Search This Blog

Friday, January 10, 2020

Electrification

From Wikipedia, the free encyclopedia

Electrification is the process of powering by electricity and, in many contexts, the introduction of such power by changing over from an earlier power source. The broad meaning of the term, such as in the history of technology, economic history, and economic development, usually applies to a region or national economy. Broadly speaking, electrification was the build-out of the electricity generation and electric power distribution systems that occurred in Britain, the United States, and other now-developed countries from the mid-1880s until around 1950 and is still in progress in rural areas in some developing countries. This included the transition in manufacturing from line shaft and belt drive using steam engines and water power to electric motors.

The electrification of particular sectors of the economy is called by terms such as factory electrification, household electrification, rural electrification or railway electrification. It may also apply to changing industrial processes such as smelting, melting, separating or refining from coal or coke heating, or chemical processes to some type of electric process such as electric arc furnace, electric induction or resistance heating, or electrolysis or electrolytic separating.

Electrification was called "the greatest engineering achievement of the 20th Century" by the National Academy of Engineering.

History of electrification

The earliest commercial uses of electricity were electroplating and the telegraph

Development of magnetos, dynamos and generators

Faraday disk, the first electric generator. The horseshoe-shaped magnet (A) created a magnetic field through the disk (D). When the disk was turned, this induced an electric current radially outward from the center toward the rim. The current flowed out through the sliding spring contact m, through the external circuit, and back into the center of the disk through the axle.

In the years of 1831–1832, Michael Faraday discovered the operating principle of electromagnetic generators. The principle, later called Faraday's law, is that an electromotive force is generated in an electrical conductor that is subjected to a varying magnetic flux, as for example, a wire moving through a magnetic field. He also built the first electromagnetic generator, called the Faraday disk, a type of homopolar generator, using a copper disc rotating between the poles of a horseshoe magnet. It produced a small DC voltage.

Around 1832, Hippolyte Pixii improved the magneto by using a wire wound horseshoe, with the extra coils of conductor generating more current, but it was AC. André-Marie Ampère suggested a means of converting current from Pixii's magneto to DC using a rocking switch. Later segmented commutators were used to produce direct current.

William Fothergill Cooke and Charles Wheatstone developed a telegraph around 1838-40. In 1840 Wheatstone was using a magneto that he developed to power the telegraph. Wheatstone and Cooke made an important improvement in electrical generation by using a battery-powered electromagnet in place of a permanent magnet, which they patented in 1845. The self-excited magnetic field dynamo did away with the battery to power electromagnets. This type of dynamo was made by several people in 1866. 

The first practical generator, the Gramme machine was made by Z.T Gramme, who sold many of these machines in the 1870s. British engineer R. E. B. Crompton improved the generator to allow better air cooling and made other mechanical improvements. Compound winding, which gave more stable voltage with load, improved operating characteristics of generators.

The improvements in electrical generation technology increased the efficiency and reliability greatly in the 19th century. The first magnetos only converted a few percent of mechanical energy to electricity. By the end of the 19th century the highest efficiencies were over 90%. 

Electric lighting


Arc lighting

Yablochkov's demonstration of his brilliant arc lights at the 1878 Paris Exposition along the Avenue de l'Opéra triggered a steep sell off of gas utility stocks.
Sir Humphry Davy invented the carbon arc lamp in 1802 upon discovering that electricity could produce a light arc with carbon electrodes. However, it was not used to any great extent until a practical means of generating electricity was developed.

Carbon arc lamps were started by making contact between two carbon electrodes, which were then separated to within a narrow gap. Because the carbon burned away, the gap had to be constantly readjusted. Several mechanisms were developed to regulate the arc. A common approach was to feed a carbon electrode by gravity and maintain the gap with a pair of electromagnets, one of which retracted the upper carbon after the arc was started and the second controlled a brake on the gravity feed.

Arc lamps of the time had very intense light output – in the range of 4000 candlepower (candelas) – and released a lot of heat, and they were a fire hazard, all of which made them inappropriate for lighting homes.

In the 1850s, many of these problems were solved by the arc lamp invented by William Petrie and William Staite. The lamp used a magneto-electric generator and had a self-regulating mechanism to control the gap between the two carbon rods. Their light was used to light up the National Gallery in London and was a great novelty at the time. These arc lamps and designs similar to it, powered by large magnetos, were first installed on English lighthouses in the mid 1850s, but the power limitations prevented these models from being a proper success.

The first successful arc lamp was developed by Russian engineer Pavel Yablochkov, and used the Gramme generator. Its advantage lay in the fact that it didn't require the use of a mechanical regulator like its predecessors. It was first exhibited at the Paris Exposition of 1878 and was heavily promoted by Gramme. The arc light was installed along the half mile length of Avenue de l'Opéra, Place du Theatre Francais and around the Place de l'Opéra in 1878.

British engineer R. E. B. Crompton developed a more sophisticated design in 1878 which gave a much brighter and steadier light than the Yablochkov candle. In 1878, he formed Crompton & Co. and began to manufacture, sell and install the Crompton lamp. His concern was one of the first electrical engineering firms in the world. 

Incandescent light bulbs

Various forms of incandescent light bulbs had numerous inventors; however, the most successful early bulbs were those that used a carbon filament sealed in a high vacuum. These were invented by Joseph Swan in 1878 in Britain and by Thomas Edison in 1879 in the US. Edison’s lamp was more successful than Swan’s because Edison used a thinner filament, giving it higher resistance and thus conducting much less current. Edison began commercial production of carbon filament bulbs in 1880. Swan's light began commercial production in 1881.

Swan's house, in Low Fell, Gateshead, was the world's first to have working light bulbs installed. The Lit & Phil Library in Newcastle, was the first public room lit by electric light, and the Savoy Theatre was the first public building in the world lit entirely by electricity.

Central power stations and isolated systems

The first central station providing public power is believed to be one at Godalming, Surrey, U.K. autumn 1881. The system was proposed after the town failed to reach an agreement on the rate charged by the gas company, so the town council decided to use electricity. The system lit up arc lamps on the main streets and incandescent lamps on a few side streets with hydroelectric power. By 1882 between 8 and 10 households were connected, with a total of 57 lights. The system was not a commercial success and the town reverted to gas.

The first large scale central distribution supply plant was opened at Holborn Viaduct in London in 1882. Equipped with 1000 incandescent lightbulbs that replaced the older gas lighting, the station lit up Holborn Circus including the offices of the General Post Office and the famous City Temple church. The supply was a direct current at 110 V; due to power loss in the copper wires, this amounted to 100 V for the customer. 

Within weeks, a parliamentary committee recommended passage of the landmark 1882 Electric Lighting Act, which allowed the licensing of persons, companies or local authorities to supply electricity for any public or private purposes.

