Search This Blog

Tuesday, September 14, 2021

AI Solves 50-Year-Old Challenge in Biology

Peter Diamandis

Aug 15, 2021

 https://myaccount.google.com/security-checkup/2?p=a-sc-cpn&visit_id=637655172084875963-3207345292&rd=1

Thanks to AI, we just got stunningly powerful tools to decode life itself.

In two recent back-to-back papers, scientists at DeepMind and the University of Washington described deep learning-based methods to solve protein folding—the last step of executing the programming in our DNA.

Why does this matter?

Because proteins are the building blocks of life. They form our bodies, fuel our metabolism, and are the target of most of today’s medicine.

Proteins start out as a simple ribbon of amino acids, translated from DNA, and subsequently folded into intricate three-dimensional architectures. Many protein units then further assemble into massive, moving complexes that change their structure depending on their functional needs at a given time.

And misfolded proteins can be devastating—causing health problems from sickle cell anemia and cancer, to Alzheimer’s disease.

In today’s blog, we’ll discuss the details of this AI-driven advance and what it means for the future of biology and medicine. As our A360 community has often discussed, the biotech field is accelerating, and the decade ahead will bring untold breakthroughs and multi-$100-billion-dollar startups.

Let’s dive in…

(This article originally appeared on SingularityHub by Shelly Fan, adopted by Peter Diamandis for his Abundance Community.)

“A ONCE IN A GENERATION ADVANCE”

One of biology’s grandest challenges for the past 50 years has been deciphering how a simple one-dimensional ribbon-like structure turns into 3D shapes, equipped with canyons, ridges, valleys, and caves.

It’s as if an alien is reading the coordinates of hundreds of locations on a map of the Grand Canyon on a notebook, and reconstructing it into a 3D hologram of the actual thing—without ever laying eyes on it or knowing what it should look like. 

Yes, it’s hard. “Lots of people have broken their head on it,” said Dr. John Moult at the University of Maryland.

It’s not just an academic exercise. Solving the human genome paved the way for gene therapy, CAR-T cancer breakthroughs, and the infamous CRISPR gene editing tool.

Deciphering protein folding is bound to illuminate an entire new landscape of biology we haven’t been able to study or manipulate. The fast and furious development of Covid-19 vaccines relied on scientists parsing multiple protein targets on the virus, including the spike proteins that vaccines target. Many proteins that lead to cancer have so far been out of the reach of drugs because their structure is hard to pin down.

With these new AI tools, scientists could solve haunting medical mysteries while preparing to tackle those yet unknown. It sets the stage for better understanding our biology, informing new medicines, and even inspiring synthetic biology down the line.

“What the DeepMind team has managed to achieve is fantastic and will change the future of structural biology and protein research,” said Dr. Janet Thornton, director emeritus of the European Bioinformatics Institute. 

“I never thought I’d see this in my lifetime,” added Moult. 

BIRTH OF A PROTEIN

Picture life as a video game. If DNA is the background base code, then proteins are its execution—the actual game that you play. Any bugs in DNA could trigger a crash in the program, but they could also be benign and allow the game to run as usual. In other words, most modern medicine, like gamers, cares only about the final gameplay—the proteins—rather than the source code that leads to it, unless something goes wrong. From diabetes medication to anti-depressants and potentially life-extending senolytics, these drugs all work by grabbing onto proteins rather than DNA.

It’s why deciphering protein structure is so important: like a key to a lock, a drug can only dock onto a protein at specific spots. Similarly, proteins often tag-team by binding together into a complex to run your body’s functions—say, forming a memory or triggering an immune attack against a virus.

Proteins are made of building blocks called amino acids, which are in turn programmed by DNA. Similar to the Rosetta stone, our cells can easily translate DNA code into protein building blocks inside a clam-shell-like structure, which spits out a string of one-dimensional amino acids. These ribbons are then shuffled through a whole cellular infrastructure that allows the protein to fold into its final structure. 

Back in the 1970s, the Nobel Prize winner Dr. Christian Anfinsen famously asserted that the one-dimensional sequence itself can computationally predict a protein’s 3D structure. The problem is time and power: like trying to hack a password with hundreds of characters suspended in 3D space, the potential solutions are astronomical. But we now have a tool that beats humans at finding patterns: machine learning.

ENTER AI

In 2020, DeepMind shocked the entire field with its entry into a legacy biennial competition. Dubbed CASP (Critical Assessment of Protein Structure Prediction), the decades-long test uses traditional lab methods for determining protein structure as its baseline to judge prediction algorithms.

The baseline’s hard to get. It relies on laborious experimental techniques that can take months or even years. These methods often “freeze” a protein and map its internal structure down to the atomic level using X-rays. Many proteins can’t be treated this way without losing their natural structure, but the method is the best we currently have. Predictions are then compared to this gold standard to judge the underlying algorithm.

Last year DeepMind stunned everyone with their AI, blowing other competition out of the water. At the time, they were a tease, revealing little detail about their “incredibly exciting” method that matched experimental results in accuracy. But the 30-minute presentation inspired Dr. Minkyung Baek at the University of Washington to develop her own approach.

Baek used a similar deep learning strategy, outlined in a paper in Science this week. The tool, RoseTTAFold, simultaneously considers three levels of patterns. The first looks at the amino acid building blocks of a protein and compares them to all the other sequences in a protein database.

The tool next examines how one protein’s amino acids interact with another within the same protein, for example, by examining the distance between two distant building blocks. It’s like looking at your hands and feet fully stretched out versus in a backbend, and measuring the distance between those extremities as you “fold” into a yoga pose. 

Finally, the third track looks at the 3D coordinates of each atom that makes up a protein building block—kind of like mapping the studs on a Lego block—to compile the final 3D structure. The network then bounces back and forth between these tracks, so that one output can update another track.

The end results came close to those of DeepMind’s tool, AlphaFold2, which matched the gold standard of structures obtained from experiments. Although RoseTTAFold wasn’t as accurate as AlphaFold2, it seemingly required much less time and energy. For a simple protein, the algorithm was able to solve the structure using a gaming computer in about 10 minutes. 

RoseTTAFold was also able to tackle the “protein assemble” problem, in that it could predict the structure of proteins, made up of multiple units, by simply looking at the amino acid sequence alone. For example, they were able to predict how the structure of an immune molecule locks onto its target. Many biological functions rely on these handshakes between proteins. Being able to predict them using an algorithm opens the door to manipulating biological processes—immune system, stroke, cancer, brain function—that we previously couldn’t access.

HACKING THE BODY

Since RoseTTAFold’s public release in July, it’s been downloaded hundreds of times, allowing other researchers to answer their baffling protein sequence questions, potentially saving years of work while collectively improving on the algorithm.

“When there’s a breakthrough like this, two years later, everyone is doing it as well if not better than before,” said Moult.

Meanwhile, DeepMind is also releasing (for open and free use) their AlphaFold2 code—the one that inspired Baek. 

