Search This Blog

Sunday, October 30, 2022

Oil platform

From Wikipedia, the free encyclopedia
 
Oil platform P-51 off the Brazilian coast is a semi-submersible platform.
 
Diagram showing the operation of a typical oil platform: 1. Drilling rig; 2. Rock layers; 3. Oil rigs; 4. Oil and natural gas.
 
Oil platform Mittelplate in the North Sea
 
Refurbishment Station for Drilling Rigs – Corpus Christi Bay

An oil platform, oil rig, offshore platform, or oil and/or gas production platform is a large structure with facilities to extract, and process petroleum and natural gas that lie in rock formations beneath the seabed. Many oil platforms will also contain facilities to accommodate their workforce, although it is also common for there to be a separate accommodation platform bridge linked to the production platform. Most commonly, oil platforms engage in activities on the continental shelf, though they can also be used in lakes, inshore waters, and inland seas. Depending on the circumstances, the platform may be fixed to the ocean floor, consist of an artificial island, or float. In some arrangements the main facility may have storage facilities for the processed oil. Remote subsea wells may also be connected to a platform by flow lines and by umbilical connections. These sub-sea solutions may consist of one or more subsea wells or of one or more manifold centres for multiple wells.

Offshore drilling presents environmental challenges, both from the produced hydrocarbons and the materials used during the drilling operation. Controversies include the ongoing US offshore drilling debate.

There are many different types of facilities from which offshore drilling operations take place. These include bottom-founded drilling rigs (jackup barges and swamp barges), combined drilling and production facilities, either bottom-founded or floating platforms, and deepwater mobile offshore drilling units (MODU), including semi-submersibles and drillships. These are capable of operating in water depths up to 3,000 metres (9,800 ft). In shallower waters, the mobile units are anchored to the seabed. However, in deeper water (more than 1,500 metres (4,900 ft)), the semisubmersibles or drillships are maintained at the required drilling location using dynamic positioning.

History

Oil wells just offshore at Summerland, California, before 1906.

Around 1891, the first submerged oil wells were drilled from platforms built on piles in the fresh waters of the Grand Lake St. Marys (a.k.a. Mercer County Reservoir) in Ohio. The wide but shallow reservoir was built from 1837 to 1845 to provide water to the Miami and Erie Canal.

Around 1896, the first submerged oil wells in salt water were drilled in the portion of the Summerland field extending under the Santa Barbara Channel in California. The wells were drilled from piers extending from land out into the channel.

Other notable early submerged drilling activities occurred on the Canadian side of Lake Erie since 1913 and Caddo Lake in Louisiana in the 1910s. Shortly thereafter, wells were drilled in tidal zones along the Gulf Coast of Texas and Louisiana. The Goose Creek field near Baytown, Texas is one such example. In the 1920s, drilling was done from concrete platforms in Lake Maracaibo, Venezuela.

The oldest offshore well recorded in Infield's offshore database is the Bibi Eibat well which came on stream in 1923 in Azerbaijan. Landfill was used to raise shallow portions of the Caspian Sea.

In the early 1930s, the Texas Company developed the first mobile steel barges for drilling in the brackish coastal areas of the gulf.

In 1937, Pure Oil Company (now Chevron Corporation) and its partner Superior Oil Company (now part of ExxonMobil Corporation) used a fixed platform to develop a field in 14 feet (4.3 m) of water, one mile (1.6 km) offshore of Calcasieu Parish, Louisiana.

In 1938, Humble Oil built a mile-long wooden trestle with railway tracks into the sea at McFadden Beach on the Gulf of Mexico, placing a derrick at its end – this was later destroyed by a hurricane.

In 1945, concern for American control of its offshore oil reserves caused President Harry Truman to issue an Executive Order unilaterally extending American territory to the edge of its continental shelf, an act that effectively ended the 3-mile limit "freedom of the seas" regime.

In 1946, Magnolia Petroleum (now ExxonMobil) drilled at a site 18 miles (29 km) off the coast, erecting a platform in 18 feet (5.5 m) of water off St. Mary Parish, Louisiana.

In early 1947, Superior Oil erected a drilling/production platform in 20 ft (6.1 m) of water some 18 miles off Vermilion Parish, Louisiana. But it was Kerr-McGee Oil Industries (now part of Occidental Petroleum), as operator for partners Phillips Petroleum (ConocoPhillips) and Stanolind Oil & Gas (BP), that completed its historic Ship Shoal Block 32 well in October 1947, months before Superior actually drilled a discovery from their Vermilion platform farther offshore. In any case, that made Kerr-McGee's well the first oil discovery drilled out of sight of land.

The British Maunsell Forts constructed during World War II are considered the direct predecessors of modern offshore platforms. Having been pre-constructed in a very short time, they were then floated to their location and placed on the shallow bottom of the Thames and the Mersey estuary.

In 1954, the first jackup oil rig was ordered by Zapata Oil. It was designed by R. G. LeTourneau and featured three electro-mechanically operated lattice-type legs. Built on the shores of the Mississippi river by the LeTourneau Company, it was launched in December 1955, and christened "Scorpion". The Scorpion was put into operation in May 1956 off Port Aransas, Texas. It was lost in 1969.

When offshore drilling moved into deeper waters of up to 30 metres (98 ft), fixed platform rigs were built, until demands for drilling equipment was needed in the 30 metres (98 ft) to 120 metres (390 ft) depth of the Gulf of Mexico, the first jack-up rigs began appearing from specialized offshore drilling contractors such as forerunners of ENSCO International.

The first semi-submersible resulted from an unexpected observation in 1961. Blue Water Drilling Company owned and operated the four-column submersible Blue Water Rig No.1 in the Gulf of Mexico for Shell Oil Company. As the pontoons were not sufficiently buoyant to support the weight of the rig and its consumables, it was towed between locations at a draught midway between the top of the pontoons and the underside of the deck. It was noticed that the motions at this draught were very small, and Blue Water Drilling and Shell jointly decided to try operating the rig in its floating mode. The concept of an anchored, stable floating deep-sea platform had been designed and tested back in the 1920s by Edward Robert Armstrong for the purpose of operating aircraft with an invention known as the "seadrome". The first purpose-built drilling semi-submersible Ocean Driller was launched in 1963. Since then, many semi-submersibles have been purpose-designed for the drilling industry mobile offshore fleet.

The first offshore drillship was the CUSS 1 developed for the Mohole project to drill into the Earth's crust.

As of June, 2010, there were over 620 mobile offshore drilling rigs (Jackups, semisubs, drillships, barges) available for service in the competitive rig fleet.

One of the world's deepest hubs is currently the Perdido in the Gulf of Mexico, floating in 2,438 meters of water. It is operated by Royal Dutch Shell and was built at a cost of $3 billion. The deepest operational platform is the Petrobras America Cascade FPSO in the Walker Ridge 249 field in 2,600 meters of water.

Main offshore basins

Offshore platform, Gulf of Mexico

Notable offshore basins include:

Types

Larger lake- and sea-based offshore platforms and drilling rig for oil.

