional roles that the private sector fills in public affairs in that economy or the development stage of that economy.

Usage

Standards can be:

  • de facto standards which means they are followed by informal convention or dominant usage.
  • de jure standards which are part of legally binding contracts, laws or regulations.
  • Voluntary standards which are published and available for people to consider for use.

The existence of a published standard does not necessarily imply that it is useful or correct. Just because an item is stamped with a standard number does not, by itself, indicate that the item is fit for any particular use. The people who use the item or service (engineers, trade unions, etc.) or specify it (building codes, government, industry, etc.) have the responsibility to consider the available standards, specify the correct one, enforce compliance, and use the item correctly: validation and verification.

To avoid the proliferation of industry standards, also referred to as private standards, regulators in the United States are instructed by their government offices to adopt "voluntary consensus standards" before relying upon "industry standards" or developing "government standards". Regulatory authorities can reference voluntary consensus standards to translate internationally accepted criteria into public policy.

Information exchange

In the context of information exchange, standardization refers to the process of developing standards for specific business processes using specific formal languages. These standards are usually developed in voluntary consensus standards bodies such as the United Nations Center for Trade Facilitation and Electronic Business (UN/CEFACT), the World Wide Web Consortium (W3C), the Telecommunications Industry Association (TIA), and the Organization for the Advancement of Structured Information Standards (OASIS).

There are many specifications that govern the operation and interaction of devices and software on the Internet, but they are rarely referred to as standards, so as to preserve that word as the domain of relatively disinterested bodies such as ISO. The W3C, for example, publishes "Recommendations", and the IETF publishes "Requests for Comments" (RFCs). However, these publications are sometimes referred to as standards.

Environmental protection

Standardized product certifications such as of organic food, buildings or possibly sustainable seafood as well as standardized product safety evaluation and dis/approval procedures (e.g. regulation of chemicals, cosmetics and food safety) can protect the environment. This effect may depend on associated modified consumer choices, strategic product support/obstruction, requirements and bans as well as their accordance with a scientific basis, the robustness and applicability of a scientific basis, whether adoption of the certifications is voluntary, and the socioeconomic context (systems of governance and the economy), with possibly most certifications being so far mostly largely ineffective.

Moreover, standardized scientific frameworks can enable evaluation of levels of environmental protection, such as of marine protected areas, and serve as, potentially evolving, guides for improving, planning and monitoring the protection-quality, -scopes and -extents.

Moreover, technical standards could decrease electronic waste and reduce resource-needs such as by thereby requiring (or enabling) products to be interoperable, compatible (with other products, infrastructures, environments, etc), durable, energy-efficient, modular, upgradeable/repairable and recyclable and conform to versatile, optimal standards and protocols.

Such standardization is not limited to the domain of electronic devices like smartphones and phone chargers but could also be applied to e.g. the energy infrastructure. Policy-makers could develop policies "fostering standard design and interfaces, and promoting the re-use of modules and components across plants to develop more sustainable energy infrastructure". Computers and the Internet are some of the tools that could be used to increase practicability and reduce suboptimal results, detrimental standards and bureaucracy, which is often associated with traditional processes and results of standardization. Taxes and subsidies, and funding of research and development could be used complementarily. Standardized measurement is used in monitoring, reporting and verification frameworks of environmental impacts, usually of companies, for example to prevent underreporting of greenhouse gas emissions by firms.

Product testing and analysis can also be done for, enable or aid environmental protection:

Product testing and analysis

In routine product testing and product analysis results can be reported using official or informal standards. It can be done to increase consumer protection, to ensure safety or healthiness or efficiency or performance or sustainability of products. It can be carried out by the manufacturer, an independent laboratory, a government agency, a magazine or others on a voluntary or commissioned/mandated basis.

Estimating the environmental impacts of food products in a standardized way – as has been done with a dataset of >57,000 food products in supermarkets – could e.g. be used to inform consumers or in policy. For example, such may be useful for approaches using personal carbon allowances (or similar quota) or for targeted alteration of (ultimate overall) costs.

Safety

Public information symbols

Public information symbols (e.g. hazard symbols), especially when related to safety, are often standardized, sometimes on the international level.

Biosafety

Standardization is also used to ensure safe design and operation of laboratories and similar potentially dangerous workplaces, e.g. to ensure biosafety levels. There is research into microbiology safety standards used in clinical and research laboratories.

Defense

In the context of defense, standardization has been defined by NATO as The development and implementation of concepts, doctrines, procedures and designs to achieve and maintain the required levels of compatibility, interchangeability or commonality in the operational, procedural, material, technical and administrative fields to attain interoperability.

Ergonomics, workplace and health

In some cases, standards are being used in the design and operation of workplaces and products that can impact consumers' health. Some of such standards seek to ensure occupational safety and health and ergonomics. For example, chairs (see e.g. active sitting and steps of research) could be potentially be designed and chosen using standards that may or may not be based on adequate scientific data. Standards could reduce the variety of products and lead to convergence on fewer broad designs – which can often be efficiently mass-produced via common shared automated procedures and instruments – or formulations deemed to be the most healthy, most efficient or best compromise between healthiness and other factors. Standardization is sometimes or could also be used to ensure or increase or enable consumer health protection beyond the workplace and ergonomics such as standards in food, food production, hygiene products, tab water, cosmetics, drugs/medicine, drink and dietary supplements, especially in cases where there is robust scientific data that suggests detrimental impacts on health (e.g. of ingredients) despite being substitutable and not necessarily of consumer interest.