In a new paper in Nature, the DeepMind team described their approach to the 50-year mystery. The crux was to integrate multiple sources of information—the evolution of a protein and its physical and geometric constraints—to build a two-step system that maps out a given protein with stunningly high accuracy.

First presented at the CASP meeting, Dr. Demis Hassabis, founder and CEO of DeepMind, is ready to share the code with the world. “We pledged to share our methods and provide broad, free access to the scientific community. Today we take the first step towards delivering on that commitment by sharing AlphaFold’s open-source code and publishing the system’s full methodology,” he wrote, adding that “we’re excited to see what other new avenues of research this will enable for the community.”

With the two studies, we’re entering a new world of predicting—and subsequently engineering or changing—the building blocks of life. Dr. Andrei Lupas, an evolutionary biologist at the Max Planck Institute for Developmental Biology, and a CASP judge, agrees: “This will change medicine. It will change research,” he said. “It will change bioengineering. It will change everything.”

FINAL THOUGHTS

This breakthrough demonstrates the impact AI can have on scientific discovery.

And if we couple AI’s solution to the protein folding problem with the anticipated breakthroughs in quantum computing—another technology poised to disrupt medicine and healthcare—we’re not far from a world where individually customized, precision medicine will move from science fiction to the standard of care.

Nowhere is the convergence of exponential tech bringing greater breakthroughs than in healthcare.

 

Fluoxetine

From Wikipedia, the free encyclopedia

Fluoxetine
Fluoxetine.svg
R-and-S-fluoxetine-enantiomers-based-on-HCl-xtal-Mercury-3D-balls.png
Fluoxetine (top),
(R)-fluoxetine (left), (S)-fluoxetine (right)
Clinical data
Pronunciation/fluˈɒksətn/
Trade namesProzac, Sarafem, Adofen, others
AHFS/Drugs.comMonograph
MedlinePlusa689006
License data
Pregnancy
category
  • AU: C
Addiction
liability
None
Routes of
administration
By mouth
Drug classSelective serotonin reuptake inhibitor (SSRI)
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability60–80%
Protein binding94–95%
MetabolismLiver (mostly CYP2D6-mediated)
Metabolitesnorfluoxetine, desmethylfluoxetine
Elimination half-life1–3 days (acute)
4–6 days (chronic)
ExcretionUrine (80%), faeces (15%)
Identifiers

CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.125.370 Edit this at Wikidata
Chemical and physical data
FormulaC17H18F3NO
Molar mass309.332 g·mol−1
3D model (JSmol)
ChiralityRacemic mixture
Melting point179 to 182 °C (354 to 360 °F)
Boiling point395 °C (743 °F)
Solubility in water14

Fluoxetine, sold under the brand names Prozac and Sarafem among others, is an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class. It is used for the treatment of major depressive disorder, obsessive–compulsive disorder (OCD), bulimia nervosa, panic disorder, and premenstrual dysphoric disorder. It is also approved for treatment of major depressive disorder in adolescents and children 8 years of age and over. It has also been used to treat premature ejaculation. Fluoxetine is taken by mouth.

Common side effects include indigestion, trouble sleeping, sexual dysfunction, loss of appetite, dry mouth, and rash. Serious side effects include serotonin syndrome, mania, seizures, an increased risk of suicidal behavior in people under 25 years old, and an increased risk of bleeding. Discontinuation syndrome is less likely to occur with fluoxetine than with other antidepressants, but it still happens in many cases. Fluoxetine taken during pregnancy is associated with significant increase in congenital heart defects in the newborns. It has been suggested that fluoxetine therapy may be continued during breastfeeding if it was used during pregnancy or if other antidepressants were ineffective. Its mechanism of action is unknown, but some hypothesize that it is related to serotonin activity in the brain.

Fluoxetine was discovered by Eli Lilly and Company in 1972, and entered medical use in 1986. It is on the World Health Organization's List of Essential Medicines. It is available as a generic medication. In 2018, it was the 23rd most commonly prescribed medication in the United States, with more than 25 million prescriptions. Lilly also markets fluoxetine in a fixed-dose combination with olanzapine as olanzapine/fluoxetine (Symbyax).

Medical uses

Fluoxetine blister pack 20 mg capsules
 
Fluoxetine 10 mg tablets

Fluoxetine is frequently used to treat major depressive disorder, obsessive–compulsive disorder (OCD), post-traumatic stress disorder (PTSD), bulimia nervosa, panic disorder, premenstrual dysphoric disorder, and trichotillomania. It has also been used for cataplexy, obesity, and alcohol dependence, as well as binge eating disorder. Fluoxetine seems to be ineffective for social anxiety disorder. Studies do not support a benefit in children with autism, though there is but tentative evidence for its benefit in adult autism.

Depression

Efficacy of fluoxetine for acute and maintenance treatment of major depressive disorder in adults as well as children and adolescents (8 to 18 years) was established in multiple clinical trials. In addition to being effective for depression in 6-week long double-blind controlled trials, fluoxetine was better than placebo for the prevention of depression recurrence, when the patients, who originally responded to fluoxetine, were treated for a further 38 weeks. Efficacy of fluoxetine for geriatric as well as pediatric depression was also demonstrated in placebo-controlled trials.

Fluoxetine is as effective as tricyclic antidepressants but is better tolerated. It is less effective than sertraline, mirtazapine, and venlafaxine. According to a network analysis of clinical trials, fluoxetine may belong to the group of less effective antidepressants; however, its acceptability is higher than any other antidepressant, except agomelatine.

Obsessive–compulsive disorder

The efficacy of fluoxetine in the treatment of obsessive–compulsive disorder (OCD) was demonstrated in two randomized multicenter phase III clinical trials. The pooled results of these trials demonstrated that 47% of completers treated with the highest dose were "much improved" or "very much improved" after 13 weeks of treatment, compared to 11% in the placebo arm of the trial. The American Academy of Child and Adolescent Psychiatry state that SSRIs, including fluoxetine, should be used as first-line therapy in children, along with cognitive behavioral therapy (CBT), for the treatment of moderate to severe OCD.

Panic disorder

The efficacy of fluoxetine in the treatment of panic disorder was demonstrated in two 12-week randomized multicenter phase III clinical trials that enrolled patients diagnosed with panic disorder, with or without agoraphobia. In the first trial, 42% of subjects in the fluoxetine-treated arm were free of panic attacks at the end of the study, vs. 28% in the placebo arm. In the second trial, 62% of fluoxetine treated patients were free of panic attacks at the end of the study, vs. 44% in the placebo arm.

Bulimia nervosa

A 2011 systematic review discussed seven trials which compared fluoxetine to a placebo in the treatment of bulimia nervosa, six of which found a statistically significant reduction in symptoms such as vomiting and binge eating. However, no difference was observed between treatment arms when fluoxetine and psychotherapy were compared to psychotherapy alone.