The first large scale central power station in America was Edison's Pearl Street Station in New York, which began operating in September 1882. The station had six 200 horsepower Edison dynamos, each powered by a separate steam engine. It was located in a business and commercial district and supplied 110 volt direct current to 85 customers with 400 lamps. By 1884 Pearl Street was supplying 508 customers with 10,164 lamps.

By the mid-1880s, other electric companies were establishing central power stations and distributing electricity, including Crompton & Co. and the Swan Electric Light Company in the UK, Thomson-Houston Electric Company and Westinghouse in the US and Siemens in Germany. By 1890 there were 1000 central stations in operation. The 1902 census listed 3,620 central stations. By 1925 half of power was provided by central stations.

Load factor & isolated systems

One of the biggest problems facing the early power companies was the hourly variable demand. When lighting was practically the only use of electricity, demand was high during the first hours before the workday and the evening hours when demand peaked. As a consequence, most early electric companies did not provide daytime service, with two-thirds providing no daytime service in 1897.

The ratio of the average load to the peak load of a central station is called the load factor. For electric companies to increase profitability and lower rates, it was necessary to increase the load factor. The way this was eventually accomplished was through motor load. Motors are used more during daytime and many run continuously. Electric street railways were ideal for load balancing. Many electric railways generated their own power and also sold power and operated distribution systems.

The load factor adjusted upward by the turn of the 20th century—at Pearl Street the load factor increased from 19.3% in 1884 to 29.4% in 1908. By 1929, the load factor around the world was greater than 50%, mainly due to motor load.

Before widespread power distribution from central stations, many factories, large hotels, apartment and office buildings had their own power generation. Often this was economically attractive because the exhaust steam could be used for building and industrial process heat, which today is known as cogeneration or combined heat and power (CHP). Most self-generated power became uneconomical as power prices fell. As late as the early 20th century, isolated power systems greatly outnumbered central stations. Cogeneration is still commonly practiced in many industries that use large amounts of both steam and power, such as pulp and paper, chemicals and refining. The continued use of private electric generators is called microgeneration

Direct current electric motors

The first commutator DC electric motor capable of turning machinery was invented by the British scientist William Sturgeon in 1832. The crucial advance that this represented over the motor demonstrated by Michael Faraday was the incorporation of a commutator. This allowed Sturgeon's motor to be the first capable of providing continuous rotary motion.

Frank J. Sprague improved on the DC motor in 1884 by solving the problem of maintaining a constant speed with varying load and reducing sparking from the brushes. Sprague sold his motor through Edison Co. It is easy to vary speed with DC motors, which made them suited for a number of applications such as electric street railways, machine tools and certain other industrial applications where speed control was desirable.

Alternating current

Although the first power stations supplied direct current, the distribution of alternating current soon became the most favored option. The main advantages of AC were that it could be transformed to high voltage to reduce transmission losses and that AC motors could easily run at constant speeds.

Alternating current technology was rooted in Michael Faraday's 1830–31 discovery that a changing magnetic field can induce an electric current in a circuit.

The first person to conceive of a rotating magnetic field was Walter Baily who gave a workable demonstration of his battery-operated polyphase motor aided by a commutator on June 28, 1879 to the Physical Society of London. Nearly identical to Baily’s apparatus, French electrical engineer Marcel Deprez in 1880 published a paper that identified the rotating magnetic field principle and that of a two-phase AC system of currents to produce it. In 1886, English engineer Elihu Thomson built an AC motor by expanding upon the induction-repulsion principle and his wattmeter.

It was in the 1880s that the technology was commercially developed for large scale electricity generation and transmission. In 1882 the British inventor and electrical engineer Sebastian de Ferranti, working for the company Siemens collaborated with the distinguished physicist Lord Kelvin to pioneer AC power technology including an early transformer.

A power transformer developed by Lucien Gaulard and John Dixon Gibbs was demonstrated in London in 1881, and attracted the interest of Westinghouse. They also exhibited the invention in Turin in 1884, where it was adopted for an electric lighting system. Many of their designs were adapted to the particular laws governing electrical distribution in the UK.

Sebastian Ziani de Ferranti went into this business in 1882 when he set up a shop in London designing various electrical devices. Ferranti believed in the success of alternating current power distribution early on, and was one of the few experts in this system in the UK. With the help of Lord Kelvin, Ferranti pioneered the first AC power generator and transformer in 1882. John Hopkinson, a British physicist, invented the three-wire (three-phase) system for the distribution of electrical power, for which he was granted a patent in 1882.

The Italian inventor Galileo Ferraris invented a polyphase AC induction motor in 1885. The idea was that two out-of-phase, but synchronized, currents might be used to produce two magnetic fields that could be combined to produce a rotating field without any need for switching or for moving parts. Other inventors were the American engineers Charles S. Bradley and Nikola Tesla, and the German technician Friedrich August Haselwander. They were able to overcome the problem of starting up the AC motor by using a rotating magnetic field produced by a poly-phase current. Mikhail Dolivo-Dobrovolsky introduced the first three-phase induction motor in 1890, a much more capable design that became the prototype used in Europe and the U.S. By 1895 GE and Westinghouse both had AC motors on the market. With single phase current either a capacitor or coil (creating inductance) can be used on part of the circuit inside the motor to create a rotating magnetic field. Multi-speed AC motors that have separately wired poles have long been available, the most common being two speed. Speed of these motors is changed by switching sets of poles on or off, which was done with a special motor starter for larger motors, or a simple multiple speed switch for fractional horsepower motors. 

AC power stations

The first AC power station was built by the English electrical engineer Sebastian de Ferranti. In 1887 the London Electric Supply Corporation hired Ferranti for the design of their power station at Deptford. He designed the building, the generating plant and the distribution system. It was built at the Stowage, a site to the west of the mouth of Deptford Creek once used by the East India Company. Built on an unprecedented scale and pioneering the use of high voltage (10,000 V) AC current, it generated 800 kilowatts and supplied central London. On its completion in 1891 it was the first truly modern power station, supplying high-voltage AC power that was then "stepped down" with transformers for consumer use on each street. This basic system remains in use today around the world.

In America, George Westinghouse who had become interested in the power transformer developed by Gaulard and Gibbs, began to develop his AC lighting system, using a transmission system with a 20:1 step up voltage with step-down. In 1890 Westinghouse and Stanley built a system to transmit power several miles to a mine in Colorado. A decision was taken to use AC for power transmission from the Niagara Power Project to Buffalo, New York. Proposals submitted by vendors in 1890 included DC and compressed air systems. A combination DC and compressed air system remained under consideration until late in the schedule. Despite the protestations of the Niagara commissioner William Thomson (Lord Kelvin) the decision was taken to build an AC system, which had been proposed by both Westinghouse and General Electric. In October 1893 Westinghouse was awarded the contract to provide the first three 5,000 hp, 250 rpm, 25 Hz, two phase generators. The hydro power plant went online in 1895, and it was the largest one until that date. 