Clothing

Clinical assessment

In the context of assessment, standardization may define how a measuring instrument or procedure is similar to every subjects or patients. For example, educational psychologist may adopt structured interview to systematically interview the people in concern. By delivering the same procedures, all subjects is evaluated using same criteria and minimising any confounding variable that reduce the validity. Some other example includes mental status examination and personality test.

Social science

In the context of social criticism and social science, standardization often means the process of establishing standards of various kinds and improving efficiency to handle people, their interactions, cases, and so forth. Examples include formalization of judicial procedure in court, and establishing uniform criteria for diagnosing mental disease. Standardization in this sense is often discussed along with (or synonymously to) such large-scale social changes as modernization, bureaucratization, homogenization, and centralization of society.

Customer service

In the context of customer service, standardization refers to the process of developing an international standard that enables organizations to focus on customer service, while at the same time providing recognition of success[clarification needed] through a third party organization, such as the British Standards Institution. An international standard has been developed by The International Customer Service Institute.

Supply and materials management

In the context of supply chain management and materials management, standardization covers the process of specification and use of any item the company must buy in or make, allowable substitutions, and build or buy decisions.

Process

The process of standardization can itself be standardized. There are at least four levels of standardization: compatibility, interchangeability, commonality and reference. These standardization processes create compatibility, similarity, measurement, and symbol standards.

There are typically four different techniques for standardization:

Types of standardization process:

  • Emergence as de facto standard: tradition, market domination, etc.
  • Written by a Standards organization:
    • in a closed consensus process: Restricted membership and often having formal procedures for due-process among voting members
    • in a full consensus process: usually open to all interested and qualified parties and with formal procedures for due-process considerations
  • Written by a government or regulatory body
  • Written by a corporation, union, trade association, etc.
  • Agile standardization. A group of entities, themselves or through an association, creates and publishes a drafted version shared for public review based on actual examples of use.

Effects

Standardization has a variety of benefits and drawbacks for firms and consumers participating in the market, and on technology and innovation.

Effect on firms

The primary effect of standardization on firms is that the basis of competition is shifted from integrated systems to individual components within the system. Prior to standardization a company's product must span the entire system because individual components from different competitors are incompatible, but after standardization each company can focus on providing an individual component of the system. When the shift toward competition based on individual components takes place, firms selling tightly integrated systems must quickly shift to a modular approach, supplying other companies with subsystems or components.

Effect on consumers

Standardization has a variety of benefits for consumers, but one of the greatest benefits is enhanced network effects. Standards increase compatibility and interoperability between products, allowing information to be shared within a larger network and attracting more consumers to use the new technology, further enhancing network effects. Other benefits of standardization to consumers are reduced uncertainty, because consumers can be more certain that they are not choosing the wrong product, and reduced lock-in, because the standard makes it more likely that there will be competing products in the space. Consumers may also get the benefit of being able to mix and match components of a system to align with their specific preferences. Once these initial benefits of standardization are realized, further benefits that accrue to consumers as a result of using the standard are driven mostly by the quality of the technologies underlying that standard.

Probably the greatest downside of standardization for consumers is lack of variety. There is no guarantee that the chosen standard will meet all consumers' needs or even that the standard is the best available option. Another downside is that if a standard is agreed upon before products are available in the market, then consumers are deprived of the penetration pricing that often results when rivals are competing to rapidly increase market share in an attempt to increase the likelihood that their product will become the standard. It is also possible that a consumer will choose a product based upon a standard that fails to become dominant. In this case, the consumer will have spent resources on a product that is ultimately less useful to him or her as the result of the standardization process.

Effect on technology

Much like the effect on consumers, the effect of standardization on technology and innovation is mixed. Meanwhile, the various links between research and standardization have been identified, also as a platform of knowledge transfer and translated into policy measures (e.g. WIPANO).

Increased adoption of a new technology as a result of standardization is important because rival and incompatible approaches competing in the marketplace can slow or even kill the growth of the technology (a state known as market fragmentation). The shift to a modularized architecture as a result of standardization brings increased flexibility, rapid introduction of new products, and the ability to more closely meet individual customer's needs.

The negative effects of standardization on technology have to do with its tendency to restrict new technology and innovation. Standards shift competition from features to price because the features are defined by the standard. The degree to which this is true depends on the specificity of the standard. Standardization in an area also rules out alternative technologies as options while encouraging others.

Bioeconomy

From Wikipedia, the free encyclopedia

Biobased economy, bioeconomy or biotechonomy is economic activity involving the use of biotechnology and biomass in the production of goods, services, or energy. The terms are widely used by regional development agencies, national and international organizations, and biotechnology companies. They are closely linked to the evolution of the biotechnology industry and the capacity to study, understand, and manipulate genetic material that has been possible due to scientific research and technological development. This includes the application of scientific and technological developments to agriculture, health, chemical, and energy industries.

The terms bioeconomy (BE) and bio-based economy (BBE) are sometimes used interchangeably. However, it is worth to distinguish them: the biobased economy takes into consideration the production of non-food goods, whilst bioeconomy covers both bio-based economy and the production and use of food and feed. More than 60 countries and regions have bioeconomy or bioscience-related strategies, of which 20 have published dedicated bioeconomy strategies in Africa, Asia, Europe, Oceania, and the Americas.

Definitions

Bioeconomy has large variety of definitions. The bioeconomy comprises those parts of the economy that use renewable biological resources from land and sea – such as crops, forests, fish, animals and micro-organisms – to produce food, health, materials, products, textiles and energy. The definitions and usage does however vary between different areas of the world. 

