From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Quantum_contextuality

Quantum contextuality is a feature of the phenomenology of quantum mechanics whereby measurements of quantum observables cannot simply be thought of as revealing pre-existing values. Any attempt to do so in a realistic hidden-variable theory leads to values that are dependent upon the choice of the other (compatible) observables which are simultaneously measured (the measurement context). More formally, the measurement result (assumed pre-existing) of a quantum observable is dependent upon which other commuting observables are within the same measurement set.

Contextuality was first demonstrated to be a feature of quantum phenomenology by the Bell–Kochen–Specker theorem. The study of contextuality has developed into a major topic of interest in quantum foundations as the phenomenon crystallises certain non-classical and counter-intuitive aspects of quantum theory. A number of powerful mathematical frameworks have been developed to study and better understand contextuality, from the perspective of sheaf theory, graph theory, hypergraphs, algebraic topology, and probabilistic couplings.

Nonlocality, in the sense of Bell's theorem, may be viewed as a special case of the more general phenomenon of contextuality, in which measurement contexts contain measurements that are distributed over spacelike separated regions. This follows from Fine's theorem.

Quantum contextuality has been identified as a source of quantum computational speedups and quantum advantage in quantum computing. Contemporary research has increasingly focused on exploring its utility as a computational resource.

Kochen and Specker