Search This Blog

Monday, February 17, 2020

Gliese 581g

From Wikipedia, the free encyclopedia
 
Gliese 581g
Exoplanet Comparison Gliese 581 g.png
Size comparison of Gliese 581g with Earth and Neptune.
(Based on selected hypothetical modeled compositions)
Discovery
Discovered bySteven S. Vogt et al.
Discovery siteKeck Observatory, Hawaii
Discovery dateSeptember 29, 2010
Radial velocity
Orbital characteristics
Epoch JD 2451409.762
0.13 AU (19,000,000 km)
Eccentricity0
32 d
271 ± 48
Semi-amplitude1.29 ± 0.19
StarGliese 581
Physical characteristics
Temperature242 K (−31 °C; −24 °F) to 261 K (−12 °C; 10 °F)

Gliese 581g /ˈɡlzə/, unofficially known as Zarmina (or Zarmina's World), is an unconfirmed (and frequently disputed) exoplanet claimed to orbit within the Gliese 581 system, twenty light-years from Earth. It was discovered by the Lick–Carnegie Exoplanet Survey, and is the sixth planet orbiting the star;[10] however, its existence could not be confirmed by the European Southern Observatory (ESO) / High Accuracy Radial Velocity Planet Searcher (HARPS) survey team, and its existence remains controversial. It is thought to be near the middle of the habitable zone of its star. That means it could sustain liquid water—a necessity for all known life—on its surface, if there are favorable atmospheric conditions on the planet.

Gliese 581g was claimed to be detected by astronomers of the Lick–Carnegie Exoplanet Survey. The authors stated that data sets from both the High Resolution Echelle Spectrometer (HIRES) and HARPS were needed to sense the planet; however, the ESO/HARPS survey team could not confirm its existence. The planet remained unconfirmed as consensus for its existence could not be reached. Additional reanalysis only found evidence for four planets, but the discoverer, Steven S. Vogt, did not agree with those conclusions; another study by Guillem Anglada-Escudé later supported the planet's existence. In 2012, a reanalysis by Vogt supported its existence. A new study in 2014 concluded that it was a false positive; however, in 2015, a reanalysis of the data suggested that it could still exist. The planet is thought to be tidally locked to its star. If the planet has a dense atmosphere, it may be able to circulate heat. The actual habitability of the planet depends on the composition of its surface and the atmosphere. It is thought to have temperatures around −37 to −11 °C (−35 to 10 °F). By comparison, Earth has an average surface temperature of 15 °C (59 °F)—while Mars has an average surface temperature of about −63 °C (−81 °F). The planet has, according to Vogt, a "100%" chance of supporting life, but this is disputed. The supposed detection of Gliese 581g foreshadows what Vogt calls "a second Age of Discovery".

History


Discovery

The W. M. Keck Observatory at twilight, where Gliese 581g was discovered
 
The six-planet model of the Gliese 581 system with circular orbits.

The planet was claimed, in September 2010, to have been detected by astronomers in the Lick–Carnegie Exoplanet Survey, led by principal investigator Steven Vogt, professor of astronomy and astrophysics at the University of California, Santa Cruz, and co-investigator R. Paul Butler of the Carnegie Institution of Washington. The discovery was made using radial velocity measurements, combining 122 observations obtained over 11 years from the HIRES instrument of the W. M. Keck Observatory with 119 measurements obtained over 4.3 years from the HARPS instrument of the ESO 3.6 m Telescope at La Silla Observatory. In addition, brightness measurements of the star were confirmed with a robotic telescope from Tennessee State University.

After subtracting the signals of the previously known Gliese 581 planets, b, c, d and e, the signals of two additional planets were apparent: a 445-day signal from a newly recognized outermost planet designated f, and the 37-day signal from Gliese 581g. The probability that the detection of the latter was spurious was estimated at only 2.7 in a million. The authors stated that while the 37-day signal is "clearly visible in the HIRES data set alone", "the HARPS data set alone is not able to reliably sense this planet" and concluded, "It is really necessary to combine both data sets to sense all these planets reliably". The Lick–Carnegie team explained the results of their research in a paper published in the Astrophysical Journal, which were also made available in preprint version on arXiv. Although not sanctioned by the IAU's naming conventions, Vogt's team informally refers to the planet as "Zarmina's World" after his wife, and in some cases simply as Zarmina. 

