The
Andromeda Galaxy // is a
spiral galaxy approximately 2.5 million
light-years (2.4
×10
19 km) from
Earth[4] in the
Andromeda constellation. Also known as
Messier 31,
M31, or
NGC 224, it is often referred to as the
Great Andromeda Nebula in older texts. The Andromeda Galaxy is the nearest spiral galaxy to our
Milky Way galaxy, but not the
nearest galaxy overall. It gets its name from the area of the sky in which it appears, the
constellation of Andromeda, which was named after the mythological princess
Andromeda. The Andromeda Galaxy is the largest
galaxy of the
Local Group, which also contains the Milky Way, the
Triangulum Galaxy, and about 30 other smaller galaxies. Although the largest, the Andromeda Galaxy may not be the most massive, as recent findings suggest that the Milky Way contains more
dark matter and could be the most massive in the grouping.
[11] The 2006 observations by the
Spitzer Space Telescope revealed that M31 contains
one trillion (1012) stars:
[8] at least twice the number of stars in the Milky Way galaxy, which is estimated to be 200–400 billion.
[12]
The Andromeda Galaxy is estimated to be 7.1
×10
11 solar masses.
[2] In comparison a 2009 study estimated that the Milky Way and M31 are about equal in mass,
[13] while a 2006 study put the mass of the Milky Way at ~80% of the mass of the Andromeda Galaxy. The two galaxies are
expected to collide in 3.75 billion years, eventually merging to form a giant
elliptical galaxy.
[14]
At 3.4, the
apparent magnitude of Andromeda Galaxy is one of the brightest of any
Messier objects,
[15] making it visible to the
naked eye on moonless nights even when viewed from areas with moderate
light pollution. Although it appears more than six times as wide as the
full Moon when photographed through a larger
telescope, only the brighter central region is visible to the naked eye or when viewed using
binoculars or a small telescope.
The measured distance to the Andromeda Galaxy was doubled in 1953 when it was discovered that there is another, dimmer type of
Cepheid. In the 1990s, measurements of both standard
red giants as well as
red clump stars from the
Hipparcos satellite measurements were used to calibrate the Cepheid distances.
[35][36]
Formation and history
According to a team of astronomers reporting in 2010, M31 was formed out of the collision of two smaller galaxies between 5 and 9 billion years ago.
[37]
A paper published in 2012
[38] has outlined M31's basic history since its birth. According to it, Andromeda was born roughly 10 billion years ago from the merger of many smaller
protogalaxies, leading to a galaxy smaller than the one we see today.
The most important event in M31's past history was the
merger mentioned above that took place 8 billion years ago. This violent collision formed most of its (metal-rich)
galactic halo and extended disk and during that epoch Andromeda's
star formation would have been
very high, to the point of becoming a
luminous infrared galaxy for roughly 100 million years.
M31 and the
Triangulum Galaxy (M33) had a very close passage 2–4 billion years ago. This event produced high levels of star formation across the Andromeda Galaxy's disk – even some globular clusters – and disturbed M33's outer disk.
While there has been activity during the last 2 billion years, this has been much lower than during the past. During this epoch, star formation throughout M31's disk decreased to the point of nearly shutting down, then increased again relatively recently. There have been interactions with satellite galaxies like M32, M110, or others that have already been absorbed by M31. These interactions have formed structures like
Andromeda's Giant Stellar Stream. A merger roughly 100 million years ago is believed to be responsible for a counter-rotating disk of gas found in the center of M31 as well as the presence there of a relatively young (100 million years old) stellar population.
Recent distance estimate
At least four distinct techniques have been used to measure distances to the Andromeda Galaxy.
In 2003, using the infrared
surface brightness fluctuations (I-SBF) and adjusting for the new period-luminosity value of Freedman et al. 2001 and using a metallicity correction of −0.2 mag dex
−1 in (O/H), an estimate of 2.57 ± 0.06
megalight-years (788 ± 18
kpc) was derived.
Using the
Cepheid variable method, an estimate of 2.51 ± 0.13 Mly (770 ± 40 kpc) was reported in 2004.