Premenstrual dysphoric disorder

Fluoxetine is used to treat premenstrual dysphoric disorder, a condition where individuals have affective and somatic symptoms monthly during the luteal phase of menstruation. Taking fluoxetine 20 mg/d can be effective in treating PMDD, though doses of 10mg/d have also been prescribed effectively.

Impulsive aggression

Fluoxetine is considered a first-line medication for the treatment of impulsive aggression of low intensity. Fluoxetine reduced low intensity aggressive behavior in patients in intermittent aggressive disorder and borderline personality disorder. Fluoxetine also reduced acts of domestic violence in alcoholics with a history of such behavior.

Special populations

In children and adolescents, fluoxetine is the antidepressant of choice due to tentative evidence favoring its efficacy and tolerability. In pregnancy, fluoxetine is considered a category C drug by the US Food and Drug Administration (FDA). Evidence supporting an increased risk of major fetal malformations resulting from fluoxetine exposure is limited, although the Medicines and Healthcare products Regulatory Agency (MHRA) of the UK has warned prescribers and patients of the potential for fluoxetine exposure in the first trimester (during organogenesis, formation of the fetal organs) to cause a slight increase in the risk of congenital cardiac malformations in the newborn. Furthermore, an association between fluoxetine use during the first trimester and an increased risk of minor fetal malformations was observed in one study.

However, a systematic review and meta-analysis of 21 studies – published in the Journal of Obstetrics and Gynaecology Canada – concluded, "the apparent increased risk of fetal cardiac malformations associated with maternal use of fluoxetine has recently been shown also in depressed women who deferred SSRI therapy in pregnancy, and therefore most probably reflects an ascertainment bias. Overall, women who are treated with fluoxetine during the first trimester of pregnancy do not appear to have an increased risk of major fetal malformations."

Per the FDA, infants exposed to SSRIs in late pregnancy may have an increased risk for persistent pulmonary hypertension of the newborn. Limited data support this risk, but the FDA recommends physicians consider tapering SSRIs such as fluoxetine during the third trimester. A 2009 review recommended against fluoxetine as a first-line SSRI during lactation, stating, "Fluoxetine should be viewed as a less-preferred SSRI for breastfeeding mothers, particularly with newborn infants, and in those mothers who consumed fluoxetine during gestation." Sertraline is often the preferred SSRI during pregnancy due to the relatively minimal fetal exposure observed and its safety profile while breastfeeding.

Adverse effects

Side effects observed in fluoxetine-treated persons in clinical trials with an incidence >5% and at least twice as common in fluoxetine-treated persons compared to those who received a placebo pill include abnormal dreams, abnormal ejaculation, anorexia, anxiety, asthenia, diarrhea, dry mouth, dyspepsia, flu syndrome, impotence, insomnia, decreased libido, nausea, nervousness, pharyngitis, rash, sinusitis, somnolence, sweating, tremor, vasodilation, and yawning. Fluoxetine is considered the most stimulating of the SSRIs (that is, it is most prone to causing insomnia and agitation). It also appears to be the most prone of the SSRIs for producing dermatologic reactions (e.g. urticaria (hives), rash, itchiness, etc.).

Sexual dysfunction

Sexual dysfunction, including loss of libido, anorgasmia, lack of vaginal lubrication, and erectile dysfunction, are some of the most commonly encountered adverse effects of treatment with fluoxetine and other SSRIs. While early clinical trials suggested a relatively low rate of sexual dysfunction, more recent studies in which the investigator actively inquires about sexual problems suggest that the incidence is >70%. On the 11th of June 2019 the Pharmacovigilance Risk Assessment Committee of the European Medicines Agency concluded that there is a possible causal association between SSRI use and long-lasting sexual dysfunction that persists despite discontinuation of SSRI, including fluoxetine, and that the labels of these drugs should be updated to include a warning.

Discontinuation syndrome

Fluoxetine's longer half-life makes it less common to develop discontinuation syndrome following cessation of therapy, especially when compared to antidepressants with shorter half-lives such as paroxetine. Although gradual dose reductions are recommended with antidepressants with shorter half-lives, tapering may not be necessary with fluoxetine.

Pregnancy

Antidepressant exposure (including fluoxetine) is associated with shorter average duration of pregnancy (by three days), increased risk of preterm delivery (by 55%), lower birth weight (by 75 g), and lower Apgar scores (by <0.4 points). There is 30–36% increase in congenital heart defects among children whose mothers were prescribed fluoxetine during pregnancy, with fluoxetine use in the first trimester associated with 38–65% increase in septal heart defects.

Suicide

In 2007 the FDA required all antidepressants to carry a black box warning stating that antidepressants increase the risk of suicide in people younger than 25. This warning is based on statistical analyses conducted by two independent groups of FDA experts that found a 2-fold increase of the suicidal ideation and behavior in children and adolescents, and 1.5-fold increase of suicidality in the 18–24 age group. The suicidality was slightly decreased for those older than 24, and statistically significantly lower in the 65 and older group. This analysis was criticized by Donald Klein, who noted that suicidality, that is suicidal ideation and behavior, is not necessarily a good surrogate marker for completed suicide, and it is still possible, while unproven, that antidepressants may prevent actual suicide while increasing suicidality.

There is less data on fluoxetine than on antidepressants as a whole. For the above analysis on the antidepressant level, the FDA had to combine the results of 295 trials of 11 antidepressants for psychiatric indications to obtain statistically significant results. Considered separately, fluoxetine use in children increased the odds of suicidality by 50% and in adults decreased the odds of suicidality by approximately 30%. Similarly, the analysis conducted by the UK MHRA found a 50% increase of odds of suicide-related events, not reaching statistical significance, in the children and adolescents on fluoxetine as compared to the ones on placebo. According to the MHRA data, for adults fluoxetine did not change the rate of self-harm and statistically significantly decreased suicidal ideation by 50%.[

QT prolongation

Fluoxetine can affect the electrical currents that heart muscle cells use to coordinate their contraction, specifically the potassium currents Ito and IKs that repolarise the cardiac action potential. Under certain circumstances, this can lead to prolongation of the QT interval, a measurement made on an electrocardiogram reflecting how long it takes for the heart to electrically recharge after each heartbeat. When fluoxetine is taken alongside other drugs that prolong the QT interval, or by those with a susceptibility to long QT syndrome, there is a small risk of potentially lethal abnormal heart rhythms such as Torsades de Pointes. As of 2019, the drug reference site CredibleMeds lists Fluoxetine as leading to a conditional risk of arrhythmias.

Overdose

In overdose, most frequent adverse effects include:

Interactions

Contraindications include prior treatment (within the past 5–6 weeks, depending on the dose) with MAOIs such as phenelzine and tranylcypromine, due to the potential for serotonin syndrome. Its use should also be avoided in those with known hypersensitivities to fluoxetine or any of the other ingredients in the formulation used. Its use in those concurrently receiving pimozide or thioridazine is also advised against.