Types of offshore oil and gas structures
  • 1) & 2) Conventional fixed platforms (deepest: Shell's Bullwinkle in 1991 at 412 m/1,353 ft GOM)
  • 3) Compliant tower (deepest: ChevronTexaco's Petronius in 1998 at 534 m /1,754 ft GOM)
  • 4) & 5) Vertically moored tension leg and mini-tension leg platform (deepest: ConocoPhillips’ Magnolia in 2004 1,425 m/4,674 ft GOM)
  • 6) Spar (deepest: Shell's Perdido in 2010, 2,450 m/8,000 ft GOM)
  • 7) & 8) Semi-submersibles (deepest: Shell's NaKika in 2003, 1920 m/6,300 ft GOM)
  • 9) Floating production, storage, and offloading facility (deepest: 2005, 1,345 m/4,429 ft Brazil)
  • 10) Sub-sea completion and tie-back to host facility (deepest: Shell's Coulomb tie to NaKika 2004, 2,307 m/ 7,570 ft)
(Numbered from left to right; all records from 2005 data)

Fixed platforms

A fixed platform base under construction on the Atchafalaya River.

These platforms are built on concrete or steel legs, or both, anchored directly onto the seabed, supporting the deck with space for drilling rigs, production facilities and crew quarters. Such platforms are, by virtue of their immobility, designed for very long term use (for instance the Hibernia platform). Various types of structure are used: steel jacket, concrete caisson, floating steel, and even floating concrete. Steel jackets are structural sections made of tubular steel members, and are usually piled into the seabed.

Concrete caisson structures, pioneered by the Condeep concept, often have in-built oil storage in tanks below the sea surface and these tanks were often used as a flotation capability, allowing them to be built close to shore (Norwegian fjords and Scottish firths are popular because they are sheltered and deep enough) and then floated to their final position where they are sunk to the seabed. Fixed platforms are economically feasible for installation in water depths up to about 520 m (1,710 ft).

Compliant towers

These platforms consist of slender, flexible towers and a pile foundation supporting a conventional deck for drilling and production operations. Compliant towers are designed to sustain significant lateral deflections and forces, and are typically used in water depths ranging from 370 to 910 metres (1,210 to 2,990 ft).

Semi-submersible platform

These platforms have hulls (columns and pontoons) of sufficient buoyancy to cause the structure to float, but of weight sufficient to keep the structure upright. Semi-submersible platforms can be moved from place to place and can be ballasted up or down by altering the amount of flooding in buoyancy tanks. They are generally anchored by combinations of chain, wire rope or polyester rope, or both, during drilling and/or production operations, though they can also be kept in place by the use of dynamic positioning. Semi-submersibles can be used in water depths from 60 to 6,000 metres (200 to 20,000 ft).

Jack-up drilling rigs

400 feet (120 m) tall jackup rig being towed by tugboats, Kachemak Bay, Alaska

Jack-up Mobile Drilling Units (or jack-ups), as the name suggests, are rigs that can be jacked up above the sea using legs that can be lowered, much like jacks. These MODUs (Mobile Offshore Drilling Units) are typically used in water depths up to 120 metres (390 ft), although some designs can go to 170 m (560 ft) depth. They are designed to move from place to place, and then anchor themselves by deploying their legs to the ocean bottom using a rack and pinion gear system on each leg.

Drillships

A drillship is a maritime vessel that has been fitted with drilling apparatus. It is most often used for exploratory drilling of new oil or gas wells in deep water but can also be used for scientific drilling. Early versions were built on a modified tanker hull, but purpose-built designs are used today. Most drillships are outfitted with a dynamic positioning system to maintain position over the well. They can drill in water depths up to 3,700 m (12,100 ft).

Floating production systems

View of the Port of Las Palmas from the dock of La Esfinge

The main types of floating production systems are FPSO (floating production, storage, and offloading system). FPSOs consist of large monohull structures, generally (but not always) shipshaped, equipped with processing facilities. These platforms are moored to a location for extended periods, and do not actually drill for oil or gas. Some variants of these applications, called FSO (floating storage and offloading system) or FSU (floating storage unit), are used exclusively for storage purposes, and host very little process equipment. This is one of the best sources for having floating production.

The world's first floating liquefied natural gas (FLNG) facility is in production. See the section on particularly large examples below.

Tension-leg platform

TLPs are floating platforms tethered to the seabed in a manner that eliminates most vertical movement of the structure. TLPs are used in water depths up to about 2,000 meters (6,600 feet). The "conventional" TLP is a 4-column design that looks similar to a semisubmersible. Proprietary versions include the Seastar and MOSES mini TLPs; they are relatively low cost, used in water depths between 180 and 1,300 metres (590 and 4,270 ft). Mini TLPs can also be used as utility, satellite or early production platforms for larger deepwater discoveries.

Gravity-based structure

A GBS can either be steel or concrete and is usually anchored directly onto the seabed. Steel GBS are predominantly used when there is no or limited availability of crane barges to install a conventional fixed offshore platform, for example in the Caspian Sea. There are several steel GBS's in the world today (e.g. offshore Turkmenistan Waters (Caspian Sea) and offshore New Zealand). Steel GBS do not usually provide hydrocarbon storage capability. It is mainly installed by pulling it off the yard, by either wet-tow or/and dry-tow, and self-installing by controlled ballasting of the compartments with sea water. To position the GBS during installation, the GBS may be connected to either a transportation barge or any other barge (provided it is large enough to support the GBS) using strand jacks. The jacks shall be released gradually whilst the GBS is ballasted to ensure that the GBS does not sway too much from target location.

Spar platforms

Devil's Tower spar platform

Spars are moored to the seabed like TLPs, but whereas a TLP has vertical tension tethers, a spar has more conventional mooring lines. Spars have to-date been designed in three configurations: the "conventional" one-piece cylindrical hull; the "truss spar", in which the midsection is composed of truss elements connecting the upper buoyant hull (called a hard tank) with the bottom soft tank containing permanent ballast; and the "cell spar", which is built from multiple vertical cylinders. The spar has more inherent stability than a TLP since it has a large counterweight at the bottom and does not depend on the mooring to hold it upright. It also has the ability, by adjusting the mooring line tensions (using chain-jacks attached to the mooring lines), to move horizontally and to position itself over wells at some distance from the main platform location. The first production spar was Kerr-McGee's Neptune, anchored in 590 m (1,940 ft) in the Gulf of Mexico; however, spars (such as Brent Spar) were previously used as FSOs.

Eni's Devil's Tower located in 1,710 m (5,610 ft) of water in the Gulf of Mexico, was the world's deepest spar until 2010. The world's deepest platform as of 2011 was the Perdido spar in the Gulf of Mexico, floating in 2,438 metres of water. It is operated by Royal Dutch Shell and was built at a cost of $3 billion.

The first truss spars were Kerr-McGee's Boomvang and Nansen. The first (and, as of 2010, only) cell spar is Kerr-McGee's Red Hawk.

Normally unmanned installations (NUI)

These installations, sometimes called toadstools, are small platforms, consisting of little more than a well bay, helipad and emergency shelter. They are designed to be operated remotely under normal conditions, only to be visited occasionally for routine maintenance or well work.

Conductor support systems

These installations, also known as satellite platforms, are small unmanned platforms consisting of little more than a well bay and a small process plant. They are designed to operate in conjunction with a static production platform which is connected to the platform by flow lines or by umbilical cable, or both.

Particularly large examples

Troll A natural gas platform, a gravity-based structure, under construction in Norway. Almost all of the 600KT structure will end up submerged.

The Petronius Platform is a compliant tower in the Gulf of Mexico modeled after the Hess Baldpate platform, which stands 2,100 feet (640 m) above the ocean floor. It is one of the world's tallest structures.