During a press release announcing the discovery, Vogt et al. acknowledged that the "Gliese 581 system has a somewhat checkered history of habitable planet claims," as two previously discovered planets in the same system, Gliese 581c and d, were also regarded as potentially habitable, but later evaluated as being outside the conservatively defined habitable zone.

Nondetection in new HARPS data analysis

Two weeks after the announcement of the discovery of Gliese 581g, another team—led by Michael Mayor of the Geneva Observatory—reported that in a new analysis of 179 measurements taken by the HARPS spectrograph over 6.5 years, neither planet g nor planet f was detectable. An astronomer who works on HARPS data at the Geneva Observatory, Francesco Pepe, said in an email for an Astrobiology Magazine article republished on Space.com, "The reason for that is that, despite the extreme accuracy of the instrument and the many data points, the signal amplitude of this potential fifth planet is very low and basically at the level of the measurement noise". The Geneva team had also published their paper on arXiv, but it appeared to not have been accepted for publication. 

Vogt responded to the latest concerns by saying, "I am not overly surprised by this as these are very weak signals, and adding 60 points onto 119 does not necessarily translate to big gains in sensitivity." More recently, Vogt added, "I feel confident that we have accurately and honestly reported our uncertainties and done a thorough and responsible job extracting what information this data set has to offer. I feel confident that anyone independently analyzing this data set will come to the same conclusions."

Differences in the two groups' results may involve the planetary orbital characteristics assumed in calculations. According to Massachusetts Institute of Technology astronomer Sara Seager, Vogt postulated the planets around Gliese 581 had perfectly circular orbits whereas the Swiss group thought the orbits were more eccentric. This difference in approach may be the reason for the disagreement, according to Alan Boss. Butler remarked that with additional observations, "I would expect that on the time scale of a year or two this should be settled." Other astronomers also supported a deliberate evaluation: Seager stated, "We will have consensus at some point; I don't think we need to vote right now." Ray Jayawardhana noted, "Given the extremely interesting implications of such a discovery, it's important to have independent confirmation." Gliese 581g is listed as "unconfirmed" in the Extrasolar Planets Encyclopaedia.

Further analyses of HIRES/HARPS data

In December 2010, a claimed methodological error was reported—by a group led by Rene Andrae of the Max Planck Institute for Astronomy—in the data analysis that led to the discovery of Gliese 581f and g.

In 2011, another reanalysis—performed by a group led by Philip Gregory of the University of British Columbia—found no clear evidence for a fifth planetary signal in the combined HIRES/HARPS data set. The claim was made that the HARPS data provided only some evidence for 5 planet signals, while incorporation of both data sets actually degraded the evidence for more than four planets (i.e., none for 581f or 581g). Mikko Tuomi of the University of Hertfordshire performed a Bayesian reanalysis of the HARPS and HIRES data with the result that they "do not imply the conclusion that there are two additional companions orbiting GJ 581".

"I have studied [the paper] in detail and do not agree with his conclusions," Steven Vogt said in reply, concerned that Gregory has considered the HIRES data as more uncertain. "The question of Gliese 581g's existence won't be settled definitively until researchers gather more high-precision radial velocity data", Vogt said. However Vogt expects further analysis to strengthen the case for the planet.

By performing a number of statistical tests, Guillem Anglada-Escudé of the Carnegie Institute of Washington concluded that the existence of Gl 581g was well supported by the available data, despite the presence of a statistical degeneracy that derives from an alias of the first eccentric harmonic of another planet in the system. In a forthcoming paper, Anglada-Escudé and Rebekah Dawson claimed that, "with the data we have, the most likely explanation is that this planet is still there."

2012 reanalysis of HARPS data

In July 2012, Vogt reanalyzed the 2011 data proposed by Forveille et al., noting that there were five objects (Gliese 581b, e, c, g, d, with no evidence for f). Planet g was orbiting around 0.13 AU with an orbital period of thirty-two days, placing it inside the habitable zone. Vogt concluded that the object had a minimum mass of 2.2 M and had a false positive probability of less than 4%. Vogt also said that they couldn't come to same conclusion as the Geneva team, without removing data points, "I don't know whether this omission was intentional or a mistake," he said, "I can only say that, if it was a mistake, they've been making that same mistake more than once now, not only in this paper, but in other papers as well." Vogt then said that the planet was there as long as all of the planets had circular orbits, and that the circular orbits work because “of dynamic stability, goodness-of-fit, and principle of parsimony (Occam's Razor)."