An important aspect of the bioeconomy is understanding mechanisms and processes at the genetic, molecular, and genomic levels, and applying this understanding to creating or improving industrial processes, developing new products and services, and producing new energy. Bioeconomy aims to reduce our dependence on fossil natural resources, to prevent biodiversity loss and to create new economic growth and jobs that are in line with the principles of sustainable development.

Earlier definitions

The term 'biotechonomy' was used by Juan Enríquez and Rodrigo Martinez at the Genomics Seminar in the 1997 AAAS meeting. An excerpt of this paper was published in Science."

In 2010 it was defined in the report "The Knowledge Based Bio-Economy (KBBE) in Europe: Achievements and Challenges" by Albrecht & al. as follows: The bio-economy is the sustainable production and conversion of biomass, for a range of food, health, fibre and industrial products and energy, where renewable biomass encompasses any biological material to be used as raw material.”

According to a 2013 study, "the bioeconomy can be defined as an economy where the basic building blocks for materials, chemicals and energy are derived from renewable biological resources".

The First Global Bioeconomy Summit in Berlin in November 2015 defines bioeconomy as "knowledge-based production and utilization of biological resources, biological processes and principles to sustainably provide goods and services across all economic sectors". According to the summit, bioeconomy involves three elements: renewable biomass, enabling and converging technologies, and integration across applications concerning primary production (i.e. all living natural resources), health (i.e. pharmaceuticals and medical devices), and industry (i.e. chemicals, plastics, enzymes, pulp and paper, bioenergy).

History

Enríquez and Martinez' 2002 Harvard Business School working paper, "Biotechonomy 1.0: A Rough Map of Biodata Flow", showed the global flow of genetic material into and out of the three largest public genetic databases: GenBank, EMBL and DDBJ. The authors then hypothesized about the economic impact that such data flows might have on patent creation, evolution of biotech startups and licensing fees. An adaptation of this paper was published in Wired magazine in 2003.

The term 'bioeconomy' became popular from the mid-2000s with its adoption by the European Union and Organisation for Economic Co-operation and Development as a policy agenda and framework to promote the use of biotechnology to develop new products, markets, and uses of biomass. Since then, both the EU (2012) and OECD (2006) have created dedicated bioeconomy strategies, as have an increasing number of countries around the world. Often these strategies conflate the bioeconomy with the term 'bio-based economy'. For example, since 2005 the Netherlands has sought to promote the creation of a biobased economy. Pilot plants have been started i.e. in Lelystad (Zeafuels), and a centralised organisation exists (Interdepartementaal programma biobased economy), with supporting research (Food & Biobased Research) being conducted. Other European countries have also developed and implemented bioeconomy or bio-based economy policy strategies and frameworks.

In 2012 president Barack Obama of the USA announced intentions to encourage biological manufacturing methods, with a National Bioeconomy Blueprint.

Aims

Global population growth and over consumption of many resources are causing increasing environmental pressure and climate change. Bioeconomy tackles with these challenges. It aims to ensure food security and to promote more sustainable natural resource use as well as to reduce the dependence on non-renewable resources, e.g. fossil natural resources and minerals. In some extent bioeconomy also helps economy to reduces greenhouse gas emissions and assists in mitigating and adapting to climate change.

Genetic modification

Organisms, ranging from bacteria over yeasts up to plants are used for production of enzymatic catalysis. Genetically modified bacteria have been used to produce insulin, artemisinic acid was made in engineered yeast. Some bioplastics (based on polyhydroxylbutyrate or polyhydroxylalkanoates are produced from sugar using genetically modified microbes.

Genetically modified organisms are also used for the production of biofuels. Biofuels are a type of carbon-neutral fuel.

Research is also being done towards CO2 fixation using a synthetic metabolic pathway. By genetically modifying E. coli bacteria so as to allow them to consume CO2, the bacterium may provide the infrastructure for the future renewable production of food and green fuels.

One of the organisms (Ideonella sakaiensis) that is able to break down PET (a plastic) into other substances has been genetically modified to break down PET even faster and also break down PEF. Once plastics (which are normally non-biodegradable) are broken down and recycled into other substances (i.e. biomatter in the case of Tenebrio molitor larvae) it can be used as an input for other animals.

Genetically modified crops are also used. Genetically modified energy crops for instance may provide some additional advantages such as reduced associated costs (i.e. costs during the manufacturing process) and less water use. One example are trees have been genetically modified to either have less lignin, or to express lignin with chemically labile bonds.

With genetically modified crops however, there are still some challenges involved (hurdles to regulatory approvals, market adoption and public acceptance).

Fields

According to European Union Bioeconomy Strategy updated in 2018 the bioeconomy covers all sectors and systems that rely on biological resources (animals, plants, micro-organisms and derived biomass, including organic waste), their functions and principles. It covers all primary production and economic and industrial sectors that base on use, production or processing biological resources from agriculture, forestry, fisheries and aquaculture. The product of bioeconomy are typically food, feed and other biobased products, bioenergy and services based on biological resources. The bioeconomy aims to drive towards sustainability, circularity as well as the protection of the environment and will enhance biodiversity.

In some definitions, bioeconomy comprises also ecosystem services that are services offered by the environment, including binding carbon dioxide and opportunities for recreation. Another key aspect of the bioeconomy is not wasting natural resources but using and recycling them efficiently.

According to EU Bioeconomy Report 2016, the bioeconomy brings together various sectors of the economy that produce, process and reuse renewable biological resources (agriculture, forestry, fisheries, food, bio-based chemicals and materials and bioenergy).