The Hibernia platform in Canada is the world's heaviest offshore platform, located on the Jeanne D'Arc Basin, in the Atlantic Ocean off the coast of Newfoundland. This gravity base structure (GBS), which sits on the ocean floor, is 111 metres (364 ft) high and has storage capacity for 1.3 million barrels (210,000 m3) of crude oil in its 85-metre (279 ft) high caisson. The platform acts as a small concrete island with serrated outer edges designed to withstand the impact of an iceberg. The GBS contains production storage tanks and the remainder of the void space is filled with ballast with the entire structure weighing in at 1.2 million tons.

Royal Dutch Shell has developed the first Floating Liquefied Natural Gas (FLNG) facility, which is situated approximately 200 km off the coast of Western Australia. It is the largest floating offshore facility. It is approximately 488m long and 74m wide with displacement of around 600,000t when fully ballasted.

Maintenance and supply

A typical oil production platform is self-sufficient in energy and water needs, housing electrical generation, water desalinators and all of the equipment necessary to process oil and gas such that it can be either delivered directly onshore by pipeline or to a floating platform or tanker loading facility, or both. Elements in the oil/gas production process include wellhead, production manifold, production separator, glycol process to dry gas, gas compressors, water injection pumps, oil/gas export metering and main oil line pumps.

Larger platforms are assisted by smaller ESVs (emergency support vessels) like the British Iolair that are summoned when something has gone wrong, e.g. when a search and rescue operation is required. During normal operations, PSVs (platform supply vessels) keep the platforms provisioned and supplied, and AHTS vessels can also supply them, as well as tow them to location and serve as standby rescue and firefighting vessels.

Crew

Essential personnel

Not all of the following personnel are present on every platform. On smaller platforms, one worker can perform a number of different jobs. The following also are not names officially recognized in the industry:

  • OIM (offshore installation manager) who is the ultimate authority during his/her shift and makes the essential decisions regarding the operation of the platform;
  • operations team leader (OTL);
  • Offshore Methods Engineer (OME) who defines the installation methodology of the platform;
  • offshore operations engineer (OOE) who is the senior technical authority on the platform;
  • PSTL or operations coordinator for managing crew changes;
  • dynamic positioning operator, navigation, ship or vessel maneuvering (MODU), station keeping, fire and gas systems operations in the event of incident;
  • automation systems specialist, to configure, maintain and troubleshoot the process control systems (PCS), process safety systems, emergency support systems and vessel management systems;
  • second mate to meet manning requirements of flag state, operates fast rescue craft, cargo operations, fire team leader;
  • third mate to meet manning requirements of flag state, operate fast rescue craft, cargo operations, fire team leader;
  • ballast control operator to operate fire and gas systems;
  • crane operators to operate the cranes for lifting cargo around the platform and between boats;
  • scaffolders to rig up scaffolding for when it is required for workers to work at height;
  • coxswains to maintain the lifeboats and manning them if necessary;
  • control room operators, especially FPSO or production platforms;
  • catering crew, including people tasked with performing essential functions such as cooking, laundry and cleaning the accommodation;
  • production techs to run the production plant;
  • helicopter pilot(s) living on some platforms that have a helicopter based offshore and transporting workers to other platforms or to shore on crew changes;
  • maintenance technicians (instrument, electrical or mechanical).
  • Fully qualified medic.
  • Radio operator to operate all radio communications.
  • Store Keeper, keeping the inventory well supplied
  • Technician to record the fluid levels in tanks

Incidental personnel

Drill crew will be on board if the installation is performing drilling operations. A drill crew will normally comprise:

Well services crew will be on board for well work. The crew will normally comprise:

Drawbacks

Risks

The nature of their operation—extraction of volatile substances sometimes under extreme pressure in a hostile environment—means risk; accidents and tragedies occur regularly. The U.S. Minerals Management Service reported 69 offshore deaths, 1,349 injuries, and 858 fires and explosions on offshore rigs in the Gulf of Mexico from 2001 to 2010. On July 6, 1988, 167 people died when Occidental Petroleum's Piper Alpha offshore production platform, on the Piper field in the UK sector of the North Sea, exploded after a gas leak. The resulting investigation conducted by Lord Cullen and publicized in the first Cullen Report was highly critical of a number of areas, including, but not limited to, management within the company, the design of the structure, and the Permit to Work System. The report was commissioned in 1988, and was delivered in November 1990. The accident greatly accelerated the practice of providing living accommodations on separate platforms, away from those used for extraction.

The offshore can be in itself a hazardous environment. In March 1980, the 'flotel' (floating hotel) platform Alexander L. Kielland capsized in a storm in the North Sea with the loss of 123 lives.

In 2001, Petrobras 36 in Brazil exploded and sank five days later, killing 11 people.

Given the number of grievances and conspiracy theories that involve the oil business, and the importance of gas/oil platforms to the economy, platforms in the United States are believed to be potential terrorist targets. Agencies and military units responsible for maritime counter-terrorism in the US (Coast Guard, Navy SEALs, Marine Recon) often train for platform raids.

On April 21, 2010, the Deepwater Horizon platform, 52 miles off-shore of Venice, Louisiana, (property of Transocean and leased to BP) exploded, killing 11 people, and sank two days later. The resulting undersea gusher, conservatively estimated to exceed 20 million US gallons (76,000 m3) as of early June 2010, became the worst oil spill in US history, eclipsing the Exxon Valdez oil spill.

Ecological effects

NOAA map of the 3,858 oil and gas platforms extant in the Gulf of Mexico in 2006

In British waters, the cost of removing all platform rig structures entirely was estimated in 2013 at £30 billion.

Aquatic organisms invariably attach themselves to the undersea portions of oil platforms, turning them into artificial reefs. In the Gulf of Mexico and offshore California, the waters around oil platforms are popular destinations for sports and commercial fishermen, because of the greater numbers of fish near the platforms. The United States and Brunei have active Rigs-to-Reefs programs, in which former oil platforms are left in the sea, either in place or towed to new locations, as permanent artificial reefs. In the US Gulf of Mexico, as of September 2012, 420 former oil platforms, about 10 percent of decommissioned platforms, have been converted to permanent reefs.

On the US Pacific coast, marine biologist Milton Love has proposed that oil platforms off California be retained as artificial reefs, instead of being dismantled (at great cost), because he has found them to be havens for many of the species of fish which are otherwise declining in the region, in the course of 11 years of research. Love is funded mainly by government agencies, but also in small part by the California Artificial Reef Enhancement Program. Divers have been used to assess the fish populations surrounding the platforms.

Effects on the environment

Offshore oil production involves environmental risks, most notably oil spills from oil tankers or pipelines transporting oil from the platform to onshore facilities, and from leaks and accidents on the platform. Produced water is also generated, which is water brought to the surface along with the oil and gas; it is usually highly saline and may include dissolved or unseparated hydrocarbons.

Offshore rigs are shut down during hurricanes. In the Gulf of Mexico hurricanes are increasing because of the increasing number of oil platforms that heat surrounding air with methane, it is estimated that U.S. Gulf of Mexico, oil and gas facilities emit approximately 500000 tons of methane each year, corresponding to a loss of produced gas of 2.9 percent. The increasing number of oil rigs also increase movement of oil tankers which also increases CO2 levels which directly warm water in the zone, warm waters are a key factor for hurricanes to form.

To reduce the amount of carbon emissions otherwise released into the atmosphere, methane pyrolysis of natural gas pumped up by oil platforms is a possible alternative to flaring for consideration. Methane pyrolysis produces non-polluting hydrogen in high volume from this natural gas at low cost. This process operates at around 1000 °C and removes carbon in a solid form from the methane, producing hydrogen. The carbon can then be pumped underground and is not released into the atmosphere. It is being evaluated in such research laboratories as Karlsruhe Liquid-metal Laboratory (KALLA) and the chemical engineering team at University of California – Santa Barbara

Repurposing

If not decommissioned, old platforms can be repurposed to pump CO2 into rocks below the seabed. Others have been converted to launch rockets into space, and more are being redesigned for use with heavy-lift launch vehicles.