In some cases, use of dextromethorphan-containing cold and cough medications with fluoxetine is advised against, due to fluoxetine increasing serotonin levels, as well as the fact that fluoxetine is a cytochrome P450 2D6 inhibitor, which causes dextromethorphan to not be metabolized at a normal rate, thus increasing the risk of serotonin syndrome and other potential side effects of dextromethorphan.

Patients who are taking anticoagulants or NSAIDS must be careful when taking fluoxetine or other SSRIs, as they can sometimes increase the blood-thinning effects of these medications.

Fluoxetine and norfluoxetine inhibit many isozymes of the cytochrome P450 system that are involved in drug metabolism. Both are potent inhibitors of CYP2D6 (which is also the chief enzyme responsible for their metabolism) and CYP2C19, and mild to moderate inhibitors of CYP2B6 and CYP2C9. In vivo, fluoxetine and norfluoxetine do not significantly affect the activity of CYP1A2 and CYP3A4. They also inhibit the activity of P-glycoprotein, a type of membrane transport protein that plays an important role in drug transport and metabolism and hence P-glycoprotein substrates such as loperamide may have their central effects potentiated. This extensive effect on the body's pathways for drug metabolism creates the potential for interactions with many commonly used drugs.

Its use should also be avoided in those receiving other serotonergic drugs such as monoamine oxidase inhibitors, tricyclic antidepressants, methamphetamine, amphetamine, MDMA, triptans, buspirone, serotonin–norepinephrine reuptake inhibitors and other SSRIs due to the potential for serotonin syndrome to develop as a result.

There is also the potential for interaction with highly protein-bound drugs due to the potential for fluoxetine to displace said drugs from the plasma or vice versa hence increasing serum concentrations of either fluoxetine or the offending agent.

Pharmacology

Pharmacodynamics

Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) and does not appreciably inhibit norepinephrine and dopamine reuptake at therapeutic doses. It does, however, delay the reuptake of serotonin, resulting in serotonin persisting longer when it is released. Large doses in rats have been shown to induce a significant increase in synaptic norepinephrine and dopamine. Thus, dopamine and norepinephrine may contribute to the antidepressant action of fluoxetine in humans at supratherapeutic doses (60–80 mg). This effect may be mediated by 5HT2C receptors, which are inhibited by higher concentrations of fluoxetine.

Fluoxetine increases the concentration of circulating allopregnanolone, a potent GABAA receptor positive allosteric modulator, in the brain Norfluoxetine, a primary active metabolite of fluoxetine, produces a similar effect on allopregnanolone levels in the brains of mice. Additionally, both fluoxetine and norfluoxetine are such modulators themselves, actions which may be clinically-relevant.

In addition, fluoxetine has been found to act as an agonist of the σ1-receptor, with a potency greater than that of citalopram but less than that of fluvoxamine. However, the significance of this property is not fully clear. Fluoxetine also functions as a channel blocker of anoctamin 1, a calcium-activated chloride channel. A number of other ion channels, including nicotinic acetylcholine receptors and 5-HT3 receptors, are also known to be inhibited at similar concentrations.

Fluoxetine has been shown to inhibit acid sphingomyelinase, a key regulator of ceramide levels which derives ceramide from sphingomyelin.

Mechanism of action

Fluoxetine elicits antidepressant effect by inhibiting serotonin re-uptake in the synapse by binding to the re-uptake pump on the neuronal membrane to increase serotonin availability and enhance neurotransmission. Norfluoxetine and desmethylfluoxetine are metabolites of fluoxetine and also act as serotonin re-uptake inhibitors, increasing the duration of action of the drug.

Pharmacokinetics

The S enantiomer of norfluoxetine, fluoxetine's chief active metabolite.

The bioavailability of fluoxetine is relatively high (72%), and peak plasma concentrations are reached in 6–8 hours. It is highly bound to plasma proteins, mostly albumin and α1-glycoprotein. Fluoxetine is metabolized in the liver by isoenzymes of the cytochrome P450 system, including CYP2D6. The role of CYP2D6 in the metabolism of fluoxetine may be clinically important, as there is great genetic variability in the function of this enzyme among people. CYP2D6 is responsible for converting fluoxetine to its only active metabolite, norfluoxetine. Both drugs are also potent inhibitors of CYP2D6.

The extremely slow elimination of fluoxetine and its active metabolite norfluoxetine from the body distinguishes it from other antidepressants. With time, fluoxetine and norfluoxetine inhibit their own metabolism, so fluoxetine elimination half-life increases from 1 to 3 days, after a single dose, to 4 to 6 days, after long-term use. Similarly, the half-life of norfluoxetine is longer (16 days) after long-term use. Therefore, the concentration of the drug and its active metabolite in the blood continues to grow through the first few weeks of treatment, and their steady concentration in the blood is achieved only after four weeks. Moreover, the brain concentration of fluoxetine and its metabolites keeps increasing through at least the first five weeks of treatment. The full benefit of the current dose a patient receives is not realized for at least a month following ingestion. For example, in one 6-week study, the median time to achieving consistent response was 29 days. Likewise, complete excretion of the drug may take several weeks. During the first week after treatment discontinuation, the brain concentration of fluoxetine decreases by only 50%, The blood level of norfluoxetine four weeks after treatment discontinuation is about 80% of the level registered by the end of the first treatment week, and, seven weeks after discontinuation, norfluoxetine is still detectable in the blood.

Measurement in body fluids

Fluoxetine and norfluoxetine may be quantitated in blood, plasma or serum to monitor therapy, confirm a diagnosis of poisoning in hospitalized person or assist in a medicolegal death investigation. Blood or plasma fluoxetine concentrations are usually in a range of 50–500 μg/L in persons taking the drug for its antidepressant effects, 900–3000 μg/L in survivors of acute overdosage and 1000–7000 μg/L in victims of fatal overdosage. Norfluoxetine concentrations are approximately equal to those of the parent drug during chronic therapy, but may be substantially less following acute overdosage, since it requires at least 1–2 weeks for the metabolite to achieve equilibrium.

Usage

In 2010, over 24.4 million prescriptions for generic fluoxetine were filled in the United States, making it the third-most prescribed antidepressant after sertraline and citalopram. In 2011, 6 million prescriptions for fluoxetine were filled in the United Kingdom.