Agriculture

Presentation of the world's first cultured meat hamburger
 

Cellular agriculture focuses on the production of agricultural products from cell cultures using a combination of biotechnology, tissue engineering, molecular biology, and synthetic biology to create and design new methods of producing proteins, fats, and tissues that would otherwise come from traditional agriculture. Most of the industry is focused on animal products such as meat, milk, and eggs, produced in cell culture rather than raising and slaughtering farmed livestock which is associated with substantial global problems of detrimental environmental impacts (e.g. of meat production), animal welfare, food security and human health. Cellular agriculture is field of the biobased economy. The most well known cellular agriculture concept is cultured meat.

However, not all synthetic nutrition products are animal food products such as meat and dairy – for instance, as of 2021 there are also products of synthetic coffee that are reported to be close to commercialization. Similar fields of research and production based on bioeconomy agriculture are:

Many of the foods produced with tools and methods of the bioeconomy may not be intended for human consumption but for non-human animals such as for livestock feed, insect-based pet food or sustainable aquacultural feed. There are various startups and research teams around the world who use synthetic biology to create animal feed.

Moreover, crops could be genetically engineered in ways that e.g. safely increase yields, reduce the need for pesticides or ease indoor production.

One example of a product highly specific to the bioeconomy that is widely available is algae oil which is a dietary supplement that could substitute possibly less sustainable, larger-market-share fish oil supplements.

Vertical farming

Vertical farming in Singapore

Vertical farming is the practice of growing crops in vertically stacked layers. It often incorporates controlled-environment agriculture, which aims to optimize plant growth, and soilless farming techniques such as hydroponics, aquaponics, and aeroponics. Some common choices of structures to house vertical farming systems include buildings, shipping containers, tunnels, and abandoned mine shafts. As of 2020, there is the equivalent of about 30 ha (74 acres) of operational vertical farmland in the world.

The modern concept of vertical farming was proposed in 1999 by Dickson Despommier, professor of Public and Environmental Health at Columbia University. Despommier and his students came up with a design of a skyscraper farm that could feed 50,000 people. Although the design has not yet been built, it successfully popularized the idea of vertical farming.

The main advantage of utilizing vertical farming technologies is the increased crop yield that comes with a smaller unit area of land requirement. Another sought-after advantage is the increased ability to cultivate a larger variety of crops at once because crops do not share the same plots of land while growing. Additionally, crops are resistant to weather disruptions because of their placement indoors, meaning fewer crops are lost to extreme or unexpected weather occurrences. Because of its limited land usage, vertical farming is less disruptive to the native plants and animals, leading to further conservation of the local flora and fauna.

These advances have led vertical farming companies to raise unprecedented amounts of funding in North America as well as in other parts of the world such as the Middle East. Today, venture capitalists, governments, financial institutions, and private investors  are among the principal investors in the sector.

Vertical farming technologies face economic challenges with large start-up costs compared to traditional farms. In Victoria, Australia, a "hypothetical 10 level vertical farm" would cost over 850 times more per square meter of arable land than a traditional farm in rural Victoria. Vertical farms also face large energy demands due to the use of supplementary light like LEDs. Moreover, if non-renewable energy is used to meet these energy demands, vertical farms could produce more pollution than traditional farms or greenhouses.

Fungiculture

Microscopic view of five spherical structures; one of the spheres is considerably smaller than the rest and attached to one of the larger spheres
The human use of fungi for food preparation or preservation and other purposes is extensive and has a long history. Mushroom farming and mushroom gathering are large industries in many countries. The study of the historical uses and sociological impact of fungi is known as ethnomycology. Because of the capacity of this group to produce an enormous range of natural products with antimicrobial or other biological activities, many species have long been used or are being developed for industrial production of antibiotics, vitamins, and anti-cancer and cholesterol-lowering drugs. Methods have been developed for genetic engineering of fungi, enabling metabolic engineering of fungal species. For example, genetic modification of yeast species—which are easy to grow at fast rates in large fermentation vessels—has opened up ways of pharmaceutical production that are potentially more efficient than production by the original source organisms. Fungi-based industries are sometimes considered to be a major part of a growing bioeconomy, with applications under research and development including use for textiles, meat substitution and general fungal biotechnology.

For example, there is ongoing research and development for indoor high-yield mechanisms.

Baker's yeast or Saccharomyces cerevisiae, a unicellular fungus, is used to make bread and other wheat-based products, such as pizza dough and dumplings. Yeast species of the genus Saccharomyces are also used to produce alcoholic beverages through fermentation. Shoyu koji mold (Aspergillus oryzae) is an essential ingredient in brewing Shoyu (soy sauce) and sake, and the preparation of miso, while Rhizopus species are used for making tempeh. Several of these fungi are domesticated species that were bred or selected according to their capacity to ferment food without producing harmful mycotoxins (see below), which are produced by very closely related Aspergilli. Quorn, a meat substitute, is made from Fusarium venenatum.
Mycoprotein
Mycoprotein prepared and served as a meat analogue
 
Mycoprotein (lit. "fungus protein") is a form of single-cell protein, also known as fungal protein, derived from fungi for human consumption. The only commercial mycoprotein is marketed under the brand name Quorn, currently sold in 17 countries. It is a fermented product with a doughy consistency and slight mushroom flavor.

Algaculture

A microalgae cultivation facility

Algaculture is a form of aquaculture involving the farming of species of algae.