Challenges

Offshore oil and gas production is more challenging than land-based installations due to the remote and harsher environment. Much of the innovation in the offshore petroleum sector concerns overcoming these challenges, including the need to provide very large production facilities. Production and drilling facilities may be very large and a large investment, such as the Troll A platform standing on a depth of 300 meters.

Another type of offshore platform may float with a mooring system to maintain it on location. While a floating system may be lower cost in deeper waters than a fixed platform, the dynamic nature of the platforms introduces many challenges for the drilling and production facilities.

The ocean can add several thousand meters or more to the fluid column. The addition increases the equivalent circulating density and downhole pressures in drilling wells, as well as the energy needed to lift produced fluids for separation on the platform.

The trend today is to conduct more of the production operations subsea, by separating water from oil and re-injecting it rather than pumping it up to a platform, or by flowing to onshore, with no installations visible above the sea. Subsea installations help to exploit resources at progressively deeper waters—locations that had been inaccessible—and overcome challenges posed by sea ice such as in the Barents Sea. One such challenge in shallower environments is seabed gouging by drifting ice features (means of protecting offshore installations against ice action includes burial in the seabed).

Offshore manned facilities also present logistics and human resources challenges. An offshore oil platform is a small community in itself with cafeteria, sleeping quarters, management and other support functions. In the North Sea, staff members are transported by helicopter for a two-week shift. They usually receive higher salaries than onshore workers do. Supplies and waste are transported by ship, and the supply deliveries need to be carefully planned because storage space on the platform is limited. Today, much effort goes into relocating as many of the personnel as possible onshore, where management and technical experts are in touch with the platform by video conferencing. An onshore job is also more attractive for the aging workforce in the petroleum industry, at least in the western world. These efforts among others are contained in the established term integrated operations. The increased use of subsea facilities helps achieve the objective of keeping more workers onshore. Subsea facilities are also easier to expand, with new separators or different modules for different oil types, and are not limited by the fixed floor space of an above-water installation.

Deepest platforms

The world's deepest oil platform is the floating Perdido, which is a spar platform in the Gulf of Mexico in a water depth of 2,450 metres (8,040 ft).

Non-floating compliant towers and fixed platforms, by water depth:

Nuclear binding energy

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Nuclear_binding_energy

Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other. Nucleons are attracted to each other by the strong nuclear force. In theoretical nuclear physics, the nuclear binding energy is considered a negative number. In this context it represents the energy of the nucleus relative to the energy of the constituent nucleons when they are infinitely far apart. Both the experimental and theoretical views are equivalent, with slightly different emphasis on what the binding energy means.

The mass of an atomic nucleus is less than the sum of the individual masses of the free constituent protons and neutrons. The difference in mass can be calculated by the Einstein equation, E = mc2, where E is the nuclear binding energy, c is the speed of light, and m is the difference in mass. This 'missing mass' is known as the mass defect, and represents the energy that was released when the nucleus was formed.

The term "nuclear binding energy" may also refer to the energy balance in processes in which the nucleus splits into fragments composed of more than one nucleon. If new binding energy is available when light nuclei fuse (nuclear fusion), or when heavy nuclei split (nuclear fission), either process can result in release of this binding energy. This energy may be made available as nuclear energy and can be used to produce electricity, as in nuclear power, or in a nuclear weapon. When a large nucleus splits into pieces, excess energy is emitted as gamma rays and the kinetic energy of various ejected particles (nuclear fission products).

These nuclear binding energies and forces are on the order of one million times greater than the electron binding energies of light atoms like hydrogen.

Introduction

Nuclear energy

An absorption or release of nuclear energy occurs in nuclear reactions or radioactive decay; those that absorb energy are called endothermic reactions and those that release energy are exothermic reactions. Energy is consumed or released because of differences in the nuclear binding energy between the incoming and outgoing products of the nuclear transmutation.

The best-known classes of exothermic nuclear transmutations are nuclear fission and nuclear fusion. Nuclear energy may be released by fission, when heavy atomic nuclei (like uranium and plutonium) are broken apart into lighter nuclei. The energy from fission is used to generate electric power in hundreds of locations worldwide. Nuclear energy is also released during fusion, when light nuclei like hydrogen are combined to form heavier nuclei such as helium. The Sun and other stars use nuclear fusion to generate thermal energy which is later radiated from the surface, a type of stellar nucleosynthesis. In any exothermic nuclear process, nuclear mass might ultimately be converted to thermal energy, emitted as heat.

In order to quantify the energy released or absorbed in any nuclear transmutation, one must know the nuclear binding energies of the nuclear components involved in the transmutation.

The nuclear force

Electrons and nuclei are kept together by electrostatic attraction (negative attracts positive). Furthermore, electrons are sometimes shared by neighboring atoms or transferred to them (by processes of quantum physics); this link between atoms is referred to as a chemical bond and is responsible for the formation of all chemical compounds.

The electric force does not hold nuclei together, because all protons carry a positive charge and repel each other. If two protons were touching, their repulsion force would be almost 40 Newton. Because each of the neutrons carries total charge zero, a proton could electrically attract a neutron if the proton could induce the neutron to become electrically polarized. However, having the neutron between two protons (so their mutual repulsion decreases to 10 N) would attract the neutron only for an electric quadrupole (− + + −) arrangement. Higher multipoles, needed to satisfy more protons, cause weaker attraction, and quickly become implausible.

After the proton and neutron magnetic moments were measured and verified, it was apparent that their magnetic forces might be 20 or 30 newtons, attractive if properly oriented. A pair of protons would do 10−13 joules of work to each other as they approach – that is, they would need to release energy of 0.5 MeV in order to stick together. On the other hand, once a pair of nucleons magnetically stick, their external fields are greatly reduced, so it is difficult for many nucleons to accumulate much magnetic energy.

Therefore, another force, called the nuclear force (or residual strong force) holds the nucleons of nuclei together. This force is a residuum of the strong interaction, which binds quarks into nucleons at an even smaller level of distance.

The fact that nuclei do not clump together (fuse) under normal conditions suggests that the nuclear force must be weaker than the electric repulsion at larger distances, but stronger at close range. Therefore, it has short-range characteristics. An analogy to the nuclear force is the force between two small magnets: magnets are very difficult to separate when stuck together, but once pulled a short distance apart, the force between them drops almost to zero.

Unlike gravity or electrical forces, the nuclear force is effective only at very short distances. At greater distances, the electrostatic force dominates: the protons repel each other because they are positively charged, and like charges repel. For that reason, the protons forming the nuclei of ordinary hydrogen—for instance, in a balloon filled with hydrogen—do not combine to form helium (a process that also would require some protons to combine with electrons and become neutrons). They cannot get close enough for the nuclear force, which attracts them to each other, to become important. Only under conditions of extreme pressure and temperature (for example, within the core of a star), can such a process take place.

Physics of nuclei

There are around 94 naturally occurring elements on earth. The atoms of each element have a nucleus containing a specific number of protons (always the same number for a given element), and some number of neutrons, which is often roughly a similar number. Two atoms of the same element having different numbers of neutrons are known as isotopes of the element. Different isotopes may have different properties – for example one might be stable and another might be unstable, and gradually undergo radioactive decay to become another element.