History

The work which eventually led to the discovery of fluoxetine began at Eli Lilly and Company in 1970 as a collaboration between Bryan Molloy and Robert Rathbun. It was known at that time that the antihistamine diphenhydramine shows some antidepressant-like properties. 3-Phenoxy-3-phenylpropylamine, a compound structurally similar to diphenhydramine, was taken as a starting point, and Molloy synthesized a series of dozens of its derivatives. Hoping to find a derivative inhibiting only serotonin reuptake, an Eli Lilly scientist, David T. Wong, proposed to retest the series for the in vitro reuptake of serotonin, norepinephrine and dopamine. This test, carried out by Jong-Sir Horng in May 1972, showed the compound later named fluoxetine to be the most potent and selective inhibitor of serotonin reuptake of the series. Wong published the first article about fluoxetine in 1974. A year later, it was given the official chemical name fluoxetine and the Eli Lilly and Company gave it the trade name Prozac. In February 1977, Dista Products Company, a division of Eli Lilly & Company, filed an Investigational New Drug application to the U.S. Food and Drug Administration (FDA) for fluoxetine.

Fluoxetine appeared on the Belgian market in 1986. In the U.S., the FDA gave its final approval in December 1987, and a month later Eli Lilly began marketing Prozac; annual sales in the U.S. reached $350 million within a year. Worldwide sales eventually reached a peak of $2.6 billion a year.

Lilly tried several product line extension strategies, including extended release formulations and paying for clinical trials to test the efficacy and safety of fluoxetine in premenstrual dysphoric disorder and rebranding fluoxetine for that indication as "Sarafem" after it was approved by the FDA in 2000, following the recommendation of an advisory committee in 1999. The invention of using fluoxetine to treat PMDD was made by Richard Wurtman at MIT; the patent was licensed to his startup, Interneuron, which in turn sold it to Lilly.

To defend its Prozac revenue from generic competition, Lilly also fought a five-year, multimillion-dollar battle in court with the generic company Barr Pharmaceuticals to protect its patents on fluoxetine, and lost the cases for its line-extension patents, other than those for Sarafem, opening fluoxetine to generic manufacturers starting in 2001. When Lilly's patent expired in August 2001, generic drug competition decreased Lilly's sales of fluoxetine by 70% within two months.

In 2000 an investment bank had projected that annual sales of Sarafem could reach $250M/year. Sales of Sarafem reached about $85M/year in 2002, and in that year Lilly sold its assets connected with the drug for $295M to Galen Holdings, a small Irish pharmaceutical company specializing in dermatology and women's health that had a sales force tasked to gynecologists' offices; analysts found the deal sensible since the annual sales of Sarafem made a material financial difference to Galen, but not to Lilly.

Bringing Sarafem to market harmed Lilly's reputation in some quarters. The diagnostic category of PMDD was controversial since it was first proposed in 1987, and Lilly's role in retaining it in the appendix of the DSM-IV-TR, the discussions for which got under way in 1998, has been criticized. Lilly was criticized for inventing a disease in order to make money, and for not innovating but rather just seeking ways to continue making money from existing drugs. It was also criticized by the FDA and groups concerned with women's health for marketing Sarafem too aggressively when it was first launched; the campaign included a television commercial featuring a harried woman at the grocery store who asks herself if she has PMDD.

Society and culture

American aircraft pilots

Beginning 5 April 2010, fluoxetine became one of four antidepressant drugs that the FAA permitted for pilots with authorization from an aviation medical examiner. The other permitted antidepressants are sertraline (Zoloft), citalopram (Celexa), and escitalopram (Lexapro). These four remain the only antidepressants permitted by FAA as of 2 December 2016.

Sertraline, citalopram and escitalopram are the only antidepressants permitted for EASA medical certification, as of January 2019.

Environmental effects

Fluoxetine has been detected in aquatic ecosystems, especially in North America. There is a growing body of research addressing the effects of fluoxetine (among other SSRIs) exposure on non-target aquatic species.

In 2003, one of the first studies addressed in detail the potential effects of fluoxetine on aquatic wildlife; this research concluded that exposure at environmental concentrations was of little risk to aquatic systems if a hazard quotient approach was applied to risk assessment. However, they also stated the need for further research addressing sub-lethal consequences of fluoxetine, specifically focusing on study species' sensitivity, behavioural responses, and endpoints modulated by the serotonin system.

Since 2003, a number of studies have reported fluoxetine-induced impacts on a number of behavioural and physiological endpoints, inducing antipredator behaviour, reproduction, and foraging at or below field-detected concentrations. However, a 2014 review on the ecotoxicology of fluoxetine concluded that, at that time, a consensus on the ability of environmentally realistic dosages to affect the behaviour of wildlife could not be reached.

Politics

During the 1990 campaign for Governor of Florida, it was disclosed that one of the candidates, Lawton Chiles, had depression and had resumed taking fluoxetine, leading his political opponents to question his fitness to serve as Governor.

 

Sertraline

From Wikipedia, the free encyclopedia
Sertraline-A-3D-balls.png

Sertraline
Sertraline.svg
Clinical data
Pronunciation/ˈsɜːrtrəˌln/
Trade namesZoloft, Lustral, others
AHFS/Drugs.comMonograph
MedlinePlusa697048
License data
Pregnancy
category
  • AU: C
Addiction
liability
None
Routes of
administration
By mouth (tablets and solution)
Drug classSelective serotonin reuptake inhibitor (SSRI) but also rarely used as SDRI
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • UK: POM (Prescription only)
  • US: ℞-only
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability44%
Protein binding98.5%
MetabolismLiver (N-demethylation mainly by CYP2B6)
Metabolitesnorsertraline
Elimination half-life~23–26 h (66 h [less-active metabolite, norsertraline])
ExcretionKidney
Identifiers

CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC17H17Cl2N
Molar mass306.23 g·mol−1
3D model (JSmol)

Sertraline, sold under the brand name Zoloft among others, is an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class. The efficacy of sertraline for depression is similar to that of other antidepressants, and the differences are mostly confined to side effects. Sertraline is better tolerated than the older tricyclic antidepressants, and it may work better than fluoxetine for some subtypes of depression. Sertraline is effective for panic disorder, social anxiety disorder, generalized anxiety disorder, and obsessive–compulsive disorder (OCD). However, for OCD, cognitive behavioral therapy, particularly in combination with sertraline, is a better treatment. Although approved for post-traumatic stress disorder, sertraline leads to only modest improvement in this condition. Sertraline also alleviates the symptoms of premenstrual dysphoric disorder and can be used in sub-therapeutic doses or intermittently for its treatment.

Sertraline shares the common side effects and contraindications of other SSRIs, with high rates of nausea, diarrhea, insomnia, and sexual side effects, but it appears not to lead to much weight gain, and its effects on cognitive performance are mild. Similar to other antidepressants, the use of sertraline for depression may be associated with a higher rate of suicidal thoughts and behavior in people under the age of 25. It should not be used together with MAO inhibitor medication: this combination causes serotonin syndrome. Sertraline taken during pregnancy is associated with a significant increase in congenital heart defects in newborns.

Sertraline was invented and developed by scientists at Pfizer and approved for medical use in the United States in 1991. It is available as a generic medication. In 2016, sertraline was the most commonly prescribed psychiatric medication in the United States and in 2018, it was the fourteenth most commonly prescribed medication in the United States, with over 38 million prescriptions.