By the 1890s, single and poly-phase AC was undergoing rapid introduction. In the U.S. by 1902, 61% of generating capacity was AC, increasing to 95% in 1917. Despite the superiority of alternating current for most applications, a few existing DC systems continued to operate for several decades after AC became the standard for new systems. 

Three-phase rotating magnetic field of an AC motor. The three poles are each connected to a separate wire. Each wire carries current 120 degrees apart in phase. Arrows show the resulting magnetic force vectors. Three phase current is used in commerce and industry.
 

Steam turbines

The efficiency of steam prime movers in converting the heat energy of fuel into mechanical work was a critical factor in the economic operation of steam central generating stations. Early projects used reciprocating steam engines, operating at relatively low speeds. The introduction of the steam turbine fundamentally changed the economics of central station operations. Steam turbines could be made in larger ratings than reciprocating engines, and generally had higher efficiency. The speed of steam turbines did not fluctuate cyclically during each revolution; making parallel operation of AC generators feasible, and improved the stability of rotary converters for production of direct current for traction and industrial uses. Steam turbines ran at higher speed than reciprocating engines, not being limited by the allowable speed of a piston in a cylinder. This made them more compatible with AC generators with only two or four poles; no gearbox or belted speed increaser was needed between the engine and the generator. It was costly and ultimately impossible to provide a belt-drive between a low-speed engine and a high-speed generator in the very large ratings required for central station service.

The modern steam turbine was invented in 1884 by the British Sir Charles Parsons, whose first model was connected to a dynamo that generated 7.5 kW (10 hp) of electricity. The invention of Parson's steam turbine made cheap and plentiful electricity possible. Parsons turbines were widely introduced in English central stations by 1894; the first electric supply company in the world to generate electricity using turbo generators was Parsons' own electricity supply company Newcastle and District Electric Lighting Company, set up in 1894. Within Parson's lifetime, the generating capacity of a unit was scaled up by about 10,000 times.

An 1899 Parsons steam turbine linked directly to a dynamo

The first U.S. turbines were two De Leval units at Edison Co. in New York in 1895. The first U.S. Parsons turbine was at Westinghouse Air Brake Co. near Pittsburgh.

Steam turbines also had capital cost and operating advantages over reciprocating engines. The condensate from steam engines was contaminated with oil and could not be reused, while condensate from a turbine is clean and typically reused. Steam turbines were a fraction of the size and weight of comparably rated reciprocating steam engine. Steam turbines can operate for years with almost no wear. Reciprocating steam engines required high maintenance. Steam turbines can be manufactured with capacities far larger than any steam engines ever made, giving important economies of scale

Steam turbines could be built to operate on higher pressure and temperature steam. A fundamental principle of thermodynamics is that the higher the temperature of the steam entering an engine, the higher the efficiency. The introduction of steam turbines motivated a series of improvements in temperatures and pressures. The resulting increased conversion efficiency lowered electricity prices.

The power density of boilers was increased by using forced combustion air and by using compressed air to feed pulverized coal. Also, coal handling was mechanized and automated.

Electrical grid

With the realization of long distance power transmission it was possible to interconnect different central stations to balance loads and improve load factors. Interconnection became increasingly desirable as electrification grew rapidly in the early years of the 20th century. 

Charles Merz, of the Merz & McLellan consulting partnership, built the Neptune Bank Power Station near Newcastle upon Tyne in 1901, and by 1912 had developed into the largest integrated power system in Europe. In 1905 he tried to influence Parliament to unify the variety of voltages and frequencies in the country's electricity supply industry, but it was not until World War I that Parliament began to take this idea seriously, appointing him head of a Parliamentary Committee to address the problem. In 1916 Merz pointed out that the UK could use its small size to its advantage, by creating a dense distribution grid to feed its industries efficiently. His findings led to the Williamson Report of 1918, which in turn created the Electricity Supply Bill of 1919. The bill was the first step towards an integrated electricity system in the UK.

The more significant Electricity (Supply) Act of 1926, led to the setting up of the National Grid. The Central Electricity Board standardised the nation's electricity supply and established the first synchronised AC grid, running at 132 kilovolts and 50 Hertz. This started operating as a national system, the National Grid, in 1938. 

In the United States it became a national objective after the power crisis during the summer of 1918 in the midst of World War I to consolidate supply. In 1934 the Public Utility Holding Company Act recognized electric utilities as public goods of importance along with gas, water, and telephone companies and thereby were given outlined restrictions and regulatory oversight of their operations.

Household electrification

The electrification of households in Europe and North America began in the early 20th century in major cities and in areas served by electric railways and increased rapidly until about 1930 when 70% of households were electrified in the U.S.

Rural areas were electrified first in Europe, and in the US the Rural Electric Administration, established in 1935 brought electrification to rural areas.

Historical cost of electricity

Central station electric power generating provided power more efficiently and at lower cost than small generators. The capital and operating cost per unit of power were also cheaper with central stations. The cost of electricity fell dramatically in the first decades of the twentieth century due to the introduction of steam turbines and the improved load factor after the introduction of AC motors. As electricity prices fell, usage increased dramatically and central stations were scaled up to enormous sizes, creating significant economies of scale. For the historical cost see Ayres-Warr (2002) Fig. 7.

Benefits of electrification


Benefits of electric lighting

Electric lighting was highly desirable. The light was much brighter than oil or gas lamps, and there was no soot. Although early electricity was very expensive compared to today, it was far cheaper and more convenient than oil or gas lighting. Electric lighting was so much safer than oil or gas that some companies were able to pay for the electricity with the insurance savings.

Pre-electric power

"One of the inventions most important to a class of highly skilled workers (engineers) would be a small motive power - ranging perhaps from the force of from half a man to that of two horses, which might commence as well as cease its action at a moment's notice, require no expense of time for its management and be of modest cost both in original cost and in daily expense." Charles Babbage, 1851
To be efficient steam engines needed to be several hundred horsepower. Steam engines and boilers also required operators and maintenance. For these reasons the smallest commercial steam engines were about 2 horsepower. This was above the need for many small shops. Also, a small steam engine and boiler cost about $7,000 while an old blind horse that could develop 1/2 horsepower cost $20 or less. Machinery to use horses for power cost $300 or less.

Threshing machine in 1881.

Many power requirements were less than that of a horse. Shop machines, such as woodworking lathes, were often powered with a one- or two-man crank. Household sewing machines were powered with a foot treadle; however, factory sewing machines were steam-powered from a line shaft. Dogs were sometimes used on machines such as a treadmill, which could be adapted to churn butter.