The hydrogen nucleus contains just one proton. Its isotope deuterium, or heavy hydrogen, contains a proton and a neutron. Helium contains two protons and two neutrons, and carbon, nitrogen and oxygen – six, seven and eight of each particle, respectively. However, a helium nucleus weighs less than the sum of the weights of the two heavy hydrogen nuclei which combine to make it. The same is true for carbon, nitrogen and oxygen. For example, the carbon nucleus is slightly lighter than three helium nuclei, which can combine to make a carbon nucleus. This difference is known as the mass defect.

Mass defect

Mass defect (also called "mass deficit") is the difference between the mass of an object and the sum of the masses of its constituent particles. Discovered by Albert Einstein in 1905, it can be explained using his formula E = mc2, which describes the equivalence of energy and mass. The decrease in mass is equal to the energy emitted in the reaction of an atom's creation divided by c2. By this formula, adding energy also increases mass (both weight and inertia), whereas removing energy decreases mass. For example, a helium atom containing four nucleons has a mass about 0.8% less than the total mass of four hydrogen atoms (each containing one nucleon). The helium nucleus has four nucleons bound together, and the binding energy which holds them together is, in effect, the missing 0.8% of mass.

If a combination of particles contains extra energy—for instance, in a molecule of the explosive TNT—weighing it reveals some extra mass, compared to its end products after an explosion. (The end products must be weighed after they have been stopped and cooled, however, as the extra mass must escape from the system as heat before its loss can be noticed, in theory.) On the other hand, if one must inject energy to separate a system of particles into its components, then the initial mass is less than that of the components after they are separated. In the latter case, the energy injected is "stored" as potential energy, which shows as the increased mass of the components that store it. This is an example of the fact that energy of all types is seen in systems as mass, since mass and energy are equivalent, and each is a "property" of the other.

The latter scenario is the case with nuclei such as helium: to break them up into protons and neutrons, one must inject energy. On the other hand, if a process existed going in the opposite direction, by which hydrogen atoms could be combined to form helium, then energy would be released. The energy can be computed using E = Δmc2 for each nucleus, where Δm is the difference between the mass of the helium nucleus and the mass of four protons (plus two electrons, absorbed to create the neutrons of helium).

For lighter elements, the energy that can be released by assembling them from lighter elements decreases, and energy can be released when they fuse. This is true for nuclei lighter than iron/nickel. For heavier nuclei, more energy is needed to bind them, and that energy may be released by breaking them up into fragments (known as nuclear fission). Nuclear power is generated at present by breaking up uranium nuclei in nuclear power reactors, and capturing the released energy as heat, which is converted to electricity.

As a rule, very light elements can fuse comparatively easily, and very heavy elements can break up via fission very easily; elements in the middle are more stable and it is difficult to make them undergo either fusion or fission in an environment such as a laboratory.

The reason the trend reverses after iron is the growing positive charge of the nuclei, which tends to force nuclei to break up. It is resisted by the strong nuclear interaction, which holds nucleons together. The electric force may be weaker than the strong nuclear force, but the strong force has a much more limited range: in an iron nucleus, each proton repels the other 25 protons, while the nuclear force only binds close neighbors. So for larger nuclei, the electrostatic forces tend to dominate and the nucleus will tend over time to break up.

As nuclei grow bigger still, this disruptive effect becomes steadily more significant. By the time polonium is reached (84 protons), nuclei can no longer accommodate their large positive charge, but emit their excess protons quite rapidly in the process of alpha radioactivity—the emission of helium nuclei, each containing two protons and two neutrons. (Helium nuclei are an especially stable combination.) Because of this process, nuclei with more than 94 protons are not found naturally on Earth (see periodic table). The isotopes beyond uranium (atomic number 92) with the longest half-lives are plutonium-244 (80 million years) and curium-247 (16 million years).

Nuclear reactions in the sun

The nuclear fusion process works as follows: five billion years ago, the new Sun formed when gravity pulled together a vast cloud of hydrogen and dust, from which the Earth and other planets also arose. The gravitational pull released energy and heated the early Sun, much in the way Helmholtz proposed.

Thermal energy appears as the motion of atoms and molecules: the higher the temperature of a collection of particles, the greater is their velocity and the more violent are their collisions. When the temperature at the center of the newly formed Sun became great enough for collisions between hydrogen nuclei to overcome their electric repulsion, and bring them into the short range of the attractive nuclear force, nuclei began to stick together. When this began to happen, protons combined into deuterium and then helium, with some protons changing in the process to neutrons (plus positrons, positive electrons, which combine with electrons and annihilate into gamma-ray photons). This released nuclear energy now keeps up the high temperature of the Sun's core, and the heat also keeps the gas pressure high, keeping the Sun at its present size, and stopping gravity from compressing it any more. There is now a stable balance between gravity and pressure.

Different nuclear reactions may predominate at different stages of the Sun's existence, including the proton–proton reaction and the carbon–nitrogen cycle—which involves heavier nuclei, but whose final product is still the combination of protons to form helium.

A branch of physics, the study of controlled nuclear fusion, has tried since the 1950s to derive useful power from nuclear fusion reactions that combine small nuclei into bigger ones, typically to heat boilers, whose steam could turn turbines and produce electricity. No earthly laboratory can match one feature of the solar powerhouse: the great mass of the Sun, whose weight keeps the hot plasma compressed and confines the nuclear furnace to the Sun's core. Instead, physicists use strong magnetic fields to confine the plasma, and for fuel they use heavy forms of hydrogen, which burn more easily. Magnetic traps can be rather unstable, and any plasma hot enough and dense enough to undergo nuclear fusion tends to slip out of them after a short time. Even with ingenious tricks, the confinement in most cases lasts only a small fraction of a second. Exciton binding energy has been predicted to be key for efficient solar cells due to recent studies.

Combining nuclei

Small nuclei that are larger than hydrogen can combine into bigger ones and release energy, but in combining such nuclei, the amount of energy released is much smaller compared to hydrogen fusion. The reason is that while the overall process releases energy from letting the nuclear attraction do its work, energy must first be injected to force together positively charged protons, which also repel each other with their electric charge.

For elements that weigh more than iron (a nucleus with 26 protons), the fusion process no longer releases energy. In even heavier nuclei energy is consumed, not released, by combining similarly sized nuclei. With such large nuclei, overcoming the electric repulsion (which affects all protons in the nucleus) requires more energy than is released by the nuclear attraction (which is effective mainly between close neighbors). Conversely, energy could actually be released by breaking apart nuclei heavier than iron.

With the nuclei of elements heavier than lead, the electric repulsion is so strong that some of them spontaneously eject positive fragments, usually nuclei of helium that form stable (alpha particles). This spontaneous break-up is one of the forms of radioactivity exhibited by some nuclei.

Nuclei heavier than lead (except for bismuth, thorium, and uranium) spontaneously break up too quickly to appear in nature as primordial elements, though they can be produced artificially or as intermediates in the decay chains of heavier elements. Generally, the heavier the nuclei are, the faster they spontaneously decay.

Iron nuclei are the most stable nuclei (in particular iron-56), and the best sources of energy are therefore nuclei whose weights are as far removed from iron as possible. One can combine the lightest ones—nuclei of hydrogen (protons)—to form nuclei of helium, and that is how the Sun generates its energy. Alternatively, one can break up the heaviest ones—nuclei of uranium or plutonium—into smaller fragments, and that is what nuclear reactors do.