Medical uses

Sertraline has been approved for major depressive disorder (MDD), obsessive–compulsive disorder (OCD), posttraumatic stress disorder (PTSD), premenstrual dysphoric disorder (PMDD), panic disorder, and social anxiety disorder (SAD). Sertraline is not approved for use in children except for those with OCD.

Depression

Multiple controlled clinical trials established efficacy of sertraline for the treatment of depression. Sertraline is also an effective antidepressant in the routine clinical practice. Continued treatment with sertraline prevents both a relapse of the current depressive episode and future episodes (recurrence of depression).

In several double-blind studies, sertraline was consistently more effective than placebo for dysthymia, a more chronic variety of depression, and comparable to imipramine in that respect. Sertraline also improves the depression of dysthymic patients to a greater degree than psychotherapy.

Sertraline provides no benefit to children and adolescents with depression.

Comparison with other antidepressants

In general, sertraline efficacy is similar to that of other antidepressants. For example, a meta-analysis of 12 new-generation antidepressants showed that sertraline and escitalopram are the best in terms of efficacy and acceptability in the acute-phase treatment of adults with depression. Comparative clinical trials demonstrated that sertraline is similar in efficacy against depression to moclobemide, nefazodone, escitalopram, bupropion, citalopram, fluvoxamine, paroxetine, venlafaxine and mirtazapine. Sertraline may be more efficacious for the treatment of depression in the acute phase (first 4 weeks) than fluoxetine.

There are differences between sertraline and some other antidepressants in their efficacy in the treatment of different subtypes of depression and in their adverse effects. For severe depression, sertraline is as good as clomipramine but is better tolerated. Sertraline appears to work better in melancholic depression than fluoxetine, paroxetine, and mianserin and is similar to the tricyclic antidepressants such as amitriptyline and clomipramine. In the treatment of depression accompanied by OCD, sertraline performs significantly better than desipramine on the measures of both OCD and depression. Sertraline is equivalent to imipramine for the treatment of depression with co-morbid panic disorder, but it is better tolerated. Compared with amitriptyline, sertraline offered a greater overall improvement in quality of life of depressed patients.

Depression in elderly

Sertraline used for the treatment of depression in elderly (older than 60) patients is superior to placebo and comparable to another SSRI fluoxetine, and tricyclic antidepressants (TCAs) amitriptyline, nortriptyline and imipramine. Sertraline has much lower rates of adverse effects than these TCAs, with the exception of nausea, which occurs more frequently with sertraline. In addition, sertraline appears to be more effective than fluoxetine or nortriptyline in the older-than-70 subgroup. Accordingly, a meta-analysis of antidepressants in older adults found that sertraline, paroxetine and duloxetine were better than placebo. On the other hand, in a 2003 trial the effect size was modest, and there was no improvement in quality of life as compared to placebo. With depression in dementia, there is no benefit of sertraline treatment compared to either placebo or mirtazapine.

Obsessive–compulsive disorder

Sertraline is effective for the treatment of OCD in adults and children. It was better tolerated and, based on intention-to-treat analysis, performed better than the gold standard of OCD treatment clomipramine. Continuing sertraline treatment helps prevent relapses of OCD with long-term data supporting its use for up to 24 months. It is generally accepted that the sertraline dosages necessary for the effective treatment of OCD are higher than the usual dosage for depression. The onset of action is also slower for OCD than for depression. The treatment recommendation is to start treatment with a half of maximal recommended dose for at least two months. After that, the dose can be raised to the maximal recommended in the cases of unsatisfactory response.

Cognitive behavioral therapy alone was superior to sertraline in both adults and children; however, the best results were achieved using a combination of these treatments.

Panic disorder

Sertraline is superior to placebo for the treatment of panic disorder. The response rate was independent of the dose. In addition to decreasing the frequency of panic attacks by about 80% (vs. 45% for placebo) and decreasing general anxiety, sertraline resulted in improvement of quality of life on most parameters. The patients rated as "improved" on sertraline reported better quality of life than the ones who "improved" on placebo. The authors of the study argued that the improvement achieved with sertraline is different and of a better quality than the improvement achieved with placebo. Sertraline is equally effective for men and women, and for patients with or without agoraphobia. Previous unsuccessful treatment with benzodiazepines does not diminish its efficacy. However, the response rate was lower for the patients with more severe panic. Starting treatment simultaneously with sertraline and clonazepam, with subsequent gradual discontinuation of clonazepam, may accelerate the response.

Double-blind comparative studies found sertraline to have the same effect on panic disorder as paroxetine or imipramine. While imprecise, comparison of the results of trials of sertraline with separate trials of other anti-panic agents (clomipramine, imipramine, clonazepam, alprazolam, and fluvoxamine) indicates approximate equivalence of these medications.

Other anxiety disorders

Sertraline has been successfully used for the treatment of social anxiety disorder. All three major domains of the disorder (fear, avoidance, and physiological symptoms) respond to sertraline. Maintenance treatment, after the response is achieved, prevents the return of the symptoms. The improvement is greater among the patients with later, adult onset of the disorder. In a comparison trial, sertraline was superior to exposure therapy, but patients treated with the psychological intervention continued to improve during a year-long follow-up, while those treated with sertraline deteriorated after treatment termination. The combination of sertraline and cognitive behavioral therapy appears to be more effective in children and young people than either treatment alone.

Sertraline has not been approved for the treatment of generalized anxiety disorder; however, several guidelines recommend it as a first-line medication referring to good quality controlled clinical trials.

Premenstrual dysphoric disorder

Sertraline is effective in alleviating the symptoms of premenstrual dysphoric disorder (PMDD), a severe form of premenstrual syndrome. Significant improvement was observed in 50–60% of cases treated with sertraline vs. 20–30% of cases on placebo. The improvement began during the first week of treatment, and in addition to mood, irritability, and anxiety, improvement was reflected in better family functioning, social activity and general quality of life. Work functioning and physical symptoms, such as swelling, bloating and breast tenderness, were less responsive to sertraline. Taking sertraline only during the luteal phase, that is, the 12–14 days before menses, was shown to work as well as continuous treatment. Continuous treatment with sub-therapeutic doses of sertraline (25 mg vs. usual 50–100 mg) is also effective.

Other indications

Sertraline is approved for the treatment of post-traumatic stress disorder (PTSD). National Institute of Clinical Excellence recommends it for patients who prefer drug treatment to a psychological one. Other guidelines also suggest sertraline as a first-line option for pharmacological therapy. When necessary, long-term pharmacotherapy can be beneficial. There are both negative and positive clinical trial results for sertraline, which may be explained by the types of psychological traumas, symptoms, and comorbidities included in the various studies. Positive results were obtained in trials that included predominantly women (75%) with a majority (60%) having physical or sexual assault as the traumatic event. Contrary to the above suggestions, a meta-analysis of sertraline clinical trials for PTSD found it to be not significantly better than placebo. Another meta-analysis relegated sertraline to the second line, proposing trauma focused psychotherapy as a first-line intervention. The authors noted that Pfizer had declined to submit the results of a negative trial for the inclusion into the meta-analysis making the results unreliable.