Further studies

A study in 2014—published in Science—led by postdoctoral researcher Paul Robertson concluded that Gliese 581d is "an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g." "They were very high value targets if they were real," Robertson said, "But unfortunately we found out that they weren't." It was pointed out—during a press release by Penn State University—that sunspots could sometimes masquerade as planetary signals. An additional study concluded that Gliese 581g's existence depends on Gliese 581d's eccentricity. The planet was later delisted from the Habitable Exoplanets Catalog, which is run by the University of Puerto Rico at Arecibo. Later, in October that year, Abel Mendez wrote—in a blog post characterizing "false starts" in exoplanet habitability—that the planet does not exist. 

In 2015, a team of researchers led by Guillem Anglada-Escudé of the University of London reanalyzed the data and suggested planet Gliese 581d really could exist, despite stellar variability, and that last year's claim of the existence of Gliese 581d and g was triggered by poor and inadequate analysis of the data, saying that the statistical method used by Robertson's team was "simply inadequate for identifying small planets like Gliese 581d", urging that the data be reanalyzed using a "more accurate model."

Physical characteristics

Tidal locking

Because of Gliese 581g's proximity to its parent star, it is predicted to be tidally locked to Gliese 581. Just as Earth's Moon always presents the same face to the Earth, the length of Gliese 581g's sidereal day would then precisely match the length of its year, meaning it would be permanently light on one half and permanently dark on the other half of its surface.

Atmosphere

Planetary orbits in the Gliese 581 system compared to those of the Solar System ("g" designates Gliese 581g)

An atmosphere that is dense will circulate heat, potentially allowing a wide area on the surface to be habitable. For example, Venus has a solar rotation rate approximately 117 times slower than Earth's, producing prolonged days and nights. Despite the uneven distribution of sunlight over time intervals shorter than several months, unilluminated areas of Venus are kept almost as hot as the day side by globally circulating winds. Simulations have shown that an atmosphere containing appropriate levels of CO2 and H2O need only be a tenth the pressure of Earth's atmosphere (100 mbar) to effectively distribute heat to the night side. Current technology cannot determine the atmospheric or surface composition of the planet due to the overpowering light of its parent star.

Whether or not a tidally locked planet with the orbital characteristics of Gliese 581g is actually habitable depends on the composition of the atmosphere and the nature of the planetary surface. A comprehensive modeling study including atmospheric dynamics, realistic radiative transfer and the physics of formation of sea ice (if the planet has an ocean) indicates that the planet can become as hot as Venus if it is dry and allows carbon dioxide to accumulate in its atmosphere. The same study identified two habitable states for a water-rich planet. If the planet has a very thin atmosphere, a thick ice crust forms over most of the surface, but the substellar point remains hot enough to yield a region of thin ice or even episodically open water. If the planet has an atmosphere with Earthlike pressures, containing approximately 20% (molar) carbon dioxide, then the greenhouse effect is sufficiently strong to maintain a pool of open water under the substellar point with temperatures comparable to the Earth's tropics. This state has been dubbed "Eyeball Earth" by the author. Modeling of the effect of tidal locking on Gliese 581g's possible atmosphere, using a general circulation model employing an atmosphere with Earthlike surface pressure but a highly idealized representation of radiative processes, indicates that for a solid-surface planet the locations of maximum warmth would be distributed in a sideways chevron-shaped pattern centered near the substellar point.

Climate

The habitable zone of Gliese 581 compared with the Solar System's habitable zone, showing Gliese 581g near the center
 
It is estimated that the average global equilibrium temperature (the temperature in the absence of atmospheric effects) of Gliese 581g would range from 209 to 228 K (−64 to −45 °C, or −84 to −49 °F) for Bond albedos (reflectivities) from 0.5 to 0.3 (with the latter being more characteristic of the inner Solar System). Adding an Earthlike greenhouse effect would yield an average surface temperature in the range of 236 to 261 K (−37 to −12 °C, or −35 to 10 °F). Gliese 581g would be in an orbit where a silicate weathering thermostat could operate, and this could lead to accumulation of sufficient carbon dioxide in the atmosphere to permit liquid water to exist at the surface, provided the planet's composition and tectonic behavior could support sustained outgassing.