The majority of algae that are intentionally cultivated fall into the category of microalgae (also referred to as phytoplankton, microphytes, or planktonic algae). Macroalgae, commonly known as seaweed, also have many commercial and industrial uses, but due to their size and the specific requirements of the environment in which they need to grow, they do not lend themselves as readily to cultivation (this may change, however, with the advent of newer seaweed cultivators, which are basically algae scrubbers using upflowing air bubbles in small containers).

Commercial and industrial algae cultivation has numerous uses, including production of nutraceuticals such as omega-3 fatty acids (as algal oil) or natural food colorants and dyes, food, fertilizers, bioplastics, chemical feedstock (raw material), protein-rich animal/aquaculture feed, pharmaceuticals, and algal fuel, and can also be used as a means of pollution control and natural carbon sequestration.

Global production of farmed aquatic plants, overwhelmingly dominated by seaweeds, grew in output volume from 13.5 million tonnes in 1995 to just over 30 million tonnes in 2016. Cultured microalgae already contribute to a wide range of sectors in the emerging bioeconomy. Research suggests there are large potentials and benefits of algaculture for the development of a future healthy and sustainable food system.

Waste management, recycling and biomining

Biobased applications, research and development of waste management may form a part of the bioeconomy. Bio-based recycling (e-waste, plastics recycling, etc.) is linked to waste management and relevant standards and requirements of production and products. Some of the recycling of waste may be biomining and some biomining could be applied beyond recycling.

For example, in 2020, biotechnologists reported the genetically engineered refinement and mechanical description of synergistic enzymes – PETase, first discovered in 2016, and MHETase of Ideonella sakaiensis – for faster depolymerization of PET and also of PEF, which may be useful for depollution, recycling and upcycling of mixed plastics along with other approaches. Such approaches may be more environmentally-friendly as well as cost-effective than mechanical and chemical PET-recycling, enabling circular plastic bio-economy solutions via systems based on engineered strains. Moreover, microorganisms could be employed to mine useful elements from basalt rocks via bioleaching.

Medicine, nutritional science and the health economy

In 2020, the global industry for dietary supplements was valued at $140.3 billion by a "Grand View Research" analysis. Certain parts of the health economy may overlap with the bioeconomy, including anti-aging- and life extension-related products and activities, hygiene/beauty products, functional food, sports performance related products and bio-based tests (such as of one's microbiota) and banks (such as stool banks including oral "super stool" capsules) and databases (mainly DNA databases), all of which can in turn be used for individualized interventions, monitoring as well as for the development of new products. The pharmaceutical sector, including the research and development of new antibiotics, can also be considered to be a bioeconomy sector.

Forest bioeconomy

The forest bioeconomy is based on forests and their natural resources, and covers a variety of different industry and production processes. Forest bioeconomy includes, for example, the processing of forest biomass to provide products relating to, energy, chemistry, or the food industry. Thus, forest bioeconomy covers a variety of different manufacturing processes that are based on wood material and the range of end products is wide.

Besides different wood-based products, recreation, nature tourism and game are a crucial part of forest bioeconomy. Carbon sequestration and ecosystem services are also included in the concept of forest bioeconomy.

Pulp, paper, packaging materials and sawn timber are the traditional products of the forest industry. Wood is also traditionally used in furniture and construction industries. But in addition to these, as a renewable natural resource, ingredients from wood can be valorised into innovative bioproducts alongside a range of conventional forest industry products. Thus, traditional mill sites of large forest industry companies, for example in Finland, are in the process of becoming biorefineries. In different processes, forest biomass is used to produce textiles, chemicals, cosmetics, fuels, medicine, intelligent packaging, coatings, glues, plastics, food and feed.

Blue bioeconomy

The blue bioeconomy covers businesses that are based on the sustainable use of renewable aquatic resources as well water related expertise areas. It covers the development and marketing of blue bioeconomy products and services. In that respect, the key sectors include business activities based on water expertise and technology, water-based tourism, making use of aquatic biomass, and the value chain of fisheries. Furthermore, the immaterial value of aquatic natural resources is also very high. Water areas have also other values beyond being platforms of economic activities. It provides human well-being, recreation and health.

According to the European Union the blue bioeconomy has the focus on aquatic or marine environments, especially, on novel aquaculture applications, including non-food, food and feed.

In the European Report on the Blue Growth Strategy - Towards more sustainable growth and jobs in the blue economy (2017) the blue bioeconomy is defined differently to the blue economy. The blue economy means the industries that are related to marine environment activities, e.g. shipbuilding, transport, coastal tourism, renewable energies (such as off-shore windmills), living and non-living resources.

Energy

The bioeconomy also includes bioenergy, biohydrogen, biofuel and algae fuel.

According to World Bioenergy Association 17.8 % out of gross final energy consumption was covered with renewable energy. Among renewable energy sources, bioenergy (energy from bio-based sources) is the largest renewable energy source. In 2017, bioenergy accounted for 70% of renewable energy consumption.

The role of bioenergy varies in different countries and continents. In Africa it is the most important energy sources with the share of 96%. Bioenergy has significant shares in energy production in the Americas (59%), Asia (65%) and Europe (59%). The bioenergy is produced out of a large variety of biomass from forestry, agriculture and waste and side streams of industries to produce useful end products (pellets, wood chips, bioethanol, biogas and biodiesel) for electricity, heat and transportation fuel around the world.

Biomass is a renewable natural resource but it is still a limited resource. Globally there are huge resources, but environmental, social and economic aspects limit their use. Biomass can play an important role for low-carbon solutions in the fields of customer supplies, energy, food and feed. In practice, there are many competing uses.