Sertraline when taken daily can be useful for the treatment of premature ejaculation. A disadvantage of sertraline is that it requires continuous daily treatment to delay ejaculation significantly.

A 2019 systematic review suggested that sertraline may be a good way to control anger, irritability and hostility in depressed patients and patients with other comorbidities.

Contraindications

Sertraline is contraindicated in individuals taking monoamine oxidase inhibitors or the antipsychotic pimozide. Sertraline concentrate contains alcohol and is therefore contraindicated with disulfiram. The prescribing information recommends that treatment of the elderly and patients with liver impairment "must be approached with caution". Due to the slower elimination of sertraline in these groups, their exposure to sertraline may be as high as three times the average exposure for the same dose.

Side effects

Nausea, ejaculation failure, insomnia, diarrhea, dry mouth, somnolence, dizziness, tremor, and decreased libido are the common adverse effects associated with sertraline with the greatest difference from placebo. Those that most often resulted in interruption of the treatment are nausea, diarrhea and insomnia. The incidence of diarrhea is higher with sertraline—especially when prescribed at higher doses—in comparison with other SSRIs.

Over more than six months of sertraline therapy for depression, people showed a nonsignificant weight increase of 0.1%. Similarly, a 30-month-long treatment with sertraline for OCD resulted in a mean weight gain of 1.5% (1 kg). Although the difference did not reach statistical significance, the average weight gain was lower for fluoxetine (1%) but higher for citalopram, fluvoxamine and paroxetine (2.5%). Of the sertraline group, 4.5% gained a large amount of weight (defined as more than 7% gain). This result compares favorably with placebo, where, according to the literature, 3–6% of patients gained more than 7% of their initial weight. The large weight gain was observed only among female members of the sertraline group; the significance of this finding is unclear because of the small size of the group.

Over a two-week treatment of healthy volunteers, sertraline slightly improved verbal fluency but did not affect word learning, short-term memory, vigilance, flicker fusion time, choice reaction time, memory span, or psychomotor coordination. In spite of lower subjective rating, that is, feeling that they performed worse, no clinically relevant differences were observed in the objective cognitive performance in a group of people treated for depression with sertraline for 1.5 years as compared to healthy controls. In children and adolescents taking sertraline for six weeks for anxiety disorders, 18 out of 20 measures of memory, attention and alertness stayed unchanged. Divided attention was improved and verbal memory under interference conditions decreased marginally. Because of the large number of measures taken, it is possible that these changes were still due to chance. The unique effect of sertraline on dopaminergic neurotransmission may be related to these effects on cognition and vigilance.

Sertraline has a low level of exposure of an infant through the breast milk and is recommended as the preferred option for the antidepressant therapy of breast-feeding mothers. There is 29-42% increase in congenital heart defects among children whose mothers were prescribed sertraline during pregnancy, with sertraline use in the first trimester associated with 2.7-fold increase in septal heart defects.

Abrupt interruption of sertraline treatment may result in withdrawal or discontinuation syndrome. Dizziness, insomnia, anxiety, agitation, and irritability are its common symptoms. It typically occurs within a few days from drug discontinuation and lasts a few weeks. The withdrawal symptoms for sertraline are less severe and frequent than for paroxetine, and more frequent than for fluoxetine. In most cases symptoms are mild, short-lived, and resolve without treatment. More severe cases are often successfully treated by temporary reintroduction of the drug with a slower tapering off rate.

Sertraline and SSRI antidepressants in general may be associated with bruxism and other movement disorders. Sertraline appears to be associated with microscopic colitis, a rare condition of unknown etiology.

Sexual

Like other SSRIs, sertraline is associated with sexual side effects, including sexual arousal disorder, erectile dysfunction and difficulty achieving orgasm. While nefazodone and bupropion do not have negative effects on sexual functioning, 67% of men on sertraline experienced ejaculation difficulties versus 18% before the treatment. Sexual arousal disorder, defined as "inadequate lubrication and swelling for women and erectile difficulties for men", occurred in 12% of people on sertraline as compared with 1% of patients on placebo. The mood improvement resulting from the treatment with sertraline sometimes counteracted these side effects, so that sexual desire and overall satisfaction with sex stayed the same as before the sertraline treatment. However, under the action of placebo the desire and satisfaction slightly improved. Some people continue experiencing sexual side effects after they stop taking SSRIs.

Suicide

The FDA requires all antidepressants, including sertraline, to carry a boxed warning stating that antidepressants increase the risk of suicide in persons younger than 25 years. This warning is based on statistical analyses conducted by two independent groups of FDA experts that found a 100% increase of suicidal thoughts and behavior in children and adolescents, and a 50% increase - in the 18 – 24 age group.

Suicidal ideation and behavior in clinical trials are rare. For the above analysis, the FDA combined the results of 295 trials of 11 antidepressants for psychiatric indications in order to obtain statistically significant results. Considered separately, sertraline use in adults decreased the odds of suicidal behavior with a marginal statistical significance by 37% or 50% depending on the statistical technique used. The authors of the FDA analysis note that "given the large number of comparisons made in this review, chance is a very plausible explanation for this difference". The more complete data submitted later by the sertraline manufacturer Pfizer indicated increased suicidal behavior. Similarly, the analysis conducted by the UK MHRA found a 50% increase of odds of suicide-related events, not reaching statistical significance, in the patients on sertraline as compared to the ones on placebo.

Overdose

Acute overdosage is often manifested by emesis, lethargy, ataxia, tachycardia and seizures. Plasma, serum or blood concentrations of sertraline and norsertraline, its major active metabolite, may be measured to confirm a diagnosis of poisoning in hospitalized patients or to aid in the medicolegal investigation of fatalities. As with most other SSRIs its toxicity in overdose is considered relatively low.

Interactions

Sertraline is a moderate inhibitor of CYP2D6 and CYP2B6 in vitro. Accordingly, in human trials it caused increased blood levels of CYP2D6 substrates such as metoprolol, dextromethorphan, desipramine, imipramine and nortriptyline, as well as the CYP3A4/CYP2D6 substrate haloperidol. This effect is dose-dependent; for example, co-administration with 50 mg of sertraline resulted in 20% greater exposure to desipramine, while 150 mg of sertraline led to a 70% increase. In a placebo-controlled study, the concomitant administration of sertraline and methadone caused a 40% increase in blood levels of the latter, which is primarily metabolized by CYP2B6.

Sertraline had a slight inhibitory effect on the metabolism of diazepam, tolbutamide and warfarin, which are CYP2C9 or CYP2C19 substrates; this effect was not considered to be clinically relevant. As expected from in vitro data, sertraline did not alter the human metabolism of the CYP3A4 substrates erythromycin, alprazolam, carbamazepine, clonazepam, and terfenadine; neither did it affect metabolism of the CYP1A2 substrate clozapine.