In the late 19th century specially designed power buildings leased space to small shops. These building supplied power to the tenants from a steam engine through line shafts.

Electric motors were several times more efficient than small steam engines because central station generation was more efficient than small steam engines and because line shafts and belts had high friction losses.

Electric motors were more efficient than human or animal power. The conversion efficiency for animal feed to work is between 4 and 5% compared to over 30% for electricity generated using coal.

Economic impact of electrification

Electrification and economic growth are highly correlated. In economics, the efficiency of electrical generation has been shown to correlate with technological progress.

In the U.S. from 1870-80 each man-hour was provided with .55 hp. In 1950 each man-hour was provided with 5 hp, or a 2.8% annual increase, declining to 1.5% from 1930-50. The period of electrification of factories and households from 1900 to 1940, was one of high productivity and economic growth. 

Most studies of electrification and electric grids focused on industrial core countries in Europe and the United States. Elsewhere, wired electricity was often carried on and through the circuits of colonial rule. Some historians and sociologists considered the interplay of colonial politics and the development of electric grids: in India, Rao  showed that linguistics-based regional politics — not techno-geographical considerations — led to the creation of two separate grids; in colonial Zimbabwe (Rhodesia), Chikowero showed that electrification was racially based and served the white settler community while excluding Africans; and in Mandate Palestine, Shamir claimed that British electric concessions to a Zionist-owned company deepened the economic disparities between Arabs and Jews. 

Power sources for generation of electricity

[DJS -- Nuclear power not mentioned.  Bias?]
Most electricity is generated by thermal power stations or steam plants, the majority of which are fossil fuel power stations that burn coal, natural gas, fuel oil or bio-fuels, such as wood waste and black liquor from chemical pulping.

The most efficient thermal system is combined cycle in which a combustion turbine powers a generator using the high temperature combustion gases and then exhausts the cooler combustion gases to generate low pressure steam for conventional steam cycle generation.

Hydroelectricity

Hydroelectricity uses a water turbine to generate power. In 1878 the world's first hydroelectric power scheme was developed at Cragside in Northumberland, England by William George Armstrong. It was used to power a single arc lamp in his art gallery. The old Schoelkopf Power Station No. 1 near Niagara Falls in the U.S. side began to produce electricity in 1881. The first Edison hydroelectric power plant, the Vulcan Street Plant, began operating September 30, 1882, in Appleton, Wisconsin, with an output of about 12.5 kilowatts.

Wind turbines

The first electricity-generating wind turbine was a battery charging machine installed in July 1887 by Scottish academic James Blyth to light his holiday home in Marykirk, Scotland. Some months later American inventor Charles F Brush built the first automatically operated wind turbine for electricity production in Cleveland, Ohio. Advances in recent decades greatly lowered the cost of wind power making it one of the most competitive alternate energies and competitive with higher priced natural gas (before shale gas). Wind energy's main problem is that it is intermittent and therefore needs grid extensions and energy storage to be a reliable main energy source. 

Geothermal energy

Prince Piero Ginori Conti tested the first geothermal power generator on 4 July 1904 in Larderello, Italy. It successfully lit four light bulbs. Later, in 1911, the world's first commercial geothermal power plant was built there. Italy was the world's only industrial producer of geothermal electricity until 1958. Geothermal requires very hot underground temperatures near the surface to generate steam which is used in a low temperature steam plant. Geothermal power is only used in a few areas. Italy supplies all of the electrified rail network with geothermal power. 

Solar energy

Electricity production from solar energy either directly through photovoltaic cells or indirectly such as by producing steam to drive a steam turbine generator. 

Current extent of electrification

World map showing the percentage of the population in each country with access to mains electricity, as of 2017.
  80.1%–100%
  60.1%–80%
  40.1%–60%
  20.1%–40%
  0–20%

While electrification of cities and homes has existed since the late 19th century, about 840 million people (mostly in Africa) had no access to grid electricity in 2017, down from 1.2 billion in 2010.

Most recent progress in electrification took place between the 1950s and 1980s. Vast gains were seen in the 1970s and 1980s - from 49 percent of the world's population in 1970 to 76 percent in 1990. Recent gains have been more modest - by the early 2010s 81 to 83 percent of the world's population had access to electricity.

Energy resilience

Electricity is a "sticky" form of energy, in that it tends to stay in the continent or island where it is produced. It is also multi-sourced; if one source suffers a shortage, electricity can be produced from other sources, including renewable sources. As a result, in the long term it is a relatively resilient means of energy transmission. In the short term, because electricity must be supplied at the same moment it is consumed, it is somewhat unstable, compared to fuels that can be delivered and stored on-site. However, that can be mitigated by grid energy storage and distributed generation.

Frisbee

From Wikipedia, the free encyclopedia
 
A flying disc with the Wham-O registered trademark "Frisbee"
 
A frisbee (pronounced FRIZ-bee, origin of the term dates to 1957, also called a flying disc or simply a disc) is a gliding toy or sporting item that is generally made of injection molded plastic and roughly 8 to 10 inches (20 to 25 cm) in diameter with a pronounced lip. It is used recreationally and competitively for throwing and catching, as in flying disc games. The shape of the disc is an airfoil in cross-section which allows it to fly by generating lift as it moves through the air. Spinning the disc imparts a stabilizing gyroscopic force, allowing it to be both aimed with accuracy and thrown for distance.

A wide range is available of flying disc variants. Those for disc golf are usually smaller but denser and tailored for particular flight profiles to increase or decrease stability and distance. The longest recorded disc throw is by David Wiggins Jr. with a distance of 1,109 feet (338 m). Disc dog sports use relatively slow-flying discs made of more pliable material to better resist a dog's bite and prevent injury to the dog. Flying rings are also available which typically travel significantly farther than any traditional flying disc. Illuminated discs are made of phosphorescent plastic or contain chemiluminescent fluid or battery-powered LEDs for play after dark. Others whistle when they reach a certain velocity in flight.

The term frisbee is often used generically to describe all flying discs, but Frisbee is a registered trademark of the Wham-O toy company. This protection results in organized sports such as Ultimate or disc golf having to forgo use of the word "Frisbee".

History

A flying disc in flight
 
A flying disc being caught
 
Humans have been tossing disc-shaped objects since time immemorial. At first these were found objects such as rocks worn smooth in stream beds. Some were tossed for fun while others were used as weapons such as the discus. Throwing the discus became an event in the Olympic Games of Ancient Greece. Later, objects such as mats, hats, lids, pie tins, and cake pans were found to be perfect for tossing. 

