Search This Blog

Wednesday, July 6, 2022

Ground source heat pump

From Wikipedia, the free encyclopedia

A heat pump in combination with heat and cold storage

A ground source heat pump (also geothermal heat pump) is a heating/cooling system for buildings that uses a type of heat pump to transfer heat to or from the ground, taking advantage of the relative constancy of temperatures of the earth through the seasons. Ground source heat pumps (GSHPs) – or geothermal heat pumps (GHP) as they are commonly termed in North America – are among the most energy-efficient technologies for providing HVAC and water heating, using far less energy than can be achieved by burning a fuel in a boiler/furnace or by use of resistive electric heaters.

Efficiency is given as a coefficient of performance (CoP) which is typically in the range 3 – 6, meaning that the devices provide 3 – 6 units of heat for each unit of electricity used. Setup costs are higher than for other heating systems due to the requirement to install ground loops over large areas or drill bore holes, and for this reason air source heat pumps are often used instead.

History

The heat pump was described by Lord Kelvin in 1853 and developed by Peter Ritter von Rittinger in 1855. Heinrich Zoelly had patented the idea of using it to draw heat from the ground in 1912.

After experimenting with a freezer, Robert C. Webber built the first direct exchange ground source heat pump in the late 1940s, however sources disagree as to the exact timeline of his invention The first successful commercial project was installed in the Commonwealth Building (Portland, Oregon) in 1948, and has been designated a National Historic Mechanical Engineering Landmark by ASME. Professor Carl Nielsen of Ohio State University built the first residential open loop version in his home in 1948.

The technology became popular in Sweden in the 1970s as a result of the 1973 oil crisis, and has been growing slowly in worldwide acceptance since then. Open loop systems dominated the market until the development of polybutylene pipe in 1979 made closed loop systems economically viable.

As of 2004, there are over a million units installed worldwide providing 12 GW of thermal capacity with a growth rate of 10% per year. Each year (as of 2011/2004, respectively), about 80,000 units are installed in the US and 27,000 in Sweden. In Finland, a geothermal heat pump was the most common heating system choice for new detached houses between 2006 and 2011 with market share exceeding 40%.

Arrangement

Internal arrangement

Liquid-to-water heat pump

The heat pump, which is the central unit that becomes the heating and cooling plant for the building, comes in two main variants:

Liquid-to-water heat pumps (also called water-to-water) are hydronic systems that carry heating or cooling through the building through pipes to conventional radiators, underfloor heating, baseboard radiators and hot water tanks. These heat pumps are also preferred for pool heating. Heat pumps typically only heat water to about 55 °C (131 °F) efficiently, whereas boilers typically operate at 65–95 °C (149–203 °F). The size of radiators designed for the higher temperatures achieved by boilers may be too small for use with heat pumps, requiring replacement with larger radiators when retrofitting a home from boiler to heat pump. When used for cooling, the temperature of the circulating water must normally be kept above the dew point to ensure that atmospheric humidity does not condense on the radiator.

Liquid-to-air heat pumps (also called water-to-air) output forced air, and are most commonly used to replace legacy forced air furnaces and central air conditioning systems. There are variations that allow for split systems, high-velocity systems, and ductless systems. Heat pumps cannot achieve as high a fluid temperature as a conventional furnace, so they require a higher volume flow rate of air to compensate. When retrofitting a residence, the existing ductwork may have to be enlarged to reduce the noise from the higher air flow.

Ground heat exchanger

A horizontal slinky loop prior to being covered with soil.

Ground source heat pumps employ a ground heat exchanger in contact with the ground or groundwater to extract or dissipate heat. Incorrect design can result in the system freezing after a number of years or very inefficient system performance; thus accurate system design is critical to a successful system 

Pipework for the ground loop is typically made of high-density polyethylene pipe and contains a mixture of water and anti-freeze (propylene glycol, denatured alcohol or methanol). Monopropylene glycol has the least damaging potential when it might leak into the ground, and is, therefore, the only allowed anti-freeze in ground sources in an increasing number of European countries.

Horizontal

A horizontal closed loop field is composed of pipes that are arrayed in a plane in the ground. A long trench, deeper than the frost line, is dug and U-shaped or slinky coils are spread out inside the same trench. Shallow 3–8-foot (0.91–2.44 m) horizontal heat exchangers experience seasonal temperature cycles due to solar gains and transmission losses to ambient air at ground level. These temperature cycles lag behind the seasons because of thermal inertia, so the heat exchanger will harvest heat deposited by the sun several months earlier, while being weighed down in late winter and spring, due to accumulated winter cold. Systems in wet ground or in water are generally more efficient than drier ground loops since water conducts and stores heat better than solids in sand or soil. If the ground is naturally dry, soaker hoses may be buried with the ground loop to keep it wet.

Vertical
Drilling of a borehole for residential heating

A vertical system consists of a number of boreholes some 50 to 400 feet (15–122 m) deep fitted with U-shaped pipes through which a heat-carrying fluid that absorbs (or discharges) heat from (or to) the ground is circulated. Bore holes are spaced at least 5–6 m apart and the depth depends on ground and building characteristics. Alternatively, pipes may be integrated with the foundation piles used to support the building. Vertical systems rely on migration of heat from surrounding geology, unless recharged using during the summer and at other times when surplus heat is available. Vertical systems are typically used where there is insufficient available land for a horizontal system.

Pipe pairs in the hole are joined with a U-shaped cross connector at the bottom of the hole or comprises two small-diameter high-density polyethylene (HDPE) tubes thermally fused to form a U-shaped bend at the bottom. The space between the wall of the borehole and the U-shaped tubes is usually grouted completely with grouting material or, in some cases, partially filled with groundwater. For illustration, a detached house needing 10 kW (3 ton) of heating capacity might need three boreholes 80 to 110 m (260 to 360 ft) deep.

Radial or directional drilling

As an alternative to trenching, loops may be laid by mini horizontal directional drilling (mini-HDD). This technique can lay piping under yards, driveways, gardens or other structures without disturbing them, with a cost between those of trenching and vertical drilling. This system also differs from horizontal & vertical drilling as the loops are installed from one central chamber, further reducing the ground space needed. Radial drilling is often installed retroactively (after the property has been built) due to the small nature of the equipment used and the ability to bore beneath existing constructions.

Open loop

In an open-loop system (also called a groundwater heat pump), the secondary loop pumps natural water from a well or body of water into a heat exchanger inside the heat pump. Since the water chemistry is not controlled, the appliance may need to be protected from corrosion by using different metals in the heat exchanger and pump. Limescale may foul the system over time and require periodic acid cleaning. This is much more of a problem with cooling systems than heating systems. A standing column well system is a specialized type of open-loop system where water is drawn from the bottom of a deep rock well, passed through a heat pump, and returned to the top of the well. A growing number of jurisdictions have outlawed open-loop systems that drain to the surface because these may drain aquifers or contaminate wells. This forces the use of more environmentally sound injection wells or a closed-loop system.