[2][3]
In 2005 Ignasi Ribas (
CSIC, Institute for Space Studies of
Catalonia (IEEC)) and colleagues announced the discovery of an
eclipsing binary star in the Andromeda Galaxy. The binary star, designated M31VJ00443799+4129236,
[c] has two luminous and hot blue stars of
types O and B. By studying the eclipses of the stars, which occur every 3.54969 days, the astronomers were able to measure their sizes. Knowing the sizes and temperatures of the stars, they were able to measure the
absolute magnitude of the stars. When the
visual and absolute magnitudes are known, the distance to the star can be measured. The stars lie at a distance of 2.52 ± 0.14 Mly (773 ± 43 kpc) and the whole Andromeda Galaxy at about 2.5 Mly (770 kpc).
[4] This new value is in excellent agreement with the previous, independent Cepheid-based distance value.
M31 is close enough that the
Tip of the Red Giant Branch (TRGB) method may also be used to estimate its distance. The estimated distance to M31 using this technique in 2005 yielded 2.56 ± 0.08 Mly (785 ± 25 kpc).
[5]
Averaged together, all these distance measurements give a combined distance estimate of
2.54 ± 0.11 Mly (779 ± 34 kpc).
[a] Based upon the above distance, the diameter of M31 at the widest point is estimated to be 141 ± 3 kly (43,230 ± 920 pc).
[d] Applying
trigonometry (
arctangent), that figures to extending at an apparent 3.18
° angle in the sky.
Mass and luminosity estimates
Mass
Mass estimates for the Andromeda Galaxy's halo (including
dark matter) give a value of approximately 1.23
×10
12 M☉[7] (or 1.2
trillion solar masses) compared to 1.9
×10
12 M☉ for the Milky Way. Thus M31 may be less massive than our own galaxy, although the error range is still too large to say for certain. Even so, the masses of the Milky Way and M31 are comparable, and M31's
spheroid actually has a higher stellar density than that of the Milky Way.
[39]
Luminosity
M31 appears to have significantly more common stars than the Milky Way, and the estimated
luminosity of M31, ~2.6
×10
10 L☉, is about 25% higher than that of our own galaxy.
[40] However, the galaxy has a high
inclination as seen from Earth and its
interstellar dust absorbs an unknown amount of light, so it is difficult to estimate its actual brightness and other authors have given other values for the luminosity of the Andromeda Galaxy (including to propose it is the second brightest galaxy within a radius of 10
megaparsecs of the Milky Way, after the
Sombrero Galaxy[41]) , the most recent estimation (done in 2010 with the help of
Spitzer Space Telescope) suggesting an
absolute magnitude (in the blue) of −20.89 (that with a
color index of +0.63 translates to an absolute visual magnitude of −21.52,
[b] compared to −20.9 for the Milky Way), and a total luminosity in that
wavelength of 3.64
×10
10L☉[42]
The rate of star formation in the Milky Way is much higher, with M31 producing only about one solar mass per year compared to 3–5 solar masses for the Milky Way. The rate of
supernovae in the Milky Way is also double that of M31.
[43] This suggests that M31 once experienced a great star formation phase, but is now in a relative state of quiescence, whereas the Milky Way is experiencing more active star formation.
[40] Should this continue, the luminosity in the Milky Way may eventually overtake that of M31.
According to recent studies, like the Milky Way, the Andromeda Galaxy lies in what in the
galaxy color–magnitude diagram is known as the
green valley, a region populated by galaxies in transition from the
blue cloud (galaxies actively forming new stars) to the
red sequence (galaxies that lack star formation). Star formation activity in green valley galaxies is slowing as they run out of star-forming gas in the interstellar medium. In simulated galaxies with similar properties, star formation will typically have been extinguished within about five billion years from now, even accounting for the expected, short-term increase in the rate of star formation due to the collision between both Andromeda and the Milky Way.