Walter Frederick Morrison and his future wife Lucile had fun tossing a popcorn can lid after a Thanksgiving Day dinner in 1937. They soon discovered a market for a light duty flying disc when they were offered 25 cents for a cake pan that they were tossing back and forth on a beach near Los Angeles, California. "That got the wheels turning, because you could buy a cake pan for five cents, and if people on the beach were willing to pay a quarter for it, well—there was a business," Morrison told The Virginian-Pilot newspaper in 2007.

The Morrisons continued their business until World War II, when he served in the Army Air Force flying P-47s, and then was a prisoner of war. After the war, Morrison sketched a design for an aerodynamically improved flying disc that he called the Whirlo-Way, after the famous racehorse. He and business partner Warren Franscioni began producing the first plastic discs by 1948, after design modifications and experimentation with several prototypes. They renamed them the Flyin-Saucer in the wake of reported unidentified flying object sightings.

"We worked fairs, demonstrating it," Morrison told the Virginian-Pilot. The two of them once overheard someone saying that the pair were using wires to make the discs hover, so they developed a sales pitch: "The Flyin-Saucer is free, but the invisible wire is $1." "That's where we learned we could sell these things," he said, because people were enthusiastic about them.

Morrison and Franscioni ended their partnership in early 1950, and Morrison formed his own company in 1954 called American Trends to buy and sell Flyin-Saucers, which were being made of a flexible polypropylene plastic by Southern California Plastics, the original molder. He discovered that he could produce his own disc more cheaply, and he designed a new model in 1955 called the Pluto Platter, the archetype of all modern flying discs. He sold the rights to Wham-O on January 23, 1957. In 1958, Morrison was awarded U.S. Design Patent D183,626 for his product.

In June 1957, Wham-O co-founders Richard Knerr and Arthur "Spud" Melin gave the disc the brand name "Frisbee" after learning that college students were calling the Pluto Platter by that term, which was derived from the Connecticut-based pie manufacturer Frisbie Pie Company, a supplier of pies to Yale University, where students had started a campus craze tossing empty pie tins stamped with the company's logo—the way that Morrison and his wife had in 1937.

The first Frisbee (Professional Model) to be produced as a sport disc with the first disc sport tournament identification, the 1972 Canadian Open Frisbee Championships in Toronto
 
The man behind the Frisbee's success, however, was the Southern Californian Edward Headrick, hired in 1964 as Wham-O's general manager and vice president of marketing. Headrick redesigned the Pluto Platter by reworking the mold, mainly to remove the names of the planets, but fortuitously increasing the rim thickness and mass in the process, creating a more controllable disc that could be thrown more accurately.

Wham-O changed their marketing strategy to promote Frisbee use as a new sport, and sales skyrocketed. In 1964, the first professional model went on sale. Headrick patented its design; it featured raised ridges (the "Rings of Headrick") that were claimed to stabilize flight.

A memorial disc containing some of the ashes of Ed Headrick, on display at Ripley's Believe it or Not!, London
 
Headrick became known as the father of Frisbee sports; he founded the International Frisbee Association and appointed Dan Roddick as its head. Roddick began establishing North American Series (NAS) tournament standards for various Frisbee sports, such as Freestyle, Guts, Double Disc Court, and overall events. Headrick later helped to develop the sport of disc golf, which was first played with Frisbees and later with more aerodynamic beveled-rim discs, by inventing standardized targets called "pole holes." When Headrick died, he was cremated, and his ashes were molded into memorial discs and given to family and close friends and sold to benefit The Ed Headrick Memorial Museum.

The Frisbee was inducted into the National Toy Hall of Fame in 1998.

Disc sports

The IFT guts competitions in Northern Michigan, the Canadian Open Frisbee Championships (1972), Toronto, ON, the Vancouver Open Frisbee Championships (1974), Vancouver, BC, the Octad (1974), New Jersey, the American Flying Disc Open (1974), Rochester, NY and the World Frisbee Championships (1974), Pasadena, CA are the earliest Frisbee competitions that presented the Frisbee as a new disc sport. Before these tournaments, the Frisbee was considered a toy and used for recreation.
Double disc court was invented and introduced in 1974 by Jim Palmeri, a sport played with two flying discs and two teams of two players. Each team defends its court and tries to land a flying disc in the opposing court.
Dogs and their human flying disc throwers compete in events such as distance catching and somewhat choreographed freestyle catching.
This is a precision and accuracy sport in which individual players throw a flying disc at a target pole hole. In 1926, In Bladworth, Saskatchewan, Canada, Ronald Gibson and a group of his Bladworth Elementary school chums played a game using metal lids, they called "Tin Lid Golf." In 1976, the game of disc golf was standardized with targets called "pole holes" invented and developed by Wham-O's Ed Headrick.
In 1974, freestyle competition was created and introduced by Ken Westerfield and Discrafts Jim Kenner. Teams of two or three players are judged as they perform a routine that consists of a series of creative throwing and catching techniques set to music.
A half-court disc game derived from Ultimate, similar to hot box. The object is to advance the disc on the field of play by passing, and score points by throwing the flying disc to a teammate in a small scoring area.

Man plays KanJam
The game of guts was invented by the Healy Brothers in the 1950s and developed at the International Frisbee Tournament (IFT) in Eagle Harbor, Michigan. Two teams of one to five team members stand in parallel lines facing each other across a court and throw flying discs at members of the opposing team.
A patented game scoring points by throwing and deflecting the flying disc and hitting or entering the goal. The game ends when a team scores exactly 21 points or "chogs" the disc for an instant win.
The most widely played disc game began in the late 1960s with Joel Silver and Jared Kass. In the 1970s it developed as an organized sport with the creation of the Ultimate Players Association by Dan Roddick, Tom Kennedy and Irv Kalb. The object of the game is to advance the disc and score points by eventually passing the disc to a team member in the opposing team's end zone. Players may not run while holding the disc.

Boomerang

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Boomerang
 
Boomerang
Boomerang.jpg
Aerodynamic returning boomerang
First playedAncient
Characteristics
ContactNo
Mixed genderNo
TypeThrowing sport
EquipmentBoomerang
Presence
Country or regionAustralia
OlympicNo
World Games1989 (invitational)

A boomerang is a thrown tool, typically constructed as a flat airfoil, that is designed to spin about an axis perpendicular to the direction of its flight. A returning boomerang is designed to return to the thrower. It is well-known as a weapon used by Indigenous Australians for hunting.

Boomerangs have been historically used for hunting, as well as sport and entertainment. They are commonly thought of as an Australian icon, and come in various shapes and sizes.