The biobased economy uses first-generation biomass (crops), second-generation biomass (crop refuge), and third-generation biomass (seaweed, algae). Several methods of processing are then used (in biorefineries) to gather the most out of the biomass. This includes techniques such as

Anaerobic digestion is generally used to produce biogas, fermentation of sugars produces ethanol, pyrolysis is used to produce pyrolysis-oil (which is solidified biogas), and torrefaction is used to create biomass-coal. Biomass-coal and biogas is then burnt for energy production, ethanol can be used as a (vehicle)-fuel, as well as for other purposes, such as skincare products.

Biobased energy can be used to manage intermittency of variable renewable energy like solar and wind.

Woodchips and pellets

Woody chips left for drying before transport to industrial off-takers in Namibia

Woodchips have been traditionally used as solid fuel for space heating or in energy plants to generate electric power from renewable energy. The main source of forest chips in Europe and in most of the countries have been logging residues. It is expected that the shares of stumps and roundwood will increase in the future. As of 2013 in the EU, the estimates for biomass potential for energy, available under current 2018 conditions including sustainable use of the forest as well as providing wood to the traditional forest sectors, are: 277 million m3, for above ground biomass and 585 million m3 for total biomass.

The newer fuel systems for heating use either woodchips or wood pellets. The advantage of woodchips is cost, the advantage of wood pellets is the controlled fuel value. The use of woodchips in automated heating systems, is based on a robust technology.

The size of the woodchips, moisture content, and the raw material from which the chips are made are particularly important when burning wood chips in small plants. Unfortunately, there are not many standards to decide the fractions of woodchip. However, as of March 2018, The American National Standards Institute approved AD17225-4 Wood Chip Heating Fuel Quality Standard. The full title of the standard is: ANSI/ASABE AD17225-4:2014 FEB2018 Solid Biofuels—Fuel Specifications and classes—Part 4: Graded wood chips. One common chip category is the GF60 which is commonly used in smaller plants, including small industries, villas, and apartment buildings. "GF60" is known as "Fine, dry, small chips". The requirements for GF60 are that the moisture is between 10 and 30% and the fractions of the woodchips are distributed as follows: 0–3.5mm: <8%, 3.5–30mm: <7%, 30–60 mm: 80–100%, 60–100 mm: <3%, 100–120 mm: <2%.

The energy content in one cubic metre is normally higher than in one cubic metre wood logs, but can vary greatly depending on moisture. The moisture is decided by the handling of the raw material. If the trees are taken down in the winter and left to dry for the summer (with teas in the bark and covered so rain can't reach to them), and is then chipped in the fall, the woodchips' moisture content will be approximately 20–25%. The energy content, then, is approximately 3.5–4.5kWh/kg (~150–250 kg/cubic metre).

Coal power plants have been converted to run on woodchips, which is fairly straightforward to do, since they both use an identical steam turbine heat engine, and the cost of woodchip fuel is comparable to coal.

Solid biomass is an attractive fuel for addressing the concerns of the energy crisis and climate change, since the fuel is affordable, widely available, close to carbon neutral and thus climate-neutral in terms of carbon dioxide (CO2), since in the ideal case only the carbon dioxide which was drawn in during the tree's growth and stored in the wood is released into the atmosphere again.

Woodchips are similar to wood pellets, in that the movement and handling is more amenable to automation than cord wood, particularly for smaller systems. Woodchips are less expensive to produce than wood pellets, which must be processed in specialized facilities. While avoiding the costs associated with refinement, the lower density and higher moisture content of woodchips reduces their calorific value, substantially increasing the feedstock needed to generate an equivalent amount of heat. Greater physical volume requirements also increase the expense and emissions impact of trucking, storing and/or shipping the wood.

Woodchips are less expensive than cord wood, because the harvesting is faster and more highly automated. Woodchips are of greater supply, partly because all parts of a tree can be chipped, whereas small limbs and branches can require substantial labor to convert to cord wood. Cord wood generally needs to be "seasoned" or "dry" before it can be burned cleanly and efficiently. On the other hand, woodchip systems are typically designed to cleanly and efficiently burn "green chips" with very high moisture content of 43–47% (wet basis). (see gasification and woodgas)

Getting the most out of the biomass

For economic reasons, the processing of the biomass is done according to a specific pattern (a process called cascading). This pattern depends on the types of biomass used. The whole of finding the most suitable pattern is known as biorefining. A general list shows the products with high added value and lowest volume of biomass to the products with the lowest added value and highest volume of biomass:

  • fine chemicals/medicines
  • food
  • chemicals/bioplastics
  • transport fuels
  • electricity and heat

Other fields and applications

Bioproducts or bio-based products are products that are made from biomass. The term “bioproduct” refers to a wide array of industrial and commercial products that are characterized by a variety of properties, compositions and processes, as well as different benefits and risks.

Bio-based products are developed in order to reduce dependency on fossil fuels and non-renewable resources. To achieve this, the key is to develop new bio-refining technologies to sustainably transform renewable natural resources into bio-based products, materials and fuels, e.g.

Transplantable organs and induced regeneration

Microtechnology (medicine and energy)

Synthetic biology can be used for creating nanoparticles which can be used for drug-delivery as well as for other purposes. Complementing research and development seeks to and has created synthetic cells that mimics functions of biological cells. Applications include medicine such as designer-nanoparticles that make blood cells eat away – from the inside out – portions of atherosclerotic plaque that cause heart attacks. Synthetic micro-droplets for algal cells or synergistic algal-bacterial multicellular spheroid microbial reactors, for example, could be used to produce hydrogen as hydrogen economy biotechnology.