Temperature
comparisons
Mercury Venus Earth Gliese 581g Mars
Global
equilibrium
temperature
431 K
158 °C
316 °F
307 K
34 °C
93 °F
255 K
−18 °C
−0.4 °F
209 K to 228 K
−64 °C to −45 °C
−83 °F to −49 °F
206 K
−67 °C
−88.6 °F
+ Venus'
GHG effect

737 K
464 °C
867 °F



+ Earth's
GHG effect


288 K
15 °C
59 °F
236 K to 261 K
−37 °C to −12 °C
−35 °F to 10 °F

+ Mars'
GHG effect




210 K
−63 °C
−81 °F
Tidally
locked
No Almost No Likely No
Global Bond albedo 0.142 0.9 0.29 0.5 to 0.3 0.25

By comparison, Earth's present global equilibrium temperature is 255 K (−18 °C), which is raised to 288 K (15 °C) by greenhouse effects. However, when life evolved early in Earth's history, the Sun's energy output is thought to have been only about 75% of its current value, which would have correspondingly lowered Earth's equilibrium temperature under the same albedo conditions. Yet Earth maintained equable temperatures in that era, perhaps with a more intense greenhouse effect, or a lower albedo, than at present. 

Current Martian surface temperatures vary from lows of about −87 °C (−125 °F) during polar winter to highs of up to −5 °C (23 °F) in summer. The wide range is due to the rarefied atmosphere, which cannot store much solar heat, and the low thermal inertia of the soil. Early in its history, a denser atmosphere may have permitted the formation of an ocean on Mars.

Habitability

The planet is thought to be located within the habitable zone of its parent star, a red dwarf, which is cooler than the Sun. That means planets need to orbit closer to the star than in the Solar System to maintain liquid water on their surface. While habitability is generally defined by the planets ability to support liquid water, there are many factors that can influence it. This includes the atmosphere of the planet and the variability of its parent star in terms of emitting energy.

In an interview with Lisa-Joy Zgorski of the National Science Foundation, Steven Vogt was asked what he thought about the chances of life existing on Gliese 581g. Vogt was optimistic: "I'm not a biologist, nor do I want to play one on TV. Personally, given the ubiquity and propensity of life to flourish wherever it can, I would say that... the chances of life on this planet are 100%. I have almost no doubt about it." In the same article Dr. Seager is quoted as saying "Everyone is so primed to say here's the next place we're going to find life, but this isn't a good planet for follow-up." According to Vogt, the long lifetime of red dwarfs improves the chances of life being present. "It's pretty hard to stop life once you give it the right conditions", he said. According to the Associated Press interview with Steven Vogt, "Life on other planets doesn't mean E.T. Even a simple single-cell bacteria or the equivalent of shower mold would shake perceptions about the uniqueness of life on Earth."

Implications

Scientists have monitored only a relatively small number of stars in the search for exoplanets. The discovery of a potentially habitable planet like Gliese 581g so early in the search might mean that habitable planets are more widely distributed than had been previously believed. According to Vogt, the discovery "implies an interesting lower limit on η as there are only ~116 known solar-type or later stars ... out to the 6.3 parsec distance of GJ 581". This finding foreshadows what Vogt calls a new, second Age of Discovery in exoplanetology:
Confirmation by other teams through additional high-precision RVs would be most welcome. But if GJ 581g is confirmed by further RV scrutiny, the mere fact that a habitable planet has been detected this soon, around such a nearby star, suggests that η could well be on the order of a few tens of percent, and thus that either we have just been incredibly lucky in this early detection, or we are truly on the threshold of a second Age of Discovery.
If the fraction of stars with potentially habitable planets (η, "eta-Earth") is on the order of a few tens of percent as Vogt proposes, and the Sun's stellar neighborhood is a typical sample of the galaxy, then the discovery of Gliese 581g in the habitable zone of its star points to the potential of billions of Earthlike planets in our Milky Way galaxy alone.