Pond
12-ton pond loop system being sunk to the bottom of a pond

A closed pond loop consists of coils of pipe similar to a slinky loop attached to a frame and located at the bottom of an appropriately sized pond or water source. Artificial ponds are used as heat storage (up to 90% efficient) in some central solar heating plants, which later extract the heat (similar to ground storage) via a large heat pump to supply district heating.

Direct exchange (DX)

The direct exchange geothermal heat pump (DX) is the oldest type of geothermal heat pump technology where the refrigerant itself is passed through the ground loop. Developed during the 1980s, this approach faced issues with the refrigerant and oil management system, especially after the ban of CFC refrigerants in 1989 and DX systems now are infrequently used.

Installation

Because of the technical knowledge and equipment needed to design and size the system properly (and install the piping if heat fusion is required), a GSHP system installation requires a professional's services. Several installers have published real-time views of system performance in an online community of recent residential installations. The International Ground Source Heat Pump Association (IGSHPA), Geothermal Exchange Organization (GEO), the Canadian GeoExchange Coalition and the Ground Source Heat Pump Association maintain listings of qualified installers in the US, Canada and the UK. Furthermore, detailed analysis of Soil thermal conductivity for horizontal systems and formation thermal conductivity for vertical systems will generally result in more accurately designed systems with a higher efficiency.

Thermal performance

Cooling performance is typically expressed in units of BTU/hr/watt as the energy efficiency ratio (EER), while heating performance is typically reduced to dimensionless units as the coefficient of performance (COP). The conversion factor is 3.41 BTU/hr/watt. Since a heat pump moves three to five times more heat energy than the electric energy it consumes, the total energy output is much greater than the electrical input. This results in net thermal efficiencies greater than 300% as compared to radiant electric heat being 100% efficient. Traditional combustion furnaces and electric heaters can never exceed 100% efficiency. Ground source heat pumps can reduce energy consumption – and corresponding air pollution emissions – up to 72% compared to electric resistance heating with standard air-conditioning equipment.

Efficient compressors, variable speed compressors and larger heat exchangers all contribute to heat pump efficiency. Residential ground source heat pumps on the market today have standard COPs ranging from 2.4 to 5.0 and EERs ranging from 10.6 to 30. To qualify for an Energy Star label, heat pumps must meet certain minimum COP and EER ratings which depend on the ground heat exchanger type. For closed-loop systems, the ISO 13256-1 heating COP must be 3.3 or greater and the cooling EER must be 14.1 or greater.

Standards ARI 210 and 240 define Seasonal Energy Efficiency Ratio (SEER) and Heating Seasonal Performance Factors (HSPF) to account for the impact of seasonal variations on air source heat pumps. These numbers are normally not applicable and should not be compared to ground source heat pump ratings. However, Natural Resources Canada has adapted this approach to calculate typical seasonally adjusted HSPFs for ground-source heat pumps in Canada. The NRC HSPFs ranged from 8.7 to 12.8 BTU/hr/watt (2.6 to 3.8 in nondimensional factors, or 255% to 375% seasonal average electricity utilization efficiency) for the most populated regions of Canada.

For the sake of comparing heat pump appliances to each other, independently from other system components, a few standard test conditions have been established by the American Refrigerant Institute (ARI) and more recently by the International Organization for Standardization. Standard ARI 330 ratings were intended for closed-loop ground-source heat pumps, and assume secondary loop water temperatures of 25 °C (77 °F) for air conditioning and 0 °C (32 °F) for heating. These temperatures are typical of installations in the northern US. Standard ARI 325 ratings were intended for open-loop ground-source heat pumps, and include two sets of ratings for groundwater temperatures of 10 °C (50 °F) and 21 °C (70 °F). ARI 325 budgets more electricity for water pumping than ARI 330. Neither of these standards attempts to account for seasonal variations. Standard ARI 870 ratings are intended for direct exchange ground-source heat pumps. ASHRAE transitioned to ISO 13256-1 in 2001, which replaces ARI 320, 325 and 330. The new ISO standard produces slightly higher ratings because it no longer budgets any electricity for water pumps.

Soil without artificial heat addition or subtraction and at depths of several metres or more remains at a relatively constant temperature year round. This temperature equates roughly to the average annual air temperature of the chosen location, usually 7–12 °C (45–54 °F) at a depth of 6 metres (20 ft) in the northern US. Because this temperature remains more constant than the air temperature throughout the seasons, Ground source heat pumps perform with far greater efficiency during extreme air temperatures than air conditioners and air-source heat pumps.

Analysis of heat transfer

A challenge in predicting the thermal response of a ground heat exchanger (GHE) is the diversity of the time and space scales involved. Four space scales and eight time scales are involved in the heat transfer of GHEs. The first space scale having practical importance is the diameter of the borehole (~ 0.1 m) and the associated time is on the order of 1 hr, during which the effect of the heat capacity of the backfilling material is significant. The second important space dimension is the half distance between two adjacent boreholes, which is on the order of several meters. The corresponding time is on the order of a month, during which the thermal interaction between adjacent boreholes is important. The largest space scale can be tens of meters or more, such as the half-length of a borehole and the horizontal scale of a GHE cluster. The time scale involved is as long as the lifetime of a GHE (decades).

The short-term hourly temperature response of the ground is vital for analyzing the energy of ground-source heat pump systems and for their optimum control and operation. By contrast, the long-term response determines the overall feasibility of a system from the standpoint of the life cycle. Addressing the complete spectrum of time scales require vast computational resources.

The main questions that engineers may ask in the early stages of designing a GHE are (a) what the heat transfer rate of a GHE as a function of time is, given a particular temperature difference between the circulating fluid and the ground, and (b) what the temperature difference as a function of time is, given a required heat exchange rate. In the language of heat transfer, the two questions can probably be expressed as

where Tf is the average temperature of the circulating fluid, T0 is the effective, undisturbed temperature of the ground, ql is the heat transfer rate of the GHE per unit time per unit length (W/m), and R is the total thermal resistance (m.K/W).R(t) is often an unknown variable that needs to be determined by heat transfer analysis. Despite R(t) being a function of time, analytical models exclusively decompose it into a time-independent part and a time-dependent part to simplify the analysis.

Various models for the time-independent and time-dependent R can be found in the references. Further, a Thermal response test is often performed to make a deterministic analysis of ground thermal conductivity to optimize the loopfield size, especially for larger commercial sites (e.g., over 10 wells).