Climate change adaptation and mitigation

Activities and technologies for bio-based climate change adaptation could be considered as part of the bioeconomy. Examples may include:

Materials

There is a potential for biobased-production of building materials (insulation, surface materials, etc.) as well as new materials in general (polymers, plastics, composites, etc.). Photosynthetic microbial cells have been used as a step to synthetic production of spider silk.

Bioplastics

Bioplastics are not just one single material. They comprise a whole family of materials with different properties and applications. According to European Bioplastics, a plastic material is defined as a bioplastic if it is either bio-based plastic, biodegradable plastic, or is a material with both properties. Bioplastics have the same properties as conventional plastics and offer additional advantages, such as a reduced carbon footprint or additional waste management options, such as composting.

Bioplastics are divided into three main groups:

  • Bio-based or partially bio-based non-biodegradable plastics such as bio-based PE, PP, or PET (so-called drop-ins) and bio-based technical performance polymers such as PTT or TPC-ET
  • Plastics that are both bio-based and biodegradable, such as PLA and PHA or PBS
  • Plastics that are based on fossil resources and are biodegradable, such as PBAT

Additionally, new materials such as PLA, PHA, cellulose or starch-based materials offer solutions with completely new functionalities such as biodegradability and compostability, and in some cases optimized barrier properties. Along with the growth in variety of bioplastic materials, properties such as flexibility, durability, printability, transparency, barrier, heat resistance, gloss and many more have been significantly enhanced.

Bioplastics have been made from sugarbeet, by bacteria.

Examples of bioplastics
  • Paptic: There are packaging materials which combine the qualities of paper and plastic. For example, Paptic is produced from wood-based fibre that contains more than 70% wood. The material is formed with foam-forming technology that saves raw material and improves the qualities of the material. The material can be produced as reels, which enables it to be delivered with existing mills. The material is spatter-proof but is decomposed when put under water. It is more durable than paper and maintains its shape better than plastic. The material is recycled with cardboards.
Examples of bio-composites
  • Sulapac tins are made from wood chips and biodegradable natural binder and they have features similar to plastic. These packaging products tolerate water and fats, and they do not allow oxygen to pass. Sulapac products combine ecology, luxury and are not subject to design limitations. Sulapac can compete with traditional plastic tins by cost and is suitable for the same packing devices.
  • Woodio produces wood composite sinks and other bathroom furniture. The composite is produced by moulding a mixture of wood chips and crystal clear binder. Woodio has developed a solid wood composite that is entirely waterproof. The material has similar features to ceramic, but can be used for producing energy at the end of its lifespan, unlike ceramic waste. Solid wood composite is hard and can be moulded with wooden tools.
  • Woodcast is a renewable and biodegradable casting material. It is produced from woodchips and biodegradable plastic. It is hard and durable in room temperature but when heated is flexible and self-sticky. Woodcast can be applied to all plastering and supporting elements. The material is breathable and X-ray transparent. It is used in plastering and in occupational therapy and can be moulded to any anatomical shape. Excess pieces can be reused: used casts can be disposed of either as energy or biowaste. The composite differs from traditional lime cast in that it doesn’t need water and it is non-toxic. Therefore gas-masks, gauntlets or suction fans are not required when handling the cast.
For sustainable packaging

Plastic packages or plastic components are sometimes part of a valid environmental solution. Other times, alternatives to petroleum and natural gas based plastic are desirable.

Materials have been developed or used for packaging without plastics, especially for use-cases in which packaging can't be phased-out – such as with policies for national grocery store requirements – for being needed for preserving food products or other purposes.

Optical appearance of self-assembled films of sustainable packaging alternative to plastic.webp

A plant proteins-based biodegradable packaging alternative to plastic was developed based on research about spider silk which is known for its high strength and similar on the molecular level.

Researchers at the Agricultural Research Service are looking into using dairy-based films as an alternative to petroleum-based packaging. Instead of being made of synthetic polymers, these dairy-based films would be composed of proteins such as casein and whey, which are found in milk. The films would be biodegradable and offer better oxygen barriers than synthetic, chemical-based films. More research must be done to improve the water barrier quality of the dairy-based film, but advances in sustainable packaging are actively being pursued.

Sustainable packaging policy cannot be individualized by a specific product. Effective legislation would need to include alternatives to many products, not just a select few; otherwise, the positive impacts of sustainable packing will not be as effective as they need in order to propel a significant reduction of plastic packaging. Finding alternatives can reduce greenhouse gas emissions from unsustainable packaging production and reduce dangerous chemical by-products of unsustainable packaging practices.

Another alternative to commonly used petroleum plastics are bio-based plastics. Examples of bio-based plastics include natural biopolymers and polymers synthesized from natural feedstock monomers, which can be extracted from plants, animals, or microorganisms. A polymer that is bio-based and used to make plastic materials is not necessarily compostable or bio-degradable. Natural biopolymers can be often biodegraded in the natural environment while only a few bio-based monomer bio-based plastics can be. Bio-based plastics are a more sustainable option in comparison to their petroleum based counterparts, yet they only account for 1% of plastics produced annually as of 2020.

Textiles

The textile industry, or certain activities and elements of it, could be considered to be a strong global bioeconomy sector. Textiles are produced from natural fibres, regenerated fibres and synthetic fibres (Sinclair 2014). The natural fibre textile industry is based on cotton, linen, bamboo, hemp, wool, silk, angora, mohair and cashmere.