Nuclear binding energy

An example that illustrates nuclear binding energy is the nucleus of 12C (carbon-12), which contains 6 protons and 6 neutrons. The protons are all positively charged and repel each other, but the nuclear force overcomes the repulsion and causes them to stick together. The nuclear force is a close-range force (it is strongly attractive at a distance of 1.0 fm and becomes extremely small beyond a distance of 2.5 fm), and virtually no effect of this force is observed outside the nucleus. The nuclear force also pulls neutrons together, or neutrons and protons.

The energy of the nucleus is negative with regard to the energy of the particles pulled apart to infinite distance (just like the gravitational energy of planets of the solar system), because energy must be utilized to split a nucleus into its individual protons and neutrons. Mass spectrometers have measured the masses of nuclei, which are always less than the sum of the masses of protons and neutrons that form them, and the difference—by the formula E = mc2—gives the binding energy of the nucleus.

Nuclear fusion

The binding energy of helium is the energy source of the Sun and of most stars. The sun is composed of 74 percent hydrogen (measured by mass), an element having a nucleus consisting of a single proton. Energy is released in the sun when 4 protons combine into a helium nucleus, a process in which two of them are also converted to neutrons.

The conversion of protons to neutrons is the result of another nuclear force, known as the weak (nuclear) force. The weak force, like the strong force, has a short range, but is much weaker than the strong force. The weak force tries to make the number of neutrons and protons into the most energetically stable configuration. For nuclei containing less than 40 particles, these numbers are usually about equal. Protons and neutrons are closely related and are collectively known as nucleons. As the number of particles increases toward a maximum of about 209, the number of neutrons to maintain stability begins to outstrip the number of protons, until the ratio of neutrons to protons is about three to two.

The protons of hydrogen combine to helium only if they have enough velocity to overcome each other's mutual repulsion sufficiently to get within range of the strong nuclear attraction. This means that fusion only occurs within a very hot gas. Hydrogen hot enough for combining to helium requires an enormous pressure to keep it confined, but suitable conditions exist in the central regions of the Sun, where such pressure is provided by the enormous weight of the layers above the core, pressed inwards by the Sun's strong gravity. The process of combining protons to form helium is an example of nuclear fusion.

Producing helium from normal hydrogen would be practically impossible on earth because of the difficulty in creating deuterium. Research is being undertaken on developing a process using deuterium and tritium. The earth's oceans contain a large amount of deuterium that could be used and tritium can be made in the reactor itself from lithium, and furthermore the helium product does not harm the environment, so some consider nuclear fusion a good alternative to supply our energy needs. Experiments to carry out this form of fusion have so far only partially succeeded. Sufficiently hot deuterium and tritium must be confined. One technique is to use very strong magnetic fields, because charged particles (like those trapped in the Earth's radiation belt) are guided by magnetic field lines.

The binding energy maximum and ways to approach it by decay

In the main isotopes of light elements, such as carbon, nitrogen and oxygen, the most stable combination of neutrons and of protons are when the numbers are equal (this continues to element 20, calcium). However, in heavier nuclei, the disruptive energy of protons increases, since they are confined to a tiny volume and repel each other. The energy of the strong force holding the nucleus together also increases, but at a slower rate, as if inside the nucleus, only nucleons close to each other are tightly bound, not ones more widely separated.

The net binding energy of a nucleus is that of the nuclear attraction, minus the disruptive energy of the electric force. As nuclei get heavier than helium, their net binding energy per nucleon (deduced from the difference in mass between the nucleus and the sum of masses of component nucleons) grows more and more slowly, reaching its peak at iron. As nucleons are added, the total nuclear binding energy always increases—but the total disruptive energy of electric forces (positive protons repelling other protons) also increases, and past iron, the second increase outweighs the first. Iron-56 (56Fe) is the most efficiently bound nucleus meaning that it has the least average mass per nucleon. However, nickel-62 is the most tightly bound nucleus in terms of binding energy per nucleon. (Nickel-62's higher binding energy does not translate to a larger mean mass loss than 56Fe, because 62Ni has a slightly higher ratio of neutrons/protons than does iron-56, and the presence of the heavier neutrons increases nickel-62's average mass per nucleon).

To reduce the disruptive energy, the weak interaction allows the number of neutrons to exceed that of protons—for instance, the main isotope of iron has 26 protons and 30 neutrons. Isotopes also exist where the number of neutrons differs from the most stable number for that number of nucleons. If changing one proton into a neutron or one neutron into a proton increases the stability (lowering the mass), then this will happen through beta decay, meaning the nuclide will be radioactive.

The two methods for this conversion are mediated by the weak force, and involve types of beta decay. In the simplest beta decay, neutrons are converted to protons by emitting a negative electron and an antineutrino. This is always possible outside a nucleus because neutrons are more massive than protons by an equivalent of about 2.5 electrons. In the opposite process, which only happens within a nucleus, and not to free particles, a proton may become a neutron by ejecting a positron and an electron neutrino. This is permitted if enough energy is available between parent and daughter nuclides to do this (the required energy difference is equal to 1.022 MeV, which is the mass of 2 electrons). If the mass difference between parent and daughter is less than this, a proton-rich nucleus may still convert protons to neutrons by the process of electron capture, in which a proton simply electron captures one of the atom's K orbital electrons, emits a neutrino, and becomes a neutron.

Among the heaviest nuclei, starting with tellurium nuclei (element 52) containing 104 or more nucleons, electric forces may be so destabilizing that entire chunks of the nucleus may be ejected, usually as alpha particles, which consist of two protons and two neutrons (alpha particles are fast helium nuclei). (Beryllium-8 also decays, very quickly, into two alpha particles.) This type of decay becomes more and more probable as elements rise in atomic weight past 104.

The curve of binding energy is a graph that plots the binding energy per nucleon against atomic mass. This curve has its main peak at iron and nickel and then slowly decreases again, and also a narrow isolated peak at helium, which is more stable than other low-mass nuclides. The heaviest nuclei in more than trace quantities in nature, uranium 238U, are unstable, but having a half-life of 4.5 billion years, close to the age of the Earth, they are still relatively abundant; they (and other nuclei heavier than helium) have formed in stellar evolution events like supernova explosions preceding the formation of the solar system. The most common isotope of thorium, 232Th, also undergoes alpha particle emission, and its half-life (time over which half a number of atoms decays) is even longer, by several times. In each of these, radioactive decay produces daughter isotopes that are also unstable, starting a chain of decays that ends in some stable isotope of lead.

Calculation of nuclear binding energy

Calculation can be employed to determine the nuclear binding energy of nuclei. The calculation involves determining the mass defect, converting it into energy, and expressing the result as energy per mole of atoms, or as energy per nucleon.

Conversion of mass defect into energy

Mass defect is defined as the difference between the mass of a nucleus, and the sum of the masses of the nucleons of which it is composed. The mass defect is determined by calculating three quantities. These are: the actual mass of the nucleus, the composition of the nucleus (number of protons and of neutrons), and the masses of a proton and of a neutron. This is then followed by converting the mass defect into energy. This quantity is the nuclear binding energy, however it must be expressed as energy per mole of atoms or as energy per nucleon.

Fission and fusion

Nuclear energy is released by the splitting (fission) or merging (fusion) of the nuclei of atom(s). The conversion of nuclear massenergy to a form of energy, which can remove some mass when the energy is removed, is consistent with the mass–energy equivalence formula:

ΔE = Δm c2,

where

ΔE = energy release,
Δm = mass defect,

and c = the speed of light in a vacuum.