Description

A boomerang is a throwing stick with certain aerodynamic properties, traditionally made of wood, but boomerang-like devices have also been made from bones. Modern boomerangs used for sport may be made from plywood or plastics such as ABS, polypropylene, phenolic paper, or carbon fibre-reinforced plastics. Boomerangs come in many shapes and sizes depending on their geographic or tribal origins and intended function. Many people think of a boomerang as the Australian type, although today there are many types of more easily usable boomerangs, such as the cross-stick, the pinwheel, the tumble-stick, the Boomabird, and many other less common types.

An important distinction should be made between returning boomerangs and non-returning boomerangs. Returning boomerangs fly and are examples of the earliest heavier-than-air human-made flight. A returning boomerang has two or more airfoil wings arranged so that the spinning creates unbalanced aerodynamic forces that curve its path so that it travels in an ellipse, returning to its point of origin when thrown correctly. While a throwing stick can also be shaped overall like a returning boomerang, it is designed to travel as straight as possible so that it can be aimed and thrown with great force to bring down the game. Its surfaces are therefore symmetrical and not with the aerofoils that give the returning boomerang its characteristic curved flight.

The most recognisable type of the boomerang is the L-shaped returning boomerang; while non-returning boomerangs, throwing sticks (or kylies) were used as weapons, returning boomerangs have been used primarily for leisure or recreation. Returning boomerangs were also used to decoy birds of prey, thrown above the long grass to frighten game birds into flight and into waiting nets. Modern returning boomerangs can be of various shapes or sizes

Just like the hunting boomerang of the aboriginal Australians, the valari also did not return to the thrower but flew straight. Boomerangs used in competitions have specially designed air-foiling mechanism to enable return, but the hunting Boomerangs are meant to float straight and hit the target. Valaris are made in many shapes and sizes. The history of the valari is rooted in ancient times and evidences can be found in Tamil Sangam literature "Purananuru". The usual form consists of two limbs set at an angle; one is thin and tapering while the other is rounded and is used as a handle. Valaris are usually made of iron which is melted and poured into moulds, although some may have wooden limbs tipped with iron. Alternatively, the limbs may have lethally sharpened edges; special daggers are known as kattari, double-edged and razor sharp, may be attached to some valari.

Etymology

The origin of the term is mostly certain, but many researchers have different theories on how the word entered into the English vocabulary. One source asserts that the term entered the language in 1827, adapted from an extinct Aboriginal language of New South Wales, Australia, but mentions a variant, wo-mur-rang, which it dates to 1798. The boomerang was first encountered by western people at Farm Cove (Port Jackson), Australia, in December 1804, when a weapon was witnessed during a tribal skirmish:
... the white spectators were justly astonished at the dexterity and incredible force with which a bent, edged waddy resembling slightly a Turkish scimytar, was thrown by Bungary, a native distinguished by his remarkable courtesy. The weapon, thrown at 20 or 30 yards [18 or 27 m] distance, twirled round in the air with astonishing velocity, and alighting on the right arm of one of his opponents, actually rebounded to a distance not less than 70 or 80 yards [64 or 73 m], leaving a horrible contusion behind, and exciting universal admiration.
— The Sydney Gazette and New South Wales Advertiser, 23 December 1804
David Collins listed "Wo-mur-rāng" as one of eight aboriginal "Names of clubs" in 1798. but was probably referring to the Woomera, which is actually a spear thrower. A 1790 anonymous manuscript on aboriginal language of New South Wales reported "Boo-mer-rit" as "the Scimiter".

In 1822, it was described in detail and recorded as a "bou-mar-rang" in the language of the Turuwal people (a sub-group of the Darug) of the Georges River near Port Jackson. The Turawal used other words for their hunting sticks but used "boomerang" to refer to a returning throw-stick.

History

Distribution of boomerangs in Australia
 
Australian Aboriginal boomerangs
 
Boomerangs were, historically, used as hunting weapons, percussive musical instruments, battle clubs, fire-starters, decoys for hunting waterfowl, and as recreational play toys. The smallest boomerang may be less than 10 centimetres (4 in) from tip to tip, and the largest over 180 cm (5.9 ft) in length. Tribal boomerangs may be inscribed or painted with designs meaningful to their makers. Most boomerangs seen today are of the tourist or competition sort, and are almost invariably of the returning type. Depictions of boomerangs being thrown at animals, such as kangaroos, appear in some of the oldest rock art in the world, the Indigenous Australian rock art of the Kimberly region, which is potentially up to 50,000 years old. Stencils and paintings of boomerangs also appear in the rock art of West Papua, including on Bird's Head Peninsula and Kaimana, likely dating to the Last Glacial Maximum, when lower sea levels led to cultural continuity between Papua and Arnhem Land in Northern Australia. The oldest surviving Australian Aboriginal boomerangs come from a cache found in a peat bog in the Wyrie Swamp of South Australia and date to 10,000 BC.

Although traditionally thought of as Australian, boomerangs have been found also in ancient Europe, Egypt, and North America. There is evidence of the use of non-returning boomerangs by the Native Americans of California and Arizona, and inhabitants of southern India for killing birds and rabbits. Some boomerangs were not thrown at all, but were used in hand to hand combat by Indigenous Australians. Ancient Egyptian examples, however, have been recovered, and experiments have shown that they functioned as returning boomerangs. Hunting sticks discovered in Europe seem to have formed part of the Stone Age arsenal of weapons. One boomerang that was discovered in Obłazowa Cave in the Carpathian Mountains in Poland was made of mammoth's tusk and is believed, based on AMS dating of objects found with it, to be about 30,000 years old. In the Netherlands, boomerangs have been found in Vlaardingen and Velsen from the first century BC. King Tutankhamun, the famous Pharaoh of ancient Egypt, who died over 3,300 years ago, owned a collection of boomerangs of both the straight flying (hunting) and returning variety.

4 boomerangs of the tomb of pharahoh Tutankhamun (−1336-1326 BC). These hardwood boomerangs could not return to their launcher due to their curvature unlike other boomerangs found in the tomb.
 
No one knows for sure how the returning boomerang was invented, but some modern boomerang makers speculate that it developed from the flattened throwing stick, still used by the Australian Aborigines and other indigenous peoples around the world, including the Navajo in North America. A hunting boomerang is delicately balanced and much harder to make than a returning one. The curving flight characteristic of returning boomerangs was probably first noticed by early hunters trying to "tune" their throwing sticks to fly straight.

It is thought by some that the shape and elliptical flight path of the returning boomerang makes it useful for hunting birds and small animals, or that noise generated by the movement of the boomerang through the air, or, by a skilled thrower, lightly clipping leaves of a tree whose branches house birds, would help scare the birds towards the thrower. It is further supposed by some that this was used to frighten flocks or groups of birds into nets that were usually strung up between trees or thrown by hidden hunters. In southeastern Australia, it is claimed that boomerangs were made to hover over a flock of ducks; mistaking it for a hawk, the ducks would dive away, toward hunters armed with nets or clubs.