[44]
Structure
A
Swift Tour of Andromeda Galaxy
A
Galaxy Evolution Explorer image of the Andromeda Galaxy. The bands of blue-white making up the galaxy's striking rings are neighborhoods that harbor hot, young, massive stars. Dark blue-grey lanes of cooler dust show up starkly against these bright rings, tracing the regions where star formation is currently taking place in dense cloudy cocoons. When observed in visible light, Andromeda’s rings look more like spiral arms. The ultraviolet view shows that these arms more closely resemble the ring-like structure previously observed in infrared wavelengths with NASA’s
Spitzer Space Telescope. Astronomers using Spitzer interpreted these rings as evidence that the galaxy was involved in a direct collision with its neighbor, M32, more than 200 million years ago.
Based on its appearance in visible light, the Andromeda Galaxy is classified as an SA(s)b galaxy in the
de Vaucouleurs–Sandage extended classification system of spiral galaxies.
[1] However, data from the
2MASS survey showed that the bulge of M31 has a box-like appearance, which implies that the galaxy is actually a
barred spiral galaxy like the Milky Way, with the Andromeda Galaxy's bar viewed almost directly along its long axis.
[45]
In 2005, astronomers used the
Keck telescopes to show that the tenuous sprinkle of stars extending outward from the galaxy is actually part of the main disk itself.
[46] This means that the spiral disk of stars in M31 is three times larger in diameter than previously estimated. This constitutes evidence that there is a vast, extended stellar disk that makes the galaxy more than 220,000 light-years (67,000 pc) in diameter. Previously, estimates of the Andromeda Galaxy's size ranged from 70,000 to 120,000 light-years (21,000 to 37,000 pc) across.
The galaxy is inclined an estimated 77° relative to the Earth (where an angle of 90° would be viewed directly from the side). Analysis of the cross-sectional shape of the galaxy appears to demonstrate a pronounced, S-shaped warp, rather than just a flat disk.
[47] A possible cause of such a warp could be gravitational interaction with the satellite galaxies near M31. The galaxy
M33 could be responsible for some warp in M31's arms, though more precise distances and radial velocities are required.
Spectroscopic studies have provided detailed measurements of the
rotational velocity of M31 at various radii from the core. In the vicinity of the core, the rotational velocity climbs to a peak of 225 kilometres per second (140 mi/s) at a radius of 1,300
light-years (82,000,000
AU), then descends to a minimum at 7,000
light-years (440,000,000
AU) where the rotation velocity may be as low as 50 kilometres per second (31 mi/s). Thereafter the velocity steadily climbs again out to a radius of 33,000
light-years (2.1
×10
9 AU), where it reaches a peak of 250 kilometres per second (160 mi/s). The velocities slowly decline beyond that distance, dropping to around 200 kilometres per second (120 mi/s) at 80,000
light-years (5.1
×10
9 AU). These velocity measurements imply a concentrated mass of about 6
×10
9 M☉ in the
nucleus. The total mass of the galaxy increases
linearly out to 45,000
light-years (2.8
×10
9 AU), then more slowly beyond that radius.
[48]
The
spiral arms of M31 are outlined by a series of
H II regions that Baade described as resembling "beads on a string". They appear to be tightly wound, although they are more widely spaced than in our galaxy.
[49] Since the Andromeda Galaxy is seen close to edge-on, however, the studies of its spiral structure are difficult. While rectified images of the galaxy seem to show a fairly normal spiral galaxy with the arms wound up in a clockwise direction, exhibiting two continuous trailing arms that are separated from each other by a minimum of about 13,000
light-years (820,000,000
AU) and that can be followed outward from a distance of roughly 1,600
light-years (100,000,000
AU) from the core, other alternative spiral structures have been proposed such as a single spiral arm
[50] or a
flocculent[51] pattern of long, filamentary, and thick spiral arms.
[1][52]
The most likely cause of the distortions of the spiral pattern is thought to be interaction with galaxy satellites
M32 and
M110.
[53] This can be seen by the displacement of the
neutral hydrogen clouds from the stars.