Type Ib and Ic supernovae

From Wikipedia, the free encyclopedia
 
The Type Ib supernova SN 2008D in galaxy NGC 2770, shown in X-ray (left) and visible light (right), at the corresponding positions of the images. (NASA image.)
 
Type Ib and Type Ic supernovae are categories of supernovae that are caused by the stellar core collapse of massive stars. These stars have shed or been stripped of their outer envelope of hydrogen, and, when compared to the spectrum of Type Ia supernovae, they lack the absorption line of silicon. Compared to Type Ib, Type Ic supernovae are hypothesized to have lost more of their initial envelope, including most of their helium. The two types are usually referred to as stripped core-collapse supernovae

Spectra

When a supernova is observed, it can be categorized in the MinkowskiZwicky supernova classification scheme based upon the absorption lines that appear in its spectrum. A supernova is first categorized as either a Type I or Type II, then subcategorized based on more specific traits. Supernovae belonging to the general category Type I lack hydrogen lines in their spectra; in contrast to Type II supernovae which do display lines of hydrogen. The Type I category is subdivided into Type Ia, Type Ib and Type Ic.

Type Ib/Ic supernovae are distinguished from Type Ia by the lack of an absorption line of singly ionized silicon at a wavelength of 635.5 nanometres. As Type Ib and Ic supernovae age, they also display lines from elements such as oxygen, calcium and magnesium. In contrast, Type Ia spectra become dominated by lines of iron. Type Ic supernovae are distinguished from Type Ib in that the former also lack lines of helium at 587.6 nm.

Formation

The onion-like layers of an evolved, massive star (not to scale).

Prior to becoming a supernova, an evolved massive star is organized in the manner of an onion, with layers of different elements undergoing fusion. The outermost layer consists of hydrogen, followed by helium, carbon, oxygen, and so forth. Thus when the outer envelope of hydrogen is shed, this exposes the next layer that consists primarily of helium (mixed with other elements). This can occur when a very hot, massive star reaches a point in its evolution when significant mass loss is occurring from its stellar wind. Highly massive stars (with 25 or more times the mass of the Sun) can lose up to 10−5 solar masses (M) each year—the equivalent of 1 M every 100,000 years.

Type Ib and Ic supernovae are hypothesized to have been produced by core collapse of massive stars that have lost their outer layer of hydrogen and helium, either via winds or mass transfer to a companion. The progenitors of Types Ib and Ic have lost most of their outer envelopes due to strong stellar winds or else from interaction with a close companion of about 3–4 M. Rapid mass loss can occur in the case of a Wolf–Rayet star, and these massive objects show a spectrum that is lacking in hydrogen. Type Ib progenitors have ejected most of the hydrogen in their outer atmospheres, while Type Ic progenitors have lost both the hydrogen and helium shells; in other words, Type Ic have lost more of their envelope (i.e., much of the helium layer) than the progenitors of Type Ib. In other respects, however, the underlying mechanism behind Type Ib and Ic supernovae is similar to that of a Type II supernova, thus placing Types Ib and Ic between Type Ia and Type II. Because of their similarity, Type Ib and Ic supernovae are sometimes collectively called Type Ibc supernovae.

There is some evidence that a small fraction of the Type Ic supernovae may be the progenitors of gamma ray bursts (GRBs); in particular, type Ic supernovae that have broad spectral lines corresponding to high-velocity outflows are thought to be strongly associated with GRBs. However, it is also hypothesized that any hydrogen-stripped Type Ib or Ic supernova could be a GRB, dependent upon the geometry of the explosion. In any case, astronomers believe that most Type Ib, and probably Type Ic as well, result from core collapse in stripped, massive stars, rather than from the thermonuclear runaway of white dwarfs.

As they are formed from rare, very massive stars, the rate of Type Ib and Ic supernovae occurrence is much lower than the corresponding rate for Type II supernovae. They normally occur in regions of new star formation, and are extremely rare in elliptical galaxies. Because they share a similar operating mechanism, Type Ibc and the various Type II supernovae are collectively called core-collapse supernovae. In particular, Type Ibc may be referred to as stripped core-collapse supernovae.