Traditionally, most boomerangs used by aboriginal groups in Australia were non-returning. These weapons, sometimes called "throwsticks" or "kylies", were used for hunting a variety of prey, from kangaroos to parrots; at a range of about 100 metres (330 ft), a 2-kg (4.4 lb) non-returning boomerang could inflict mortal injury to a large animal. A throwstick thrown nearly horizontally may fly in a nearly straight path and could fell a kangaroo on impact to the legs or knees, while the long-necked emu could be killed by a blow to the neck. Hooked non-returning boomerangs, known as "beaked kylies", used in northern Central Australia, have been claimed to kill multiple birds when thrown into a dense flock. Throwsticks are used as multi-purpose tools by today's aboriginal peoples, and besides throwing could be wielded as clubs, used for digging, used to start friction fires, and are sonorous when two are struck together. 

Modern usage

Sport boomerangs

Today, boomerangs are mostly used for recreation. There are different types of throwing contests: accuracy of return; Aussie round; trick catch; maximum time aloft; fast catch; and endurance (see below). The modern sport boomerang (often referred to as a 'boom' or 'rang') is made of Finnish birch plywood, hardwood, plastic or composite materials and comes in many different shapes and colours. Most sport boomerangs typically weigh less than 100 grams (3.5 oz), with MTA boomerangs (boomerangs used for the maximum-time-aloft event) often under 25 grams (0.9 oz).

Boomerangs have also been suggested as an alternative to clay pigeons in shotgun sports, where the flight of the boomerang better mimics the flight of a bird offering a more challenging target.

The modern boomerang is often computer-aided designed with precision airfoils. The number of "wings" is often more than 2 as more lift is provided by 3 or 4 wings than by 2.

In 1992, German astronaut Ulf Merbold performed an experiment aboard Spacelab that established that boomerangs function in zero gravity as they do on Earth. French Astronaut Jean-François Clervoy aboard Mir repeated this in 1997. In 2008, Japanese astronaut Takao Doi again repeated the experiment on board the International Space Station.

Boomerangs for sale at the 2005 Melbourne Show
 
Beginning in the later part of the twentieth century, there has been a bloom in the independent creation of unusually designed art boomerangs. These often have little or no resemblance to the traditional historical ones and on first sight some of these objects may not look like boomerangs at all. The use of modern thin plywoods and synthetic plastics have greatly contributed to their success. Designs are very diverse and can range from animal inspired forms, humorous themes, complex calligraphic and symbolic shapes, to the purely abstract. Painted surfaces are similarly richly diverse. Some boomerangs made primarily as art objects do not have the required aerodynamic properties to return. 

Aerodynamics

A returning boomerang is a rotating wing. It consists of two or more arms, or wings, connected at an angle; each wing is shaped as an airfoil section. Although it is not a requirement that a boomerang be in its traditional shape, it is usually flat. 

Boomerangs can be made for right or left handed throwers. The difference between right and left is subtle, the planform is the same but the leading edges of the aerofoil sections are reversed. A right-handed boomerang makes a counter-clockwise, circular flight to the left while a left-handed boomerang flies clockwise to the right. Most sport boomerangs weigh between 70 to 110 grams (2.5 to 3.9 oz), have a wingspan of 250 to 350 millimetres (9.8 to 13.8 in) and a range of between 20 and 40 m (22 and 44 yd). 

A falling boomerang starts spinning, and most then fall in a spiral. When the boomerang is thrown with high spin, a boomerang flies in a curved rather than a straight line. When thrown correctly, a boomerang returns to its starting point. As the wing rotates and the boomerang moves through the air, the airflow over the wings creates lift on both "wings". However, during one-half of each blade's rotation, it sees a higher airspeed, because the rotation tip-speed and the forward speed add, and when it is in the other half of the rotation, the tip speed subtracts from the forward speed. Thus if thrown nearly upright each blade generates more lift at the top than the bottom. While it might be expected that this would cause the boomerang to tilt around the axis of travel, because the boomerang has significant angular momentum, the gyroscopic precession causes the plane of rotation to tilt about an axis that is 90 degrees to the direction of flight causing it to turn. When thrown in the horizontal plane, as with a Frisbee, instead of in the vertical, the same gyroscopic precession will cause the boomerang to fly violently, straight up into the air and then crash.

Fast Catch boomerangs usually have three or more symmetrical wings (seen from above), whereas a Long Distance boomerang is most often shaped similar to a question mark. Maximum Time Aloft boomerangs mostly have one wing considerably longer than the other. This feature, along with carefully executed bends and twists in the wings help to set up an 'auto-rotation' effect to maximise the boomerang's hover-time in descending from the highest point in its flight.

Some boomerangs have turbulators—bumps or pits on the top surface that act to increase the lift as boundary layer transition activators (to keep attached turbulent flow instead of laminar separation).

Throwing technique

Flight path of a returning boomerang
 
Boomerangs are generally thrown in treeless, large open spaces that are twice as large as the range of the boomerang, the flight direction, left or right will depend upon the boomerang, not the thrower. A right-handed or left-handed boomerang can be thrown with either hand, but throwing a boomerang with the wrong hand requires a throwing motion that many throwers may find awkward. The following technique applies to a right-handed boomerang, the directions are reversed for a left-handed boomerang.

A properly thrown boomerang should curve around to the left, climb gently, level out in mid-flight, arc around and descend slowly, and then finish by popping up slightly, hovering, then stalling near the thrower. Ideally, this momentary hovering or stalling will allow the catcher the opportunity to clamp their hands shut horizontally on the boomerang from above and below, sandwiching the centre between their hands.

The boomerang is thrown held between finger and thumb at the bottom end, in a near-vertical position, with the upper aerofoil section to the outside of the thrower and the 'hook' of the boomerang facing forward so as to present the leading edges of the aerofoils to the slipstream when spinning.

The boomerang is aimed directly into, or 3 to 5 degrees right, of the wind, and the flight then takes it left through the "eye of the wind" and finally returning downwind. The accuracy of the throw starts with an understanding of the weight and aerodynamics of that particular boomerang and the strength and direction of the wind; from this, the thrower chooses the precise angle of tilt of the boomerang from vertical, the angle against the wind and the strength of the throw. The stronger the wind, the softer the boomerang is thrown and the less the tilt off vertical. The boomerang can be made to return without the aid of any wind but the wind speed and direction must be taken into account. A light wind of three to five miles per hour is considered ideal. If the wind is strong enough to fly a kite, then it may be too strong for a given boomerang.

A great deal of trial and error is required to perfect the throw over time. Different boomerang designs have different flight characteristics and are suitable for different conditions.