[54]
In 1998, images from the
European Space Agency's
Infrared Space Observatory demonstrated that the overall form of the Andromeda Galaxy may be transitioning into a
ring galaxy. The gas and dust within M31 is generally formed into several overlapping rings, with a particularly prominent ring formed at a radius of 32,000
light-years (2.0
×10
9 AU) from the core.
[55] This ring is hidden from visible light images of the galaxy because it is composed primarily of cold dust.
Later studies with the help of the
Spitzer Space Telescope showed how Andromeda's spiral structure in the infrared appears to be composed of two spiral arms that emerge from a central bar and continue beyond the large ring mentioned above. Those arms, however, are not continuous and have a segmented structure.
[53]
Close examination of the inner region of M31 with the same telescope also showed a smaller dust ring that is believed to have been caused by the interaction with M32 more than 200 million years ago. Simulations show that the smaller galaxy passed through the disk of the galaxy in Andromeda along the latter's polar axis. This collision stripped more than half the mass from the smaller M32 and created the ring structures in M31.
[56] It is the co-existence of the long-known large ring-like feature in the gas of Messier 31, together with this newly discovered inner ring-like structure, offset from the barycenter, that suggested a nearly head-on collision with the satellite M32, a milder version of the
Cartwheel encounter.
[57]
Studies of the extended halo of M31 show that it is roughly comparable to that of the Milky Way, with stars in the halo being generally "
metal-poor", and increasingly so with greater distance.
[39] This evidence indicates that the two galaxies have followed similar evolutionary paths. They are likely to have accreted and assimilated about 100–200 low-mass galaxies during the past 12 billion years.
[58] The stars in the extended halos of M31 and the Milky Way may extend nearly one-third the distance separating the two galaxies.
Nucleus
HST image of the Andromeda Galaxy core showing possible double structure.
NASA/ESA photo
M31 is known to harbor a dense and compact star cluster at its very center. In a large telescope it creates a visual impression of a star embedded in the more diffuse surrounding bulge. The luminosity of the nucleus is in excess of the most luminous globular clusters.
[citation needed]
Chandra X-ray telescope image of the center of M31. A number of X-ray sources, likely X-ray binary stars, within Andromeda's central region appear as yellowish dots. The blue source at the center is at the position of the supermassive black hole.
In 1991
Tod R. Lauer used
WFPC, then on board the
Hubble Space Telescope, to image M31's inner nucleus. The nucleus consists of two concentrations separated by 1.5
parsecs (4.9
ly). The brighter concentration, designated as P1, is offset from the center of the galaxy. The dimmer concentration, P2, falls at the true center of the galaxy and contains a
black hole measured at 3–5 × 10
7 M☉ in 1993,
[59] and at 1.1–2.3 × 10
8 M
☉ in 2005.
[60] The
velocity dispersion of material around it is measured to be ≈ 160 km/s.
[61]
Scott Tremaine has proposed that the observed double nucleus could be explained if P1 is the projection of a disk of stars in an
eccentric orbit around the central black hole.
[62] The eccentricity is such that stars linger at the orbital
apocenter, creating a concentration of stars. P2 also contains a compact disk of hot,
spectral class A stars. The A stars are not evident in redder filters, but in blue and ultraviolet light they dominate the nucleus, causing P2 to appear more prominent than P1.
[63]
While at the initial time of its discovery it was hypothesized that the brighter portion of the double nucleus was the remnant of a small galaxy "cannibalized" by M31,
[64] this is no longer considered a viable explanation, largely because such a nucleus would have an exceedingly short lifetime due to
tidal disruption by the central black hole. While this could be partially resolved if P1 had its own black hole to stabilize it, the distribution of stars in P1 does not suggest that there is a black hole at its center.
[62]
Discrete sources

Artist's concept of the Andromeda Galaxy core showing a view across a disk of young, blue stars encircling a supermassive black hole.
NASA/ESA photo
Apparently, by late 1968, no X-rays had been detected from the Andromeda Galaxy.
[65] A balloon flight on October 20, 1970, set an upper limit for detectable hard X-rays from M31.
[66]
Multiple X-ray sources have since been detected in the Andromeda Galaxy, using observations from the
ESA's XMM-Newton orbiting observatory.