Light curves

The light curves (a plot of luminosity versus time) of Type Ib supernovae vary in form, but in some cases can be nearly identical to those of Type Ia supernovae. However, Type Ib light curves may peak at lower luminosity and may be redder. In the infrared portion of the spectrum, the light curve of a Type Ib supernova is similar to a Type II-L light curve. Type Ib supernovae usually have slower decline rates for the spectral curves than Ic.

Type Ia supernovae light curves are useful for measuring distances on a cosmological scale. That is, they serve as standard candles. However, due to the similarity of the spectra of Type Ib and Ic supernovae, the latter can form a source of contamination of supernova surveys and must be carefully removed from the observed samples before making distance estimates.

Hypergiant

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Hypergiant
 
Comparison of (left to right) the Pistol Star, Rho Cassiopeiae, Betelgeuse, and VY Canis Majoris superimposed on an outline of the Solar System. The blue half-ring centered near the left edge represents the orbit of Neptune, the outermost planet of the Solar System.
 
A hypergiant (luminosity class 0 or Ia+) is among the very rare kinds of stars that typically show tremendous luminosities and very high rates of mass loss by stellar winds. The term hypergiant is defined as luminosity class 0 (zero) in the MKK system. However, this is rarely seen in the literature or in published spectral classifications, except for specific well-defined groups such as the yellow hypergiants, RSG (red supergiants), or blue B(e) supergiants with emission spectra. More commonly, hypergiants are classed as Ia-0 or Ia+, but red supergiants are rarely assigned these spectral classifications. Astronomers are interested in these stars because they relate to understanding stellar evolution, especially with star formation, stability, and their expected demise as supernovae.

 

Origin and definition

In 1956, the astronomers Feast and Thackeray used the term super-supergiant (later changed into hypergiant) for stars with an absolute magnitude brighter than MV = −7 (MBol will be larger for very cool and very hot stars, for example at least −9.7 for a B0 hypergiant). In 1971, Keenan suggested that the term would be used only for supergiants showing at least one broad emission component in , indicating an extended stellar atmosphere or a relatively large mass loss rate. The Keenan criterion is the one most commonly used by scientists today.

To be classified as a hypergiant, a star must be highly luminous and have spectral signatures showing atmospheric instability and high mass loss. Hence it is possible for a non-hypergiant, supergiant star to have the same or higher luminosity as a hypergiant of the same spectral class. Hypergiants are expected to have a characteristic broadening and red-shifting of their spectral lines, producing a distinctive spectral shape known as a P Cygni profile. The use of hydrogen emission lines is not helpful for defining the coolest hypergiants, and these are largely classified by luminosity since mass loss is almost inevitable for the class.

Formation

Stars with an initial mass above about 25 M quickly move away from the main sequence and increase somewhat in luminosity to become blue supergiants. They cool and enlarge at approximately constant luminosity to become a red supergiant, then contract and increase in temperature as the outer layers are blown away. They may "bounce" backwards and forwards executing one or more "blue loops", still at a fairly steady luminosity, until they explode as a supernova or completely shed their outer layers to become a Wolf–Rayet star. Stars with an initial mass above about 40 M are simply too luminous to develop a stable extended atmosphere and so they never cool sufficiently to become red supergiants. The most massive stars, especially rapidly rotating stars with enhanced convection and mixing, may skip these steps and move directly to the Wolf–Rayet stage.

This means that stars at the top of the Hertzsprung–Russell diagram where hypergiants are found may be newly evolved from the main sequence and still with high mass, or much more evolved post-red supergiant stars that have lost a significant fraction of their initial mass, and these objects cannot be distinguished simply on the basis of their luminosity and temperature. High-mass stars with a high proportion of remaining hydrogen are more stable, while older stars with lower masses and a higher proportion of heavy elements have less stable atmospheres due to increased radiation pressure and decreased gravitational attraction. These are thought to be the hypergiants, near the Eddington limit and rapidly losing mass. 