Seasonal thermal storage

A heat pump in combination with heat and cold storage
 

The efficiency of ground source heat pumps can be greatly improved by using seasonal thermal energy storage and interseasonal heat transfer. Heat captured and stored in thermal banks in the summer can be retrieved efficiently in the winter. Heat storage efficiency increases with scale, so this advantage is most significant in commercial or district heating systems.

Geosolar combisystems have been used to heat and cool a greenhouse using an aquifer for thermal storage. In summer, the greenhouse is cooled with cold ground water. This heats the water in the aquifer which can become a warm source for heating in winter. The combination of cold and heat storage with heat pumps can be combined with water/humidity regulation. These principles are used to provide renewable heat and renewable cooling to all kinds of buildings.

Also the efficiency of existing small heat pump installations can be improved by adding large, cheap, water-filled solar collectors. These may be integrated into a to-be-overhauled parking lot, or in walls or roof constructions by installing one-inch PE pipes into the outer layer.

Environmental impact

The US Environmental Protection Agency (EPA) has called ground source heat pumps the most energy-efficient, environmentally clean, and cost-effective space conditioning systems available. Heat pumps offer significant emission reductions potential, particularly where they are used for both heating and cooling and where the electricity is produced from renewable resources.

GSHPs have unsurpassed thermal efficiencies and produce zero emissions locally, but their electricity supply includes components with high greenhouse gas emissions unless the owner has opted for a 100% renewable energy supply. Their environmental impact, therefore, depends on the characteristics of the electricity supply and the available alternatives.

Annual greenhouse gas (GHG) savings from using a ground source heat pump instead of a high-efficiency furnace in a detached residence (assuming no specific supply of renewable energy)
Country Electricity CO2
Emissions Intensity
GHG savings relative to
natural gas heating oil electric heating
Canada 223 ton/GWh 2.7 ton/yr 5.3 ton/yr 3.4 ton/yr
Russia 351 ton/GWh 1.8 ton/yr 4.4 ton/yr 5.4 ton/yr
US 676 ton/GWh −0.5 ton/yr 2.2 ton/yr 10.3 ton/yr
China 839 ton/GWh −1.6 ton/yr 1.0 ton/yr 12.8 ton/yr

The GHG emissions savings from a heat pump over a conventional furnace can be calculated based on the following formula:

  • HL = seasonal heat load ≈ 80 GJ/yr for a modern detached house in the northern US
  • FI = emissions intensity of fuel = 50 kg(CO2)/GJ for natural gas, 73 for heating oil, 0 for 100% renewable energy such as wind, hydro, photovoltaic or solar thermal
  • AFUE = furnace efficiency ≈ 95% for a modern condensing furnace
  • COP = heat pump coefficient of performance ≈ 3.2 seasonally adjusted for northern US heat pump
  • EI = emissions intensity of electricity ≈ 200–800 ton(CO2)/GWh, depending on the region's mix of electric power plants (Coal vs Natural Gas vs Nuclear, Hydro, Wind & Solar)

Ground-source heat pumps always produce fewer greenhouse gases than air conditioners, oil furnaces, and electric heating, but natural gas furnaces may be competitive depending on the greenhouse gas intensity of the local electricity supply. In countries like Canada and Russia with low emitting electricity infrastructure, a residential heat pump may save 5 tons of carbon dioxide per year relative to an oil furnace, or about as much as taking an average passenger car off the road. But in cities like Beijing or Pittsburgh that are highly reliant on coal for electricity production, a heat pump may result in 1 or 2 tons more carbon dioxide emissions than a natural gas furnace. For areas not served by utility natural gas infrastructure, however, no better alternative exists.

The fluids used in closed loops may be designed to be biodegradable and non-toxic, but the refrigerant used in the heat pump cabinet and in direct exchange loops was, until recently, chlorodifluoromethane, which is an ozone-depleting substance. Although harmless while contained, leaks and improper end-of-life disposal contribute to enlarging the ozone hole. For new construction, this refrigerant is being phased out in favor of the ozone-friendly but potent greenhouse gas R410A. The EcoCute water heater is an air-source heat pump that uses carbon dioxide as its working fluid instead of chlorofluorocarbons. Open-loop systems (i.e. those that draw ground water as opposed to closed-loop systems using a borehole heat exchanger) need to be balanced by reinjecting the spent water. This prevents aquifer depletion and the contamination of soil or surface water with brine or other compounds from underground.

Before drilling, the underground geology needs to be understood, and drillers need to be prepared to seal the borehole, including preventing penetration of water between strata. The unfortunate example is a geothermal heating project in Staufen im Breisgau, Germany which seems the cause of considerable damage to historical buildings there. In 2008, the city centre was reported to have risen 12 cm, after initially sinking a few millimeters. The boring tapped a naturally pressurized aquifer, and via the borehole this water entered a layer of anhydrite, which expands when wet as it forms gypsum. The swelling will stop when the anhydrite is fully reacted, and reconstruction of the city center "is not expedient until the uplift ceases." By 2010 sealing of the borehole had not been accomplished. By 2010, some sections of town had risen by 30 cm.

Economics

Ground source heat pumps are characterized by high capital costs and low operational costs compared to other HVAC systems. Their overall economic benefit depends primarily on the relative costs of electricity and fuels, which are highly variable over time and across the world. Based on recent prices, ground-source heat pumps currently have lower operational costs than any other conventional heating source almost everywhere in the world. Natural gas is the only fuel with competitive operational costs, and only in a handful of countries where it is exceptionally cheap, or where electricity is exceptionally expensive. In general, a homeowner may save anywhere from 20% to 60% annually on utilities by switching from an ordinary system to a ground-source system.

Capital costs and system lifespan have received much less study until recently, and the return on investment is highly variable. The most recent data from an analysis of 2011–2012 incentive payments in the state of Maryland showed an average cost of residential systems of $1.90 per watt, or about $26,700 for a typical (4 ton/14 kW) home system. An older study found the total installed cost for a system with 10 kW (3 ton) thermal capacity for a detached rural residence in the US averaged $8000–$9000 in 1995 US dollars. More recent studies found an average cost of $14,000 in 2008 US dollars for the same size system. The US Department of Energy estimates a price of $7500 on its website, last updated in 2008. One source in Canada placed prices in the range of $30,000–$34,000 Canadian dollars. The rapid escalation in system price has been accompanied by rapid improvements in efficiency and reliability. Capital costs are known to benefit from economies of scale, particularly for open-loop systems, so they are more cost-effective for larger commercial buildings and harsher climates. The initial cost can be two to five times that of a conventional heating system in most residential applications, new construction or existing. In retrofits, the cost of installation is affected by the size of the living area, the home's age, insulation characteristics, the geology of the area, and the location of the property. Proper duct system design and mechanical air exchange should be considered in the initial system cost.