Nuclear energy was first discovered by French physicist Henri Becquerel in 1896, when he found that photographic plates stored in the dark near uranium were blackened like X-ray plates (X-rays had recently been discovered in 1895).

Nickel-62 has the highest binding energy per nucleon of any isotope. If an atom of lower average binding energy per nucleon is changed into two atoms of higher average binding energy per nucleon, energy is emitted. (The average here is the weighted average.) Also, if two atoms of lower average binding energy fuse into an atom of higher average binding energy, energy is emitted. The chart shows that fusion, or combining, of hydrogen nuclei to form heavier atoms releases energy, as does fission of uranium, the breaking up of a larger nucleus into smaller parts.

Nuclear energy is released by three exoenergetic (or exothermic) processes:

  • Radioactive decay, where a neutron or proton in the radioactive nucleus decays spontaneously by emitting either particles, electromagnetic radiation (gamma rays), or both. Note that for radioactive decay, it is not strictly necessary for the binding energy to increase. What is strictly necessary is that the mass decrease. If a neutron turns into a proton and the energy of the decay is less than 0.782343 MeV, the difference between the masses of the neutron and proton multiplied by the speed of light squared, (such as rubidium-87 decaying to strontium-87), the average binding energy per nucleon will actually decrease.
  • Fusion, two atomic nuclei fuse together to form a heavier nucleus
  • Fission, the breaking of a heavy nucleus into two (or more rarely three) lighter nuclei, and some neutrons

The energy producing nuclear interaction of light elements requires some clarification. Frequently, all light element energy-producing nuclear interactions are classified as fusion, however by the given definition above fusion requires that the products include a nucleus that is heavier than the reactants. Light elements can experience energy producing nuclear interactions by fusion or fission. All energy producing nuclear interactions between two Hydrogen isotopes and between hydrogen and helium-3 are fusion as the product of these interactions include a heavier nucleus. However, the energy producing nuclear interaction of a neutron with Lithium–6 produces Hydrogen-3 and Helium-4, each a lighter nucleus. By the definition above, this nuclear interaction is fission, not fusion. When fission is caused by a neutron, as in this case, it is called induced fission.

Light element energy-producing nuclear interactions:

Fusion

1H + 1H → 2Q ≈ 1.44 MeV
1H + 2H → 3He  Q ≈ 5.52 MeV
2H + 2H → 3H + p+  Q ≈ 4.08 MeV
2H + 2H → 3He + n  Q ≈ 3.27 MeV
2H + 3H → 4He + n  Q ≈ 17.53 MeV
2H + 3He → 4He + p+  Q ≈ 18.34 MeV
3He + 3He → 4He + p+ + p+  Q ≈ 12.85 MeV
3He + 6Li → 4He + 4He + p+  Q ≈ 22.36 MeV

Fission

6Li + p+4He + 3He  Q ≈ 4.02 MeV
6Li + 2H → 4He + 4He  Q ≈ 11.18 MeV
6Li + 3He → 4He + 4He + p+  Q ≈ 0.94 MeV
7Li + p+4He + 4He  Q ≈ 17.34 MeV
7Li + 2H → 4He + 4He + n  Q ≈ 15.11 MeV
11B + p+4He + 4He + 4He  Q ≈ 8.68 MeV

Binding energy for atoms

The binding energy of an atom (including its electrons) is not exactly the same as the binding energy of the atom's nucleus. The measured mass deficits of isotopes are always listed as mass deficits of the neutral atoms of that isotope, and mostly in MeV/c2. As a consequence, the listed mass deficits are not a measure of the stability or binding energy of isolated nuclei, but for the whole atoms. There is a very practical reason for this, namely that it is very hard to totally ionize heavy elements, i.e. strip them of all of their electrons.

This practice is useful for other reasons, too: stripping all the electrons from a heavy unstable nucleus (thus producing a bare nucleus) changes the lifetime of the nucleus, or the nucleus of a stable neutral atom can likewise become unstable after stripping, indicating that the nucleus cannot be treated independently. Examples of this have been shown in bound-state β decay experiments performed at the GSI heavy ion accelerator. This is also evident from phenomena like electron capture. Theoretically, in orbital models of heavy atoms, the electron orbits partially inside the nucleus (it does not orbit in a strict sense, but has a non-vanishing probability of being located inside the nucleus).

A nuclear decay happens to the nucleus, meaning that properties ascribed to the nucleus change in the event. In the field of physics the concept of "mass deficit" as a measure for "binding energy" means "mass deficit of the neutral atom" (not just the nucleus) and is a measure for stability of the whole atom.

Nuclear binding energy curve

Binding energy per nucleon for a selection of nuclides. The nuclide with the highest value, 62Ni, does not appear. The horizontal lines are at 8 and 8.5 MeV.

In the periodic table of elements, the series of light elements from hydrogen up to sodium is observed to exhibit generally increasing binding energy per nucleon as the atomic mass increases. This increase is generated by increasing forces per nucleon in the nucleus, as each additional nucleon is attracted by other nearby nucleons, and thus more tightly bound to the whole. Helium-4 and oxygen-16 are particularly stable exceptions to the trend (see figure on the right). This is because they are doubly magic, meaning their protons and neutrons both fill their respective nuclear shells.

The region of increasing binding energy is followed by a region of relative stability (saturation) in the sequence from about mass 30 through about mass 90. In this region, the nucleus has become large enough that nuclear forces no longer completely extend efficiently across its width. Attractive nuclear forces in this region, as atomic mass increases, are nearly balanced by repellent electromagnetic forces between protons, as the atomic number increases.

Finally, in the heavier elements, there is a gradual decrease in binding energy per nucleon as atomic number increases. In this region of nuclear size, electromagnetic repulsive forces are beginning to overcome the strong nuclear force attraction.

At the peak of binding energy, nickel-62 is the most tightly bound nucleus (per nucleon), followed by iron-58 and iron-56. This is the approximate basic reason why iron and nickel are very common metals in planetary cores, since they are produced profusely as end products in supernovae and in the final stages of silicon burning in stars. However, it is not binding energy per defined nucleon (as defined above), which controls exactly which nuclei are made, because within stars, neutrons and protons can inter-convert to release even more energy per generic nucleon. In fact, it has been argued that photodisintegration of 62Ni to form 56Fe may be energetically possible in an extremely hot star core, due to this beta decay conversion of neutrons to protons. This favors the creation of 56Fe, the nuclide with the lowest mass per nucleon. However, at high temperatures not all matter will be in the lowest energy state. This energetic maximum should also hold for ambient conditions, say T = 298 K and p = 1 atm, for neutral condensed matter consisting of 56Fe atoms—however, in these conditions nuclei of atoms are inhibited from fusing into the most stable and low energy state of matter.

Elements with high binding energy per nucleon, like iron and nickel, cannot undergo fission, but they can theoretically undergo fusion with hydrogen, deuterium, helium, and carbon, for instance:

62Ni + 12C → 74Se  Q = 5.467 MeV

It is generally believed that iron-56 is more common than nickel isotopes in the universe for mechanistic reasons, because its unstable progenitor nickel-56 is copiously made by staged build-up of 14 helium nuclei inside supernovas, where it has no time to decay to iron before being released into the interstellar medium in a matter of a few minutes, as the supernova explodes. However, nickel-56 then decays to cobalt-56 within a few weeks, then this radioisotope finally decays to iron-56 with a half life of about 77.3 days. The radioactive decay-powered light curve of such a process has been observed to happen in type II supernovae, such as SN 1987A. In a star, there are no good ways to create nickel-62 by alpha-addition processes, or else there would presumably be more of this highly stable nuclide in the universe.