The yellow hypergiants are thought to be generally post-red supergiant stars that have already lost most of their atmospheres and hydrogen. A few more stable high mass yellow supergiants with approximately the same luminosity are known and thought to be evolving towards the red supergiant phase, but these are rare as this is expected to be a rapid transition. Because yellow hypergiants are post-red supergiant stars, there is a fairly hard upper limit to their luminosity at around 500,000–750,000 L, but blue hypergiants can be much more luminous, sometimes several million L

Almost all hypergiants exhibit variations in luminosity over time due to instabilities within their interiors, but these are small except for two distinct instability regions where luminous blue variables (LBVs) and yellow hypergiants are found. Because of their high masses, the lifetime of a hypergiant is very short in astronomical timescales: only a few million years compared to around 10 billion years for stars like the Sun. Hypergiants are only created in the largest and densest areas of star formation and because of their short lives, only a small number are known despite their extreme luminosity that allows them to be identified even in neighbouring galaxies. The time spent in some phases such as LBVs can be as short as a few thousand years.

Stability

Great nebula in Carina, surrounding Eta Carinae

As the luminosity of stars increases greatly with mass, the luminosity of hypergiants often lies very close to the Eddington limit, which is the luminosity at which the radiation pressure expanding the star outward equals the force of the star's gravity collapsing the star inward. This means that the radiative flux passing through the photosphere of a hypergiant may be nearly strong enough to lift off the photosphere. Above the Eddington limit, the star would generate so much radiation that parts of its outer layers would be thrown off in massive outbursts; this would effectively restrict the star from shining at higher luminosities for longer periods.

A good candidate for hosting a continuum-driven wind is Eta Carinae, one of the most massive stars ever observed. With an estimated mass of around 130 solar masses and a luminosity four million times that of the Sun, astrophysicists speculate that Eta Carinae may occasionally exceed the Eddington limit. The last time might have been a series of outbursts observed in 1840–1860, reaching mass loss rates much higher than our current understanding of what stellar winds would allow.

As opposed to line-driven stellar winds (that is, ones driven by absorbing light from the star in huge numbers of narrow spectral lines), continuum driving does not require the presence of "metallic" atoms — atoms other than hydrogen and helium, which have few such lines — in the photosphere. This is important, since most massive stars also are very metal-poor, which means that the effect must work independently of the metallicity. In the same line of reasoning, the continuum driving may also contribute to an upper mass limit even for the first generation of stars right after the Big Bang, which did not contain any metals at all.

Another theory to explain the massive outbursts of, for example, Eta Carinae is the idea of a deeply situated hydrodynamic explosion, blasting off parts of the star's outer layers. The idea is that the star, even at luminosities below the Eddington limit, would have insufficient heat convection in the inner layers, resulting in a density inversion potentially leading to a massive explosion. The theory has, however, not been explored very much, and it is uncertain whether this really can happen.

Another theory associated with hypergiant stars is the potential to form a pseudo-photosphere, that is a spherical optically dense surface that is actually formed by the stellar wind rather than being the true surface of the star. Such a pseudo-photosphere would be significantly cooler than the deeper surface below the outward-moving dense wind. This has been hypothesized to account for the "missing" intermediate-luminosity LBVs and the presence of yellow hypergiants at approximately the same luminosity and cooler temperatures. The yellow hypergiants are actually the LBVs having formed a pseudo-photosphere and so apparently having a lower temperature.

Relationships with Ofpe, WNL, LBV, and other supergiant stars

Very Large Telescope image of the surroundings of VY Canis Majoris
 
Hypergiants are evolved, high luminosity, high-mass stars that occur in the same or similar regions of the HR diagram to stars with different classifications. It is not always clear whether the different classifications represent stars with different initial conditions, stars at different stages of an evolutionary track, or is just an artifact of our observations. Astrophysical models explaining the phenomena show many areas of agreement. Yet there are some distinctions that are not necessarily helpful in establishing relationships between different types of stars. 

Although most supergiant stars are less luminous than hypergiants of similar temperature, a few fall within the same luminosity range. Ordinary supergiants compared to hypergiants often lack the strong hydrogen emissions whose broadened spectral lines indicate significant mass loss. Evolved lower mass supergiants do not return from the red supergiant phase, either exploding as supernovae or leaving behind a white dwarf.

Luminous blue variables are a class of highly luminous hot stars that display characteristic spectral variation. They often lie in a "quiescent" zone with hotter stars generally being more luminous, but periodically undergo large surface eruptions and move to a narrow zone where stars of all luminosities have approximately the same temperature, around 8,000K. This "active" zone is near the hot edge of the unstable "void" where yellow hypergiants are found, with some overlap. It is not clear whether yellow hypergiants ever manage to get past the instability void to become LBVs or explode as a supernova.