Payback period for installing a ground source heat pump in a detached residence
Country Payback period for replacing
natural gas heating oil electric heating
Canada 13 years 3 years 6 years
US 12 years 5 years 4 years
Germany net loss 8 years 2 years
Notes:
  • Highly variable with energy prices.
  • Government subsidies not included.
  • Climate differences not evaluated.

Capital costs may be offset by government subsidies; for example, Ontario offered $7000 for residential systems installed in the 2009 fiscal year. Some electric companies offer special rates to customers who install a ground-source heat pump for heating or cooling their building. Where electrical plants have larger loads during summer months and idle capacity in the winter, this increases electrical sales during the winter months. Heat pumps also lower the load peak during the summer due to the increased efficiency of heat pumps, thereby avoiding the costly construction of new power plants. For the same reasons, other utility companies have started to pay for the installation of ground-source heat pumps at customer residences. They lease the systems to their customers for a monthly fee, at a net overall saving to the customer.

The lifespan of the system is longer than conventional heating and cooling systems. Good data on system lifespan is not yet available because the technology is too recent, but many early systems are still operational today after 25–30 years with routine maintenance. Most loop fields have warranties for 25 to 50 years and are expected to last at least 50 to 200 years. Ground-source heat pumps use electricity for heating the house. The higher investment above conventional oil, propane or electric systems may be returned in energy savings in 2–10 years for residential systems in the US. If compared to natural gas systems, the payback period can be much longer or non-existent. The payback period for larger commercial systems in the US is 1–5 years, even when compared to natural gas. Additionally, because geothermal heat pumps usually have no outdoor compressors or cooling towers, the risk of vandalism is reduced or eliminated, potentially extending a system's lifespan.

Ground source heat pumps are recognized as one of the most efficient heating and cooling systems on the market. They are often the second-most cost-effective solution in extreme climates (after co-generation), despite reductions in thermal efficiency due to ground temperature. (The ground source is warmer in climates that need strong air conditioning, and cooler in climates that need strong heating.) The financial viability of these systems depends on the adequate sizing of ground heat exchangers (GHEs), which generally contribute the most to the overall capital costs of GSHP systems.

Commercial systems maintenance costs in the US have historically been between $0.11 to $0.22 per m2 per year in 1996 dollars, much less than the average $0.54 per m2 per year for conventional HVAC systems.

Governments that promote renewable energy will likely offer incentives for the consumer (residential), or industrial markets. For example, in the United States, incentives are offered both on the state and federal levels of government. In the United Kingdom the Renewable Heat Incentive provides a financial incentive for the generation of renewable heat based on metered readings on an annual basis for 20 years for commercial buildings. The domestic Renewable Heat Incentive is due to be introduced in Spring 2014 for seven years and be based on deemed heat.

Astatine

From Wikipedia, the free encyclopedia
 
Astatine, 85At
Astatine
Pronunciation/ˈæstətn, -tɪn/ (ASS-tə-teen, -⁠tin)
Appearanceunknown, probably metallic
Mass number[210]
Astatine in the periodic table
Hydrogen
Helium
Lithium Beryllium
Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium
Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium
Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium

Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
 I 

At

Ts
poloniumastatineradon
Atomic number (Z)85
Groupgroup 17 (halogens)
Periodperiod 6
Block  p-block
Electron configuration[Xe] 4f14 5d10 6s2 6p5
Electrons per shell2, 8, 18, 32, 18, 7
Physical properties
Phase at STPsolid (predicted)
Density (near r.t.)8.91–8.95 g/cm3 estimated
Atomic properties
Oxidation states−1, +1, +3, +5, +7
Ionization energies
  • 1st: 899.003 kJ/mol

Other properties
Natural occurrencefrom decay
CAS Number7440-68-8
History
Namingafter Greek ástatos (ἄστατος), meaning "unstable"
DiscoveryDale R. Corson, Kenneth Ross MacKenzie, Emilio Segrè (1940)
Main isotopes of astatine
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
209At syn 5.41 h β+ 209Po
α 205Bi
210At syn 8.1 h β+ 210Po
α 206Bi
211At syn 7.21 h ε 211Po
α 207Bi

Astatine is a chemical element with the symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, occurring only as the decay product of various heavier elements. All of astatine's isotopes are short-lived; the most stable is astatine-210, with a half-life of 8.1 hours. A sample of the pure element has never been assembled, because any macroscopic specimen would be immediately vaporized by the heat of its own radioactivity.

The bulk properties of astatine are not known with certainty. Many of them have been estimated based on the element's position on the periodic table as a heavier analog of iodine, and a member of the halogens (the group of elements including fluorine, chlorine, bromine, and iodine). However, astatine also falls roughly along the dividing line between metals and nonmetals, and some metallic behavior has also been observed and predicted for it. Astatine is likely to have a dark or lustrous appearance and may be a semiconductor or possibly a metal. Chemically, several anionic species of astatine are known and most of its compounds resemble those of iodine, but it also sometimes displays metallic characteristics and shows some similarities to silver.

The first synthesis of the element was in 1940 by Dale R. Corson, Kenneth Ross MacKenzie, and Emilio G. Segrè at the University of California, Berkeley, who named it from the Ancient Greek ἄστατος (astatos) 'unstable'. Four isotopes of astatine were subsequently found to be naturally occurring, although much less than one gram is present at any given time in the Earth's crust. Neither the most stable isotope astatine-210, nor the medically useful astatine-211, occur naturally; they can only be produced synthetically, usually by bombarding bismuth-209 with alpha particles.

Characteristics

Astatine is an extremely radioactive element; all its isotopes have half-lives of 8.1 hours or less, decaying into other astatine isotopes, bismuth, polonium, or radon. Most of its isotopes are very unstable, with half-lives of one second or less. Of the first 101 elements in the periodic table, only francium is less stable, and all the astatine isotopes more stable than francium are in any case synthetic and do not occur in nature.

The bulk properties of astatine are not known with any certainty. Research is limited by its short half-life, which prevents the creation of weighable quantities. A visible piece of astatine would immediately vaporize itself because of the heat generated by its intense radioactivity. It remains to be seen if, with sufficient cooling, a macroscopic quantity of astatine could be deposited as a thin film. Astatine is usually classified as either a nonmetal or a metalloid; metal formation has also been predicted.