Competitions and records

A World Record achievement was made on 3/6/07 by Tim Lendrum in Aussie Round. Tim scored 96 out of 100, giving him a National Record as well as an equal World Record throwing an "AYR" made by expert boomerang maker Adam Carroll from ONE Boomerangs formerly Real Boomerangs. 

In international competition, a world cup is held every second year. As of 2017, teams from Germany and the United States dominated international competition. The individual World Champion title was won in 2000, 2002, 2004, 2012 and 2016 by Swiss thrower Manuel Schütz. In 1992, 1998, 2006 and 2008 Fridolin Frost from Germany won the title.

The team competitions of 2012 and 2014 were won by Boomergang (an international team). World champions were Germany in 2012 and Japan in 2014 for the first time. Boomergang was formed by individuals from several countries, including the Colombian Alejandro Palacio. In 2016 USA became team world champion. 

Competition disciplines

Modern boomerang tournaments usually involve some or all of the events listed below In all disciplines the boomerang must travel at least 20 metres (66 ft) from the thrower. Throwing takes place individually. The thrower stands at the centre of concentric rings marked on an open field.
Events include:
  • Aussie Round: considered by many to be the ultimate test of boomeranging skills. The boomerang should ideally cross the 50-metre (160 ft) circle and come right back to the centre. Each thrower has five attempts. Points are awarded for distance, accuracy and the catch.
  • Accuracy: points are awarded according to how close the boomerang lands to the centre of the rings. The thrower must not touch the boomerang after it has been thrown. Each thrower has five attempts. In major competitions there are two accuracy disciplines: Accuracy 100 and Accuracy 50.
  • Endurance: points are awarded for the number of catches achieved in 5 minutes.
  • Fast Catch: the time taken to throw and catch the boomerang five times. The winner has the fastest timed catches.
  • Trick Catch/Doubling: points are awarded for trick catches behind the back, between the feet, and so on. In Doubling, the thrower has to throw two boomerangs at the same time and catch them in sequence in a special way.
  • Consecutive Catch: points are awarded for the number of catches achieved before the boomerang is dropped. The event is not timed.
  • MTA 100 (Maximal Time Aloft, 100 metres (328 ft)): points are awarded for the length of time spent by the boomerang in the air. The field is normally a circle measuring 100 m. An alternative to this discipline, without the 100 m restriction is called MTA unlimited.
  • Long Distance: the boomerang is thrown from the middle point of a 40-metre (130 ft) baseline. The furthest distance travelled by the boomerang away from the baseline is measured. On returning, the boomerang must cross the baseline again but does not have to be caught. A special section is dedicated to LD below.
  • Juggling: as with Consecutive Catch, only with two boomerangs. At any given time one boomerang must be in the air.

 

World records

As of September 2017
Discipline Result Name Year Tournament
Accuracy 100 99 points Germany Alex Opri 2007 Italy Viareggio
Aussie Round 99 points Germany Fridolin Frost 2007 Italy Viareggio
Endurance 81 catches Switzerland Manuel Schütz 2005 Italy Milan
Fast Catch 14.07 s Switzerland Manuel Schütz 2017 France Besançon
Trick Catch/Doubling 533 points Switzerland Manuel Schütz 2009 France Bordeaux
Consecutive Catch 2251 catches Japan Haruki Taketomi 2009 Japan Japan
MTA 100 139.10 s United States Nick Citoli 2010 Italy Rome
MTA unlimited 380.59 s United States Billy Brazelton 2010 Italy Rome
Long Distance 238 m Switzerland Manuel Schütz 1999 Switzerland Kloten

Guinness World Record – Smallest Returning Boomerang

Non-discipline record: Smallest Returning Boomerang: Sadir Kattan of Australia in 1997 with 48 millimetres (1.9 in) long and 46 millimetres (1.8 in) wide. This tiny boomerang flew the required 20 metres (22 yd), before returning to the accuracy circles on 22 March 1997 at the Australian National Championships.

Guinness World Record – Longest Throw of Any Object by a Human

A boomerang was used to set a Guinness World Record with a throw of 427.2 metres (1,402 ft) by David Schummy on 15 March 2005 at Murrarie Recreation Ground, Australia. This broke the record set by Erin Hemmings who threw an Aerobie 406.3 metres (1,333 ft) on 14 July 2003 at Fort Funston, San Francisco.

Long-distance versions

Long-distance boomerang throwers aim to have the boomerang go the furthest possible distance while returning close to the throwing point. In competition the boomerang must intersect an imaginary surface defined as an infinite vertical projection of a 40-metre (44 yd) line centred on the thrower. Outside of competitions, the definition is not so strict, and throwers may be happy simply not to walk too far to recover the boomerang. 

General properties

Long-distance boomerangs are optimised to have minimal drag while still having enough lift to fly and return. For this reason, they have a very narrow throwing window, which discourages many beginners from continuing with this discipline. For the same reason, the quality of manufactured long-distance boomerangs is often non-deterministic. 

Today's long-distance boomerangs have almost all an S or ? – question mark shape and have a beveled edge on both sides (the bevel on the bottom side is sometimes called an undercut). This is to minimise drag and lower the lift. Lift must be low because the boomerang is thrown with an almost total layover (flat). Long-distance boomerangs are most frequently made of composite material, mainly fibre glass epoxy composites.

Flight path

The projection of the flight path of long-distance boomerang on the ground resembles a water drop. For older types of long-distance boomerangs (all types of so-called big hooks), the first and last third of the flight path are very low, while the middle third is a fast climb followed by a fast descent. Nowadays, boomerangs are made in a way that their whole flight path is almost planar with a constant climb during the first half of the trajectory and then a rather constant descent during the second half. 

From theoretical point of view, distance boomerangs are interesting also for the following reason: for achieving a different behaviour during different flight phases, the ratio of the rotation frequency to the forward velocity has a U-shaped function, i.e., its derivative crosses 0. Practically, it means that the boomerang being at the furthest point has a very low forward velocity. The kinetic energy of the forward component is then stored in the potential energy. This is not true for other types of boomerangs, where the loss of kinetic energy is non-reversible (the MTAs also store kinetic energy in potential energy during the first half of the flight, but then the potential energy is lost directly by the drag). 

Related terms

In Noongar language, kylie is a flat curved piece of wood similar in appearance to a boomerang that is thrown when hunting for birds and animals. "Kylie" is one of the Aboriginal words for the hunting stick used in warfare and for hunting animals. Instead of following curved flight paths, kylies fly in straight lines from the throwers. They are typically much larger than boomerangs, and can travel very long distances; due to their size and hook shapes, they can cripple or kill an animal or human opponent. The word is perhaps an English corruption of a word meaning "boomerang" taken from one of the Western Desert languages, for example, the Warlpiri word "karli".

Cetacean intelligence

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cet...