Blue hypergiants are found in the same parts of the HR diagram as LBVs but do not necessarily show the LBV variations. Some but not all LBVs show the characteristics of hypergiant spectra at least some of the time, but many authors would exclude all LBVs from the hypergiant class and treat them separately. Blue hypergiants that do not show LBV characteristics may be progenitors of LBVs, or vice versa, or both. Lower mass LBVs may be a transitional stage to or from cool hypergiants or are different type of object.

Wolf–Rayet stars are extremely hot stars that have lost much or all of their outer layers. WNL is a term used for late stage (i.e. cooler) Wolf–Rayet stars with spectra dominated by nitrogen. Although these are generally thought to be the stage reached by hypergiant stars after sufficient mass loss, it is possible that a small group of hydrogen-rich WNL stars are actually progenitors of blue hypergiants or LBVs. These are the closely related Ofpe (O-type spectra plus H, He, and N emission lines, and other peculiarities) and WN9 (the coolest nitrogen Wolf–Rayet stars) which may be a brief intermediate stage between high mass main-sequence stars and hypergiants or LBVs. Quiescent LBVs have been observed with WNL spectra and apparent Ofpe/WNL stars have changed to show blue hypergiant spectra. High rotation rates cause massive stars to shed their atmospheres quickly and prevent the passage from main sequence to supergiant, so these directly become Wolf–Rayet stars. Wolf Rayet stars, slash stars, cool slash stars (aka WN10/11), Ofpe, Of+, and Of* stars are not considered hypergiants. Although they are luminous and often have strong emission lines, they have characteristic spectra of their own.

Known hypergiants

Hypergiants are difficult to study due to their rarity. Many hypergiants have highly variable spectra, but they are grouped here into broad spectral classes.

Luminous blue variables

Some luminous blue variables are classified as hypergiants, during at least part of their cycle of variation:
  • Eta Carinae, inside the Carina Nebula (NGC 3372) in the southern constellation of Carina. Eta Carinae is extremely massive, possibly as much as 120 to 150 times the mass of the Sun, and is four to five million times as luminous. Possibly a different type of object from the LBVs, or extreme for a LBV.
  • P Cygni, in the northern constellation of Cygnus. Prototype for the general characteristics of LBV spectral lines.
  • S Doradus, in the Large Magellanic Cloud, in the southern constellation of Dorado. Prototype variable, LBVs are still sometimes called S Doradus variables.
  • The Pistol Star (V4627 Sgr), near the center of the Milky Way, in the constellation of Sagittarius. The Pistol Star is possibly as much as 150 times more massive than the Sun, and is about 1.7 million times more luminous. Considered a candidate LBV, but variability has not been confirmed.
  • V4029 Sagittarii
  • V905 Scorpii
  • HD 6884, (R40 in SMC)
  • HD 269700, (R116 in the LMC)
  • LBV 1806-20 in the 1806-20 cluster on the other side of the Milky Way.

Blue hypergiants

A hypergiant star and its proplyd proto-planetary disk compared to the size of the Solar System

Usually B-class, occasionally late O or early A:         candidate with a supergiant companion:
In Galactic Center Region:
  • Star 13, type O, LBV candidate
  • Star 18, type O, LBV candidate
In Westerlund 1:
  • W5 (possible Wolf–Rayet)
  • W7
  • W13 (binary?)
  • W33
  • W42a

Yellow hypergiants

Field surrounding the yellow hypergiant star HR 5171

Yellow hypergiants with late A -K spectra.
In Westerlund 1:
  • W4
  • W8a
  • W12a
  • W16a
  • W32
  • W265

Plus at least two probable cool hypergiants in the recently discovered Scutum Red Supergiant Clusters: F15 and possibly F13 in RSGC1 and Star 49 in RSGC2.

Red hypergiants

Size comparison between the diameter of the Sun and VY Canis Majoris, a hypergiant which is among the largest known stars
 
M type spectra, the largest known stars.

A survey expected to capture virtually all Magellanic Cloud red hypergiants detected around a dozen M class stars Mv−7 and brighter, around a quarter of a million times more luminous than the Sun, and from about 1,000 times the radius of the Sun upwards.

Citation signal

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cit...