Sertraline had no effect on the actions of digoxin and atenolol, which are not metabolized in the liver. Case reports suggest that taking sertraline with phenytoin or zolpidem may induce sertraline metabolism and decrease its efficacy, and that taking sertraline with lamotrigine may increase the blood level of lamotrigine, possibly by inhibition of glucuronidation.

CYP2C19 inhibitor esomeprazole increased sertraline concentrations in blood plasma by approximately 40%.

Clinical reports indicate that interaction between sertraline and the MAOIs isocarboxazid and tranylcypromine may cause serotonin syndrome. In a placebo-controlled study in which sertraline was co-administered with lithium, 35% of the subjects experienced tremors, while none of those taking placebo did.

Sertraline may interact with grapefruit juice - see Grapefruit–drug interactions.

Pharmacology

Pharmacodynamics

Molecular targets of sertraline
Site Ki (nM) Species
SERT 0.15-3.3 Human
NET 420-925 Human
DAT 22-315 Human
5-HT1A >35,000 Human
5-HT2A 2,207 Rat
5-HT2C 2,298 Pig
α1A 1900 Human
α1B 3500 Human
α1D 2500 Human
α2 477–4,100 Human
D2 10,700 Human
H1 24,000 Human
mACh 427–2,100 Human
σ1 32–57 Rat
σ2 5,297 Rat
Values are Ki (nM), unless otherwise noted. The smaller the value, the more strongly the drug binds to or inhibits the site.

Sertraline is a selective serotonin reuptake inhibitor (SSRI). By binding serotonin transporter (SERT) it inhibits neuronal reuptake of serotonin and potentiates serotonergic activity in the central nervous system. It does not significantly affect norepinephrine transporter (NET), serotonin, dopamine, adrenergic, histamine, acetylcholine, GABA or benzodiazepine receptors.

Sertraline also shows relatively high activity as an inhibitor of the dopamine transporter (DAT) and antagonist of the sigma σ1 receptor (but not the σ2 receptor). However, sertraline affinity for its main target (SERT) is much greater than its affinity for σ1 receptor and DAT. Although there could be a role for the σ1 receptor in the pharmacology of sertraline, the significance of this receptor in its actions is unclear. Similarly, the clinical relevance of sertraline's blockade of the dopamine transporter is uncertain.

Pharmacokinetics

Desmethylsertraline—sertraline's major metabolite

Sertraline is absorbed slowly when taken orally, achieving its maximal concentration in the plasma 4 to 6 hours after ingestion. In the blood, it is 98.5% bound to plasma proteins. Its half-life in the body is 13–45 hours and, on average, is about 1.5 times longer in women (32 hours) than in men (22 hours), leading to a 1.5-times-higher exposure in women. According to in vitro studies, sertraline is metabolized by multiple cytochrome 450 isoforms; however, it appears that in the human body CYP2C19 plays the most important role, followed by CYP2B6. Poor CYP2C19 metabolizers have 2.7-fold higher levels of sertraline, and intermediate metabolizers - 1.4-fold higher levels, than normal (extensive) metabolizers. In contrast, poor CYP2B6 metabolizers have 1.6-fold higher levels of sertraline and intermediate metabolizers - 1.2-fold higher levels.

The major metabolite of sertraline, desmethylsertraline, is about 50 times weaker as a serotonin transporter inhibitor than sertraline and its clinical effect is negligible. Sertraline can be deaminated in vitro by monoamine oxidases; however, this metabolic pathway has never been studied in vivo.

History

Skeletal formulae of thiothixene, lometraline and tametraline, from which sertraline was derived. Commonalities to the structure of sertraline are highlighted in green.

The history of sertraline dates back to the early 1970s, when Pfizer chemist Reinhard Sarges invented a novel series of psychoactive compounds, including lometraline, based on the structures of the neuroleptics thiothixene and pinoxepin. Further work on these compounds led to tametraline, a norepinephrine and weaker dopamine reuptake inhibitor. Development of tametraline was soon stopped because of undesired stimulant effects observed in animals. A few years later, in 1977, pharmacologist Kenneth Koe, after comparing the structural features of a variety of reuptake inhibitors, became interested in the tametraline series. He asked another Pfizer chemist, Willard Welch, to synthesize some previously unexplored tametraline derivatives. Welch generated a number of potent norepinephrine and triple reuptake inhibitors, but to the surprise of the scientists, one representative of the generally inactive cis-analogs was a serotonin reuptake inhibitor. Welch then prepared stereoisomers of this compound, which were tested in vivo by animal behavioral scientist Albert Weissman. The most potent and selective (+)-isomer was taken into further development and eventually named sertraline. Weissman and Koe recalled that the group did not set up to produce an antidepressant of the SSRI type—in that sense their inquiry was not "very goal driven", and the discovery of the sertraline molecule was serendipitous. According to Welch, they worked outside the mainstream at Pfizer, and even "did not have a formal project team". The group had to overcome initial bureaucratic reluctance to pursue sertraline development, as Pfizer was considering licensing an antidepressant candidate from another company.

Sertraline was approved by the US Food and Drug Administration (FDA) in 1991 based on the recommendation of the Psychopharmacological Drugs Advisory Committee; it had already become available in the United Kingdom the previous year. The FDA committee achieved a consensus that sertraline was safe and effective for the treatment of major depression. During the discussion, Paul Leber, the director of the FDA Division of Neuropharmacological Drug Products, noted that granting approval was a "tough decision", since the treatment effect on outpatients with depression had been "modest to minimal". Other experts emphasized that the drug's effect on inpatients had not differed from placebo and criticized poor design of the clinical trials by Pfizer. For example, 40% of participants dropped out of the trials, significantly decreasing their validity.

Until 2002, sertraline was only approved for use in adults ages 18 and over; that year, it was approved by the FDA for use in treating children aged 6 or older with severe OCD. In 2003, the UK Medicines and Healthcare products Regulatory Agency issued a guidance that, apart from fluoxetine (Prozac), SSRIs are not suitable for the treatment of depression in patients under 18. However, sertraline can still be used in the UK for the treatment of OCD in children and adolescents. In 2005, the FDA added a boxed warning concerning pediatric suicidal behavior to all antidepressants, including sertraline. In 2007, labeling was again changed to add a warning regarding suicidal behavior in young adults ages 18 to 24.

Society and culture

Generic availability

The US patent for Zoloft expired in 2006, and sertraline is available in generic form and is marketed under many brand names worldwide.

In May 2020, the FDA placed Zoloft on the list of drugs currently facing a shortage.

Brønsted–Lowry acid–base theory

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Br%C3%B8nsted%E2%80%93Lowry_acid%E2%80%93base_theory The B...