Physical

Most of the physical properties of astatine have been estimated (by interpolation or extrapolation), using theoretically or empirically derived methods. For example, halogens get darker with increasing atomic weight – fluorine is nearly colorless, chlorine is yellow green, bromine is red brown, and iodine is dark gray/violet. Astatine is sometimes described as probably being a black solid (assuming it follows this trend), or as having a metallic appearance (if it is a metalloid or a metal).

Astatine sublimes less readily than does iodine, having a lower vapor pressure. Even so, half of a given quantity of astatine will vaporize in approximately an hour if put on a clean glass surface at room temperature. The absorption spectrum of astatine in the middle ultraviolet region has lines at 224.401 and 216.225 nm, suggestive of 6p to 7s transitions.

The structure of solid astatine is unknown. As an analogue of iodine it may have an orthorhombic crystalline structure composed of diatomic astatine molecules, and be a semiconductor (with a band gap of 0.7 eV). Alternatively, if condensed astatine forms a metallic phase, as has been predicted, it may have a monatomic face-centered cubic structure; in this structure it may well be a superconductor, like the similar high-pressure phase of iodine. Evidence for (or against) the existence of diatomic astatine (At2) is sparse and inconclusive. Some sources state that it does not exist, or at least has never been observed, while other sources assert or imply its existence. Despite this controversy, many properties of diatomic astatine have been predicted; for example, its bond length would be 300±10 pm, dissociation energy 83.7±12.5 kJ/mol, and heat of vaporization (∆Hvap) 54.39 kJ/mol. Many values have been predicted for the melting and boiling points of astatine, but only for At2.

Chemical

The chemistry of astatine is "clouded by the extremely low concentrations at which astatine experiments have been conducted, and the possibility of reactions with impurities, walls and filters, or radioactivity by-products, and other unwanted nano-scale interactions". Many of its apparent chemical properties have been observed using tracer studies on extremely dilute astatine solutions, typically less than 10−10 mol·L−1. Some properties, such as anion formation, align with other halogens. Astatine has some metallic characteristics as well, such as plating onto a cathode, and coprecipitating with metal sulfides in hydrochloric acid. It forms complexes with EDTA, a metal chelating agent, and is capable of acting as a metal in antibody radiolabeling; in some respects astatine in the +1 state is akin to silver in the same state. Most of the organic chemistry of astatine is, however, analogous to that of iodine. It has been suggested that astatine can form a stable monatomic cation in aqueous solution, but electromigration evidence suggests that the cationic At(I) species is protonated hypoastatous acid (H2OAt+), showing analogy to iodine.

Astatine has an electronegativity of 2.2 on the revised Pauling scale – lower than that of iodine (2.66) and the same as hydrogen. In hydrogen astatide (HAt), the negative charge is predicted to be on the hydrogen atom, implying that this compound could be referred to as astatine hydride according to certain nomenclatures. That would be consistent with the electronegativity of astatine on the Allred–Rochow scale (1.9) being less than that of hydrogen (2.2). However, official IUPAC stoichiometric nomenclature is based on an idealized convention of determining the relative electronegativities of the elements by the mere virtue of their position within the periodic table. According to this convention, astatine is handled as though it is more electronegative than hydrogen, irrespective of its true electronegativity. The electron affinity of astatine, at 233 kJ mol−1, is 21% less than that of iodine. In comparison, the value of Cl (349) is 6.4% higher than F (328); Br (325) is 6.9% less than Cl; and I (295) is 9.2% less than Br. The marked reduction for At was predicted as being due to spin–orbit interactions. The first ionisation energy of astatine is about 899 kJ mol−1, which continues the trend of decreasing first ionisation energies down the halogen group (fluorine, 1681; chlorine, 1251; bromine, 1140; iodine, 1008).

Compounds

Less reactive than iodine, astatine is the least reactive of the halogens. Its compounds have been synthesized in nano-scale amounts and studied as intensively as possible before their radioactive disintegration. The reactions involved have been typically tested with dilute solutions of astatine mixed with larger amounts of iodine. Acting as a carrier, the iodine ensures there is sufficient material for laboratory techniques (such as filtration and precipitation) to work. Like iodine, astatine has been shown to adopt odd-numbered oxidation states ranging from −1 to +7.

Only a few compounds with metals have been reported, in the form of astatides of sodium, palladium, silver, thallium, and lead. Some characteristic properties of silver and sodium astatide, and the other hypothetical alkali and alkaline earth astatides, have been estimated by extrapolation from other metal halides.

The formation of an astatine compound with hydrogen – usually referred to as hydrogen astatide – was noted by the pioneers of astatine chemistry. As mentioned, there are grounds for instead referring to this compound as astatine hydride. It is easily oxidized; acidification by dilute nitric acid gives the At0 or At+ forms, and the subsequent addition of silver(I) may only partially, at best, precipitate astatine as silver(I) astatide (AgAt). Iodine, in contrast, is not oxidized, and precipitates readily as silver(I) iodide.

Astatine is known to bind to boron, carbon, and nitrogen. Various boron cage compounds have been prepared with At–B bonds, these being more stable than At–C bonds. Astatine can replace a hydrogen atom in benzene to form astatobenzene C6H5At; this may be oxidized to C6H5AtCl2 by chlorine. By treating this compound with an alkaline solution of hypochlorite, C6H5AtO2 can be produced. The dipyridine-astatine(I) cation, [At(C5H5N)2]+, forms ionic compounds with perchlorate (a non-coordinating anion) and with nitrate, [At(C5H5N)2]NO3. This cation exists as a coordination complex in which two dative covalent bonds separately link the astatine(I) centre with each of the pyridine rings via their nitrogen atoms.

With oxygen, there is evidence of the species AtO and AtO+ in aqueous solution, formed by the reaction of astatine with an oxidant such as elemental bromine or (in the last case) by sodium persulfate in a solution of perchloric acid: the latter species might also be protonated astatous acid, H
2
AtO+
2
. The species previously thought to be AtO
2
has since been determined to be AtO(OH)
2
, a hydrolysis product of AtO+ (another such hydrolysis product being AtOOH). The well characterized AtO
3
anion can be obtained by, for example, the oxidation of astatine with potassium hypochlorite in a solution of potassium hydroxide. Preparation of lanthanum triastatate La(AtO3)3, following the oxidation of astatine by a hot Na2S2O8 solution, has been reported. Further oxidation of AtO
3
, such as by xenon difluoride (in a hot alkaline solution) or periodate (in a neutral or alkaline solution), yields the perastatate ion AtO
4
; this is only stable in neutral or alkaline solutions. Astatine is also thought to be capable of forming cations in salts with oxyanions such as iodate or dichromate; this is based on the observation that, in acidic solutions, monovalent or intermediate positive states of astatine coprecipitate with the insoluble salts of metal cations such as silver(I) iodate or thallium(I) dichromate.