Activities related to textile production and processing that more clearly fall under the domain of the bioeconomy are developments such as the biofabrication of leather-like material using fungi, fungal cotton substitutes, and renewable fibers from fungal cell walls.

Textile fibres can be formed in chemical processes from bio-based materials. These fibres are called bio-based regenerated fibres. The oldest regenerated fibres are viscose and rayon, produced in the 19th century. The first industrial processes used a large amount of wood as raw material, as well as harmful chemicals and water. Later the process of regenerating fibres developed to reduce the use of raw materials, chemicals, water and energy.

In the 1990s the first more sustainable regenerated fibres, e.g. Lyocell, entered the market with the commercial name of Tencel. The production process uses wood cellulose and it processes the fibre without harmful chemicals.

The next generation of regenerated fibres are under development. The production processes use less or no chemicals, and the water consumption is also diminished.

Issues

Degrowth, green growth and circular economy

The bioeconomy has largely been associated with visions of "green growth". A study found that a "circular bioeconomy" may be "necessary to build a carbon neutral future in line with the climate objectives of the Paris Agreement". However, some are concerned that with a focus or reliance on technological progress a fundamentally unsustainable socioeconomic model might be maintained rather than be changed. Some are concerned it that may not lead to a ecologization of the economy but to an economization of the biological, "the living" and caution that potentials of non-bio-based techniques to achieve greater sustainability need to be considered. A study found that the, as of 2019, current EU interpretation of the bioeconomy is "diametrically opposite to the original narrative of Baranoff and Georgescu-Roegen that told us that expanding the share of activities based on renewable resources in the economy would slow down economic growth and set strict limits on the overall expansion of the economy". Furthermore, some caution that "Silicon Valley and food corporations" could use bioeconomy technologies for greenwashing and monopoly-concentrations. The bioeconomy, its potentials, disruptive new modes of production and innovations may distract from the need for systemic structural socioeconomic changes and provide a false illusion of technocapitalist utopianism/optimism that suggests technological fixes may make it possible to sustain contemporary patterns and structures, pre-empting structural changes.

Unemployment and work reallocation

Many farmers depend on conventional methods of producing crops and many of them live in developing economies. Cellular agriculture for products such as synthetic coffee could, if the contemporary socioeconomic context (the socioeconomic system's mechanisms such as incentives and resource distribution mechanisms like markets) remains unaltered (e.g. in nature, purposes, scopes, limits and degrees), threaten their employment and livelihoods as well as the respective nation's economy and social stability. A study concluded that "given the expertise required and the high investment costs of the innovation, it seems unlikely that cultured meat immediately benefits the poor in developing countries" and emphasized that animal agriculture is often essential for the subsistence for farmers in poor countries. However, not only developing countries may be affected.

Patents, intellectual property and monopolies

Observers worry that the bioeconomy will become as opaque and free of accountability as the industry it attempts to replace, that is the current food system. The fear is that its core products will be mass-produced, nutritionally dubious meat sold at the homogeneous fast-food joints of the future.

The medical community has warned that gene patents can inhibit the practice of medicine and progress of science. This can also apply to other areas where patents and private intellectual property licenses are being used, often entirely preventing the use and continued development of knowledge and techniques for many years or decades. On the other hand, some worry that without intellectual property protection as the type of R&D-incentive, particularly to current degrees and extents, companies would no longer have the resources or motives/incentives to perform competitive, viable biotech research – as otherwise they may not be able to generate sufficient returns from initial R&D investment or less returns than from other expenditures that are possible. "Biopiracy" refers to "the use of intellectual property systems to legitimize the exclusive ownership and control over biological resources and biological products that have been used over centuries in non-industrialized cultures".

Rather than leading to sustainable, healthy, inexpensive, safe, accessible food being produced with little labor locally – after knowledge- and technology transfer and timely, efficient innovation – the bioeconomy may lead to aggressive monopoly-formation and exacerbated inequality. For instance, while production costs may be minimal, costs – including of medicine – may be high.

Innovation management, public spending and governance

It has been argued that public investment would be a tool governments should use to regulate and license cellular agriculture. Private firms and venture capital would likely seek to maximise investor value rather than social welfare. Moreover, radical innovation is considered to be more risky, "and likely involves more information asymmetry, so that private financial markets may imperfectly manage these frictions". Governments may also help to coordinate "since several innovators may be needed to push the knowledge frontier and make the market profitable, but no single company wants to make the early necessary investments". And investments in the relevant sectors seem to be an bottleneck hindering the transition toward a bioeconomy. Governments could also help innovators that lack the network "to naturally obtain the visibility and political influence necessary to obtain public funds" and could help determine relevant laws. By establishing supporting infrastructure for entrepreneurial ecosystems they can help creating a beneficial environment for innovative bioeconomy startups. Enabling such bioeconomy startups to act on the opportunities provided through the bioeconomy transformation further contributes to its success.

In popular media

Biopunk – so called due to similarity with cyberpunk – is a genre of science fiction that often thematizes the bioeconomy as well as its potential issues and technologies. The novel The Windup Girl portrays a society driven by a ruthless bioeconomy and ailing under climate change. In the more recent novel Change Agent prevalent black market clinics offer wealthy people unauthorized human genetic enhancement services and e.g. custom narcotics are 3D-printed locally or smuggled with soft robots. Solarpunk is another emerging genre that focuses on the relationship between human societies and the environment and also addresses many of the bioeconomy's issues and technologies such as genetic engineering, synthetic meat and commodification.

Georgism

From Wikipedia, the free encyclopedia ...