Robin Barnard et al. hypothesized that these are candidate black holes or
neutron stars, which are heating incoming gas to millions of kelvins and emitting X-rays. The spectrum of the neutron stars is the same as the hypothesized black holes, but can be distinguished by their masses.
[67]
There are approximately 460
globular clusters associated with the Andromeda Galaxy.
[68] The most massive of these clusters, identified as
Mayall II, nicknamed Globular One, has a greater luminosity than any other known globular cluster in the
Local Group of galaxies.
[69] It contains several million stars, and is about twice as luminous as
Omega Centauri, the brightest known globular cluster in the
Milky Way. Globular One (or G1) has several stellar populations and a structure too massive for an ordinary globular. As a result, some consider G1 to be the remnant core of a
dwarf galaxy that was consumed by M31 in the distant past.
[70] The globular with the greatest apparent brightness is
G76 which is located in the south-west arm's eastern half.
[17] Another massive globular cluster -named
037-B327-, discovered in 2006 as is heavily reddened by the Andromeda Galaxy's
interstellar dust, was thought to be more massive than G1 and the largest cluster of the Local Group;
[71] however other studies have shown is actually similar in properties to G1.
[72]
Unlike the globular clusters of the Milky Way, which show a relatively low age dispersion, Andromeda's globular clusters have a much larger range of ages: from systems as old as the galaxy itself to much younger systems, with ages between a few hundred million years to five billion years
[73]
In 2005, astronomers discovered a completely new type of star cluster in M31. The new-found clusters contain hundreds of thousands of stars, a similar number of stars that can be found in globular clusters. What distinguishes them from the globular clusters is that they are much larger — several hundred light-years across — and hundreds of times less dense. The distances between the stars are, therefore, much greater within the newly discovered extended clusters.
[74]
In the year 2012, a
microquasar, a radio burst emanating from a smaller black hole, was detected in the Andromeda Galaxy. The progenitor black hole was located near the galactic center and had about 10

. Discovered through a data collected by the
ESA's
XMM-Newton probe, and subsequently observed by
NASA's
Swift and
Chandra, the
Very Large Array, and the
Very Long Baseline Array, the microquasar was the first observed within the Andromeda Galaxy and the first outside of the Milky Way Galaxy.
[75]
Satellites
Like the Milky Way, the Andromeda Galaxy has
satellite galaxies, consisting of 14 known
dwarf galaxies. The best known and most readily observed satellite galaxies are
M32 and
M110. Based on current evidence, it appears that M32 underwent a close encounter with M31 (Andromeda) in the past. M32 may once have been a larger galaxy that had its stellar disk removed by M31, and underwent a sharp increase of
star formation in the core region, which lasted until the relatively recent past.
[76]
M110 also appears to be interacting with M31, and astronomers have found in the halo of M31 a stream of metal-rich stars that appear to have been stripped from these satellite galaxies.
[77] M110 does contain a dusty lane, which may indicate recent or ongoing star formation.
[78]
In 2006 it was discovered that nine of these galaxies lie along a plane that intersects the core of the Andromeda Galaxy, rather than being randomly arranged as would be expected from independent interactions. This may indicate a common tidal origin for the satellites.
[79]
Future collision with the Milky Way
The Andromeda Galaxy is approaching the
Milky Way at about 110 kilometres per second (68 mi/s).
[80] We measure it approaching relative to our sun at around 300 kilometres per second (190 mi/s)
[1] as the sun orbits around the center of our galaxy at a speed of approximately 225 kilometres per second (140 mi/s). This makes Andromeda one of the few
blueshifted galaxies that we observe. Andromeda's tangential or side-ways velocity with respect to the Milky Way is relatively much smaller than the approaching velocity and therefore we expect it to directly collide with the Milky Way in about 4 billion years. A likely outcome of the collision is that the
galaxies will merge to form a giant
elliptical galaxy.
[81] Such events are frequent among the galaxies in
galaxy groups. The fate of the
Earth and the
Solar System in the event of a collision is currently unknown. Before the galaxies merge, there is a small chance that the Solar System could be ejected from the Milky Way or join M31.
[82]