Astatine may form bonds to the other chalcogens; these include S7At+ and At(CSN)
2
with sulfur, a coordination selenourea compound with selenium, and an astatine–tellurium colloid with tellurium.

Structure of astatine monoiodide, one of the astatine interhalogens and the heaviest known diatomic interhalogen.

Astatine is known to react with its lighter homologs iodine, bromine, and chlorine in the vapor state; these reactions produce diatomic interhalogen compounds with formulas AtI, AtBr, and AtCl. The first two compounds may also be produced in water – astatine reacts with iodine/iodide solution to form AtI, whereas AtBr requires (aside from astatine) an iodine/iodine monobromide/bromide solution. The excess of iodides or bromides may lead to AtBr
2
and AtI
2
ions, or in a chloride solution, they may produce species like AtCl
2
or AtBrCl
via equilibrium reactions with the chlorides. Oxidation of the element with dichromate (in nitric acid solution) showed that adding chloride turned the astatine into a molecule likely to be either AtCl or AtOCl. Similarly, AtOCl
2
or AtCl
2
may be produced. The polyhalides PdAtI2, CsAtI2, TlAtI2, and PbAtI are known or presumed to have been precipitated. In a plasma ion source mass spectrometer, the ions [AtI]+, [AtBr]+, and [AtCl]+ have been formed by introducing lighter halogen vapors into a helium-filled cell containing astatine, supporting the existence of stable neutral molecules in the plasma ion state. No astatine fluorides have been discovered yet. Their absence has been speculatively attributed to the extreme reactivity of such compounds, including the reaction of an initially formed fluoride with the walls of the glass container to form a non-volatile product. Thus, although the synthesis of an astatine fluoride is thought to be possible, it may require a liquid halogen fluoride solvent, as has already been used for the characterization of radon fluoride.

History

Periodic table by Mendeleev (1971), with astatine missing below chlorine, bromine and iodine ("J")
Dmitri Mendeleev's table of 1871, with an empty space at the eka-iodine position

In 1869, when Dmitri Mendeleev published his periodic table, the space under iodine was empty; after Niels Bohr established the physical basis of the classification of chemical elements, it was suggested that the fifth halogen belonged there. Before its officially recognized discovery, it was called "eka-iodine" (from Sanskrit eka – "one") to imply it was one space under iodine (in the same manner as eka-silicon, eka-boron, and others). Scientists tried to find it in nature; given its extreme rarity, these attempts resulted in several false discoveries.

The first claimed discovery of eka-iodine was made by Fred Allison and his associates at the Alabama Polytechnic Institute (now Auburn University) in 1931. The discoverers named element 85 "alabamine", and assigned it the symbol Ab, designations that were used for a few years. In 1934, H. G. MacPherson of University of California, Berkeley disproved Allison's method and the validity of his discovery. There was another claim in 1937, by the chemist Rajendralal De. Working in Dacca in British India (now Dhaka in Bangladesh), he chose the name "dakin" for element 85, which he claimed to have isolated as the thorium series equivalent of radium F (polonium-210) in the radium series. The properties he reported for dakin do not correspond to those of astatine; moreover, astatine is not found in the thorium series, and the true identity of dakin is not known.

In 1936, the team of Romanian physicist Horia Hulubei and French physicist Yvette Cauchois claimed to have discovered element 85 via X-ray analysis. In 1939, they published another paper which supported and extended previous data. In 1944, Hulubei published a summary of data he had obtained up to that time, claiming it was supported by the work of other researchers. He chose the name "dor", presumably from the Romanian for "longing" [for peace], as World War II had started five years earlier. As Hulubei was writing in French, a language which does not accommodate the "ine" suffix, dor would likely have been rendered in English as "dorine", had it been adopted. In 1947, Hulubei's claim was effectively rejected by the Austrian chemist Friedrich Paneth, who would later chair the IUPAC committee responsible for recognition of new elements. Even though Hulubei's samples did contain astatine, his means to detect it were too weak, by current standards, to enable correct identification. He had also been involved in an earlier false claim as to the discovery of element 87 (francium) and this is thought to have caused other researchers to downplay his work.

A greyscale photo of the upper body of a man
Emilio Segrè, one of the discoverers of the main-group element astatine

In 1940, the Swiss chemist Walter Minder announced the discovery of element 85 as the beta decay product of radium A (polonium-218), choosing the name "helvetium" (from Helvetia, the Latin name of Switzerland). Berta Karlik and Traude Bernert were unsuccessful in reproducing his experiments, and subsequently attributed Minder's results to contamination of his radon stream (radon-222 is the parent isotope of polonium-218). In 1942, Minder, in collaboration with the English scientist Alice Leigh-Smith, announced the discovery of another isotope of element 85, presumed to be the product of thorium A (polonium-216) beta decay. They named this substance "anglo-helvetium", but Karlik and Bernert were again unable to reproduce these results.

Later in 1940, Dale R. Corson, Kenneth Ross MacKenzie, and Emilio Segrè isolated the element at the University of California, Berkeley. Instead of searching for the element in nature, the scientists created it by bombarding bismuth-209 with alpha particles in a cyclotron (particle accelerator) to produce, after emission of two neutrons, astatine-211. The discoverers, however, did not immediately suggest a name for the element. The reason for this was that at the time, an element created synthetically in "invisible quantities" that had not yet been discovered in nature was not seen as a completely valid one; in addition, chemists were reluctant to recognize radioactive isotopes as legitimately as stable ones. In 1943, astatine was found as a product of two naturally occurring decay chains by Berta Karlik and Traude Bernert, first in the so-called uranium series, and then in the actinium series. (Since then, astatine was also found in a third decay chain, the neptunium series.) Friedrich Paneth in 1946 called to finally recognize synthetic elements, quoting, among other reasons, recent confirmation of their natural occurrence, and proposed that the discoverers of the newly discovered unnamed elements name these elements. In early 1947, Nature published the discoverers' suggestions; a letter from Corson, MacKenzie, and Segrè suggested the name "astatine" coming from the Greek astatos (αστατος) meaning "unstable", because of its propensity for radioactive decay, with the ending "-ine", found in the names of the four previously discovered halogens. The name was also chosen to continue the tradition of the four stable halogens, where the name referred to a property of the element.

Corson and his colleagues classified astatine as a metal on the basis of its analytical chemistry. Subsequent investigators reported iodine-like, cationic, or amphoteric behavior. In a 2003 retrospective, Corson wrote that "some of the properties [of astatine] are similar to iodine … it also exhibits metallic properties, more like its metallic neighbors Po and Bi."