Binding energy and nuclide masses

The fact that the maximum binding energy is found in medium-sized nuclei is a consequence of the trade-off in the effects of two opposing forces that have different range characteristics. The attractive nuclear force (strong nuclear force), which binds protons and neutrons equally to each other, has a limited range due to a rapid exponential decrease in this force with distance. However, the repelling electromagnetic force, which acts between protons to force nuclei apart, falls off with distance much more slowly (as the inverse square of distance). For nuclei larger than about four nucleons in diameter, the additional repelling force of additional protons more than offsets any binding energy that results between further added nucleons as a result of additional strong force interactions. Such nuclei become increasingly less tightly bound as their size increases, though most of them are still stable. Finally, nuclei containing more than 209 nucleons (larger than about 6 nucleons in diameter) are all too large to be stable, and are subject to spontaneous decay to smaller nuclei.

Nuclear fusion produces energy by combining the very lightest elements into more tightly bound elements (such as hydrogen into helium), and nuclear fission produces energy by splitting the heaviest elements (such as uranium and plutonium) into more tightly bound elements (such as barium and krypton). The nuclear fission of a few light elements (such as Lithium) occurs because Helium-4 is a product and a more tightly bound element than slightly heavier elements. Both processes produce energy as the sum of the masses of the products is less than the sum of the masses of the reacting nuclei.

As seen above in the example of deuterium, nuclear binding energies are large enough that they may be easily measured as fractional mass deficits, according to the equivalence of mass and energy. The atomic binding energy is simply the amount of energy (and mass) released, when a collection of free nucleons are joined together to form a nucleus.

Nuclear binding energy can be computed from the difference in mass of a nucleus, and the sum of the masses of the number of free neutrons and protons that make up the nucleus. Once this mass difference, called the mass defect or mass deficiency, is known, Einstein's mass–energy equivalence formula E = mc2 can be used to compute the binding energy of any nucleus. Early nuclear physicists used to refer to computing this value as a "packing fraction" calculation.

For example, the dalton (1 Da) is defined as 1/12 of the mass of a 12C atom—but the atomic mass of a 1H atom (which is a proton plus electron) is 1.007825 Da, so each nucleon in 12C has lost, on average, about 0.8% of its mass in the form of binding energy.

Semiempirical formula for nuclear binding energy

For a nucleus with A nucleons, including Z protons and N neutrons, a semi-empirical formula for the binding energy (EB) per nucleon is:

where the coefficients are given by: ; ; ; ; .

The first term is called the saturation contribution and ensures that the binding energy per nucleon is the same for all nuclei to a first approximation. The term is a surface tension effect and is proportional to the number of nucleons that are situated on the nuclear surface; it is largest for light nuclei. The term is the Coulomb electrostatic repulsion; this becomes more important as increases. The symmetry correction term takes into account the fact that in the absence of other effects the most stable arrangement has equal numbers of protons and neutrons; this is because the n–p interaction in a nucleus is stronger than either the n−n or p−p interaction. The pairing term is purely empirical; it is + for even–even nuclei and − for odd–odd nuclei. When A is odd, the pairing term is identically zero.

A graphical representation of the semi-empirical binding energy formula. The binding energy per nucleon in MeV (highest numbers in yellow, in excess of 8.5 MeV per nucleon) is plotted for various nuclides as a function of Z, the atomic number (y-axis), vs. N, the number of neutrons (x-axis). The highest numbers are seen for Z = 26 (iron).

Example values deduced from experimentally measured atom nuclide masses

The following table lists some binding energies and mass defect values. Notice also that we use 1 Da = 931.494028(23) MeV/c2. To calculate the binding energy we use the formula Z (mp + me) + N mn − mnuclide where Z denotes the number of protons in the nuclides and N their number of neutrons. We take mp = 938.2720813(58) MeV/c2, me = 0.5109989461(30) MeV/c2 and mn = 939.5654133(58) MeV/c2. The letter A denotes the sum of Z and N (number of nucleons in the nuclide). If we assume the reference nucleon has the mass of a neutron (so that all "total" binding energies calculated are maximal) we could define the total binding energy as the difference from the mass of the nucleus, and the mass of a collection of A free neutrons. In other words, it would be (Z + Nmn − mnuclide. The "total binding energy per nucleon" would be this value divided by A.

Most strongly bound nuclides atoms
nuclide Z N mass excess total mass total mass / A total binding energy / A mass defect binding energy binding energy / A
56Fe 26 30 −60.6054 MeV 55.934937 Da 0.9988372 Da 9.1538 MeV 0.528479 Da 492.275 MeV 8.7906 MeV
58Fe 26 32 −62.1534 MeV 57.932276 Da 0.9988496 Da 9.1432 MeV 0.547471 Da 509.966 MeV 8.7925 MeV
60Ni 28 32 −64.472 MeV 59.93079 Da 0.9988464 Da 9.1462 MeV 0.565612 Da 526.864 MeV 8.7811 MeV
62Ni 28 34 −66.7461 MeV 61.928345 Da 0.9988443 Da 9.1481 MeV 0.585383 Da 545.281 MeV 8.7948 MeV

56Fe has the lowest nucleon-specific mass of the four nuclides listed in this table, but this does not imply it is the strongest bound atom per hadron, unless the choice of beginning hadrons is completely free. Iron releases the largest energy if any 56 nucleons are allowed to build a nuclide—changing one to another if necessary, The highest binding energy per hadron, with the hadrons starting as the same number of protons Z and total nucleons A as in the bound nucleus, is 62Ni. Thus, the true absolute value of the total binding energy of a nucleus depends on what we are allowed to construct the nucleus out of. If all nuclei of mass number A were to be allowed to be constructed of A neutrons, then 56Fe would release the most energy per nucleon, since it has a larger fraction of protons than 62Ni. However, if nuclei are required to be constructed of only the same number of protons and neutrons that they contain, then nickel-62 is the most tightly bound nucleus, per nucleon.

Some light nuclides resp. atoms
nuclide Z N mass excess total mass total mass / A total binding energy / A mass defect binding energy binding energy / A
n 0 1 8.0716 MeV 1.008665 Da 1.008665 Da 0.0000 MeV 0 Da 0 MeV 0 MeV
1H 1 0 7.2890 MeV 1.007825 Da 1.007825 Da 0.7826 MeV 0.0000000146 Da 0.0000136 MeV 13.6 eV
2H 1 1 13.13572 MeV 2.014102 Da 1.007051 Da 1.50346 MeV 0.002388 Da 2.22452 MeV 1.11226 MeV
3H 1 2 14.9498 MeV 3.016049 Da 1.005350 Da 3.08815 MeV 0.0091058 Da 8.4820 MeV 2.8273 MeV
3He 2 1 14.9312 MeV 3.016029 Da 1.005343 Da 3.09433 MeV 0.0082857 Da 7.7181 MeV 2.5727 MeV

In the table above it can be seen that the decay of a neutron, as well as the transformation of tritium into helium-3, releases energy; hence, it manifests a stronger bound new state when measured against the mass of an equal number of neutrons (and also a lighter state per number of total hadrons). Such reactions are not driven by changes in binding energies as calculated from previously fixed N and Z numbers of neutrons and protons, but rather in decreases in the total mass of the nuclide/per nucleon, with the reaction. (Note that the Binding Energy given above for hydrogen-1 is the atomic binding energy, not the nuclear binding energy which would be zero.)

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...