Isotopes

Alpha decay characteristics for sample astatine isotopes
Mass
number
Mass
excess
Half-life Probability
of alpha
decay
Alpha
decay
half-life
207 −13.243 MeV 1.80 h 8.6% 20.9 h
208 −12.491 MeV 1.63 h 0.55% 12.3 d
209 −12.880 MeV 5.41 h 4.1% 5.5 d
210 −11.972 MeV 8.1 h 0.175% 193 d
211 −11.647 MeV 7.21 h 41.8% 17.2 h
212 −8.621 MeV 0.31 s ≈100% 0.31 s
213 −6.579 MeV 125 ns 100% 125 ns
214 −3.380 MeV 558 ns 100% 558 ns
219 10.397 MeV 56 s 97% 58 s
220 14.350 MeV 3.71 min 8% 46.4 min
221 16.810 MeV 2.3 min experimentally
alpha stable

There are 39 known isotopes of astatine, with atomic masses (mass numbers) of 191–229. Theoretical modeling suggests that 37 more isotopes could exist. No stable or long-lived astatine isotope has been observed, nor is one expected to exist.

Astatine's alpha decay energies follow the same trend as for other heavy elements. Lighter astatine isotopes have quite high energies of alpha decay, which become lower as the nuclei become heavier. Astatine-211 has a significantly higher energy than the previous isotope, because it has a nucleus with 126 neutrons, and 126 is a magic number corresponding to a filled neutron shell. Despite having a similar half-life to the previous isotope (8.1 hours for astatine-210 and 7.2 hours for astatine-211), the alpha decay probability is much higher for the latter: 41.81% against only 0.18%. The two following isotopes release even more energy, with astatine-213 releasing the most energy. For this reason, it is the shortest-lived astatine isotope. Even though heavier astatine isotopes release less energy, no long-lived astatine isotope exists, because of the increasing role of beta decay (electron emission). This decay mode is especially important for astatine; as early as 1950 it was postulated that all isotopes of the element undergo beta decay, though nuclear mass measurements indicate that 215At is in fact beta-stable, as it has the lowest mass of all isobars with A = 215. A beta decay mode has been found for all other astatine isotopes except for astatine-213, astatine-214, and astatine-216m. Astatine-210 and lighter isotopes exhibit beta plus decay (positron emission), astatine-216 and heavier isotopes exhibit beta minus decay, and astatine-212 decays via both modes, while astatine-211 undergoes electron capture.

The most stable isotope is astatine-210, which has a half-life of 8.1 hours. The primary decay mode is beta plus, to the relatively long-lived (in comparison to astatine isotopes) alpha emitter polonium-210. In total, only five isotopes have half-lives exceeding one hour (astatine-207 to -211). The least stable ground state isotope is astatine-213, with a half-life of 125 nanoseconds. It undergoes alpha decay to the extremely long-lived bismuth-209.

Astatine has 24 known nuclear isomers, which are nuclei with one or more nucleons (protons or neutrons) in an excited state. A nuclear isomer may also be called a "meta-state", meaning the system has more internal energy than the "ground state" (the state with the lowest possible internal energy), making the former likely to decay into the latter. There may be more than one isomer for each isotope. The most stable of these nuclear isomers is astatine-202m1, which has a half-life of about 3 minutes, longer than those of all the ground states bar those of isotopes 203–211 and 220. The least stable is astatine-214m1; its half-life of 265 nanoseconds is shorter than those of all ground states except that of astatine-213.

Natural occurrence

a sequence of differently colored balls, each containing a two-letter symbol and some numbers
Neptunium series, showing the decay products, including astatine-217, formed from neptunium-237

Astatine is the rarest naturally occurring element. The total amount of astatine in the Earth's crust (quoted mass 2.36 × 1025 grams) is estimated by some to be less than one gram at any given time.[6] Other sources estimate the amount of ephemeral astatine, present on earth at any given moment, to be up to one ounce (about 28 grams).

Any astatine present at the formation of the Earth has long since disappeared; the four naturally occurring isotopes (astatine-215, -217, -218 and -219) are instead continuously produced as a result of the decay of radioactive thorium and uranium ores, and trace quantities of neptunium-237. The landmass of North and South America combined, to a depth of 16 kilometers (10 miles), contains only about one trillion astatine-215 atoms at any given time (around 3.5 × 10−10 grams). Astatine-217 is produced via the radioactive decay of neptunium-237. Primordial remnants of the latter isotope—due to its relatively short half-life of 2.14 million years—are no longer present on Earth. However, trace amounts occur naturally as a product of transmutation reactions in uranium ores. Astatine-218 was the first astatine isotope discovered in nature. Astatine-219, with a half-life of 56 seconds, is the longest lived of the naturally occurring isotopes.

Isotopes of astatine are sometimes not listed as naturally occurring because of misconceptions that there are no such isotopes, or discrepancies in the literature. Astatine-216 has been counted as a naturally occurring isotope but reports of its observation (which were described as doubtful) have not been confirmed.

Synthesis

Formation

Possible reactions after bombarding bismuth-209 with alpha particles
Reaction Energy of alpha particle
209
83
Bi
+ 4
2
He
211
85
At
+ 2 1
0
n
26 MeV
209
83
Bi
+ 4
2
He
210
85
At
+ 3 1
0
n
40 MeV
209
83
Bi
+ 4
2
He
209
85
At
+ 4 1
0
n
60 MeV

Astatine was first produced by bombarding bismuth-209 with energetic alpha particles, and this is still the major route used to create the relatively long-lived isotopes astatine-209 through astatine-211. Astatine is only produced in minuscule quantities, with modern techniques allowing production runs of up to 6.6 giga becquerels (about 86 nanograms or 2.47 × 1014 atoms). Synthesis of greater quantities of astatine using this method is constrained by the limited availability of suitable cyclotrons and the prospect of melting the target. Solvent radiolysis due to the cumulative effect of astatine decay is a related problem. With cryogenic technology, microgram quantities of astatine might be able to be generated via proton irradiation of thorium or uranium to yield radon-211, in turn decaying to astatine-211. Contamination with astatine-210 is expected to be a drawback of this method.

The most important isotope is astatine-211, the only one in commercial use. To produce the bismuth target, the metal is sputtered onto a gold, copper, or aluminium surface at 50 to 100 milligrams per square centimeter. Bismuth oxide can be used instead; this is forcibly fused with a copper plate. The target is kept under a chemically neutral nitrogen atmosphere, and is cooled with water to prevent premature astatine vaporization. In a particle accelerator, such as a cyclotron, alpha particles are collided with the bismuth. Even though only one bismuth isotope is used (bismuth-209), the reaction may occur in three possible ways, producing astatine-209, astatine-210, or astatine-211. In order to eliminate undesired nuclides, the maximum energy of the particle accelerator is set to a value (optimally 29.17 MeV) above that for the reaction producing astatine-211 (to produce the desired isotope) and below the one producing astatine-210 (to avoid producing other astatine isotopes).

Separation methods

Since astatine is the main product of the synthesis, after its formation it must only be separated from the target and any significant contaminants. Several methods are available, "but they generally follow one of two approaches—dry distillation or [wet] acid treatment of the target followed by solvent extraction." The methods summarized below are modern adaptations of older procedures, as reviewed by Kugler and Keller. Pre-1985 techniques more often addressed the elimination of co-produced toxic polonium; this requirement is now mitigated by capping the energy of the cyclotron irradiation beam.

Dry

The astatine-containing cyclotron target is heated to a temperature of around 650 °C. The astatine volatilizes and is condensed in (typically) a cold trap. Higher temperatures of up to around 850 °C may increase the yield, at the risk of bismuth contamination from concurrent volatilization. Redistilling the condensate may be required to minimize the presence of bismuth (as bismuth can interfere with astatine labeling reactions). The astatine is recovered from the trap using one or more low concentration solvents such as sodium hydroxide, methanol or chloroform. Astatine yields of up to around 80% may be achieved. Dry separation is the method most commonly used to produce a chemically useful form of astatine.

Wet

The irradiated bismuth (or sometimes bismuth trioxide) target is first dissolved in, for example, concentrated nitric or perchloric acid. Following this first step, the acid can be distilled away to leave behind a white residue that contains both bismuth and the desired astatine product. This residue is then dissolved in a concentrated acid, such as hydrochloric acid. Astatine is extracted from this acid using an organic solvent such as butyl or isopropyl ether, diisopropylether (DIPE), or thiosemicarbazide. Using liquid-liquid extraction, the astatine product can be repeatedly washed with an acid, such as HCl, and extracted into the organic solvent layer. A separation yield of 93% using nitric acid has been reported, falling to 72% by the time purification procedures were completed (distillation of nitric acid, purging residual nitrogen oxides, and redissolving bismuth nitrate to enable liquid–liquid extraction). Wet methods involve "multiple radioactivity handling steps" and have not been considered well suited for isolating larger quantities of astatine. However, wet extraction methods are being examined for use in production of larger quantities of astatine-211, as it is thought that wet extraction methods can provide more consistency. They can enable the production of astatine in a specific oxidation state and may have greater applicability in experimental radiochemistry.

Uses and precautions

Several 211At-containing molecules and their experimental uses
Agent Applications
[211At]astatine-tellurium colloids Compartmental tumors
6-[211At]astato-2-methyl-1,4-naphtaquinol diphosphate Adenocarcinomas
211At-labeled methylene blue Melanomas
Meta-[211At]astatobenzyl guanidine Neuroendocrine tumors
5-[211At]astato-2'-deoxyuridine Various
211At-labeled biotin conjugates Various pretargeting
211At-labeled octreotide Somatostatin receptor
211At-labeled monoclonal antibodies and fragments Various
211At-labeled bisphosphonates Bone metastases

Newly formed astatine-211 is the subject of ongoing research in nuclear medicine. It must be used quickly as it decays with a half-life of 7.2 hours; this is long enough to permit multistep labeling strategies. Astatine-211 has potential for targeted alpha-particle therapy, since it decays either via emission of an alpha particle (to bismuth-207), or via electron capture (to an extremely short-lived nuclide, polonium-211, which undergoes further alpha decay), very quickly reaching its stable granddaughter lead-207. Polonium X-rays emitted as a result of the electron capture branch, in the range of 77–92 keV, enable the tracking of astatine in animals and patients. Although astatine-210 has a slightly longer half-life, it is wholly unsuitable because it usually undergoes beta plus decay to the extremely toxic polonium-210.

The principal medicinal difference between astatine-211 and iodine-131 (a radioactive iodine isotope also used in medicine) is that iodine-131 emits high-energy beta particles, and astatine does not. Beta particles have much greater penetrating power through tissues than do the much heavier alpha particles. An average alpha particle released by astatine-211 can travel up to 70 µm through surrounding tissues; an average-energy beta particle emitted by iodine-131 can travel nearly 30 times as far, to about 2 mm. The short half-life and limited penetrating power of alpha radiation through tissues offers advantages in situations where the "tumor burden is low and/or malignant cell populations are located in close proximity to essential normal tissues." Significant morbidity in cell culture models of human cancers has been achieved with from one to ten astatine-211 atoms bound per cell.

Astatine ... [is] miserable to make and hell to work with.

P Durbin, Human Radiation Studies: Remembering the Early Years, 1995

Several obstacles have been encountered in the development of astatine-based radiopharmaceuticals for cancer treatment. World War II delayed research for close to a decade. Results of early experiments indicated that a cancer-selective carrier would need to be developed and it was not until the 1970s that monoclonal antibodies became available for this purpose. Unlike iodine, astatine shows a tendency to dehalogenate from molecular carriers such as these, particularly at sp3 carbon sites (less so from sp2 sites). Given the toxicity of astatine accumulated and retained in the body, this emphasized the need to ensure it remained attached to its host molecule. While astatine carriers that are slowly metabolized can be assessed for their efficacy, more rapidly metabolized carriers remain a significant obstacle to the evaluation of astatine in nuclear medicine. Mitigating the effects of astatine-induced radiolysis of labeling chemistry and carrier molecules is another area requiring further development. A practical application for astatine as a cancer treatment would potentially be suitable for a "staggering" number of patients; production of astatine in the quantities that would be required remains an issue.

Animal studies show that astatine, similarly to iodine – although to a lesser extent, perhaps because of its slightly more metallic nature  – is preferentially (and dangerously) concentrated in the thyroid gland. Unlike iodine, astatine also shows a tendency to be taken up by the lungs and spleen, possibly because of in-body oxidation of At to At+. If administered in the form of a radiocolloid it tends to concentrate in the liver. Experiments in rats and monkeys suggest that astatine-211 causes much greater damage to the thyroid gland than does iodine-131, with repetitive injection of the nuclide resulting in necrosis and cell dysplasia within the gland. Early research suggested that injection of astatine into female rodents caused morphological changes in breast tissue; this conclusion remained controversial for many years. General agreement was later reached that this was likely caused by the effect of breast tissue irradiation combined with hormonal changes due to irradiation of the ovaries. Trace amounts of astatine can be handled safely in fume hoods if they are well-aerated; biological uptake of the element must be avoided.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...