A Medley of Potpourri is just what it says; various thoughts, opinions, ruminations, and contemplations on a variety of subjects.
Search This Blog
Wednesday, January 8, 2014
Could Other Animals Have (their version of) Gods Too? Hitch Got Me Thinking
At first sight this seems the usual delightfully charming Hitchens saying the kind of things he was and is so famous and fondly remembered for. Only on second or third sight did I realize that, at least this time, the great man was in error. Completely in error.
For one thing, it is an unforgiveable insult to chimpanzees all over the world; worse, to the entire -- sans H. sapiens -- animal kingdom on this planet. If creating gods really is maladaptive, irrational, and just plain foolish, then we humans must be at the bottom of the evolutionary cesspool, hardly near the top. Yet Hitchens unfortunately implies exactly the opposite, as though creating supernatural beings somehow "reduces" our evolutionary pedestal down to the level of our clownish closest cousin. By half a chromosome, but that's a lot.
But then I re-wondered about it. How do we know that chimps haven't made, somewhere in their history, things akin to our gods? They certainly aren't capable of science, nowhere near to our level at least; so why shouldn't they believe in the supernatural? Lack of science is certainly most the reason almost all of our ancestors believed in gods and other supernatural phenomenon.
On the other hand, are chimps capable of belief, which involves some pretty sophisticated cognition skills? I don't know if (or how) there have been studies of this, or even conclusions drawn, but I will say this: don't bet your life's fortune that the answer is negative. So many animals, including the other apes, have been shown over the last 20-40 years to possess much more sophisticated behaviors and cognition skills than we'd ever suspected. New discoveries seem to happen almost daily. (Hence the animal rights movement.)
"Half a chromosome away from being chimpanzee" is probably at least a bad analogy; that little bit of DNA might not make as much difference as we suppose. It is certainly nothing to be either proud or ashamed of, and quite possibly has nothing to do with believing in gods or not.
Still -- it sounds so Hitch. So on the money.
Dark matter 'wind' may be warped by the sun
18:00 08 January 2014 by Katia Moskvitch
Source: http://www.newscientist.com/article/dn24830-dark-matter-wind-may-be-warped-by-the-sun.html#.Us2x850o6L9
Dark-matter hunters may need to check their calendars. The sun's gravity could change the time when dark matter signals are detected on Earth, which could help sharpen the search for the elusive substance.
Source: http://www.newscientist.com/article/dn24830-dark-matter-wind-may-be-warped-by-the-sun.html#.Us2x850o6L9
Dark-matter hunters may need to check their calendars. The sun's gravity could change the time when dark matter signals are detected on Earth, which could help sharpen the search for the elusive substance.
Invisible dark matter is thought to make up most of the matter in the universe. Physicists hope to detect it in the form of weakly interacting massive particles (WIMPs) when they collide with ordinary matter in underground detectors.
Some have argued that the rate of such interactions should vary with the seasons, as Earth's orbit brings it ploughing through the cloud of dark matter suffusing the galaxy. When the planet heads into this "WIMP wind", around 1 June, we should see more dark matter strikes; in December, when Earth is moving downwind, we should see fewer.
Previously, two experiments, including the DAMA detector at Gran Sasso, Italy, and the CoGeNT detector in Soudan, Minnesota, reported observing just this sort of seasonal signal. But these claims have attracted scepticism because more-sensitive detectors have come up empty.
Warp factor
Now, Benjamin Safdi of Princeton University and his colleagues note something that all experiments have neglected: the sun. As WIMPs stream through the solar system, the sun's gravity bends their trajectories, focusing the streaming particles on a particular location in Earth's orbit. This effect can shift the date of the maximum number of collisions by anything from a few days up to several months, depending on the WIMPs' mass and speed. "This force warps the dark matter 'wind' in a way that had not previously been noticed," Safdi says.
The fact that the date of maximum WIMP collisions should change depending on their energy could lend future searches a sharper scalpel to scrape true dark matter signals away from background noise, he adds.
"Our result gives dark matter direct-detection experiments an excellent way of distinguishing real interactions with the galactic dark matter halo from background," Safdi says. "It is hard to imagine a background source which could mimic this energy-dependent modulation."
Punchline coming
The work does not explain DAMA's possible dark-matter signal, but re-analysing the data using the new approach could help support or refute their results, Safdi says.
"There is already a slight trend in the data consistent with our prediction for the gravitational focusing effect – that is, the date of the maximum moves further away from June 1 at lower energies," says team member Samuel Lee, also of Princeton. "One punchline of our study is that accounting for the gravitational focusing effect can perhaps rule out or confirm the dark-matter interpretation of the DAMA annual modulation."
Richard Gaitskell of Brown University in Providence, Rhode Island, who works on a direct-detection experiment in South Dakota called LUX, says that the new work could be important for helping design future experimental set-ups. "These researchers have clearly demonstrated just how potentially interesting data from a direct-detection experiment can be," he says.
Journal reference: Physical Review Letters, DOI:10.1103/PhysRevLett.112.011301
Hawking & Mlodinow: No 'theory of everything'
In a Scientific American essay based on their new book A Grand Design, Stephen Hawking and Leonard Mlodinow are now claiming physicists may never find a theory of everything. Instead, they propose a "family of interconnected theories" might emerge, with each describing a certain reality under specific conditions.
Most of the history of physics has been dominated by a realist approach. Scientists simply accepted that their observations could give direct information about an objective reality. In classical physics, such a view was easily defensible, but the emergence of quantum mechanics has shaken even the staunchest realist.
In a quantum world, particles don't have definite locations or even definite velocities until they've been observed. This is a far cry from Newton's world, and Hawking/Mlodinow argue that - in light of quantum mechanics - it doesn't matter what is actually real and what isn't, all that matters is what we experience as reality.
As an example, they talk about Neo from The Matrix. Even though Neo's world was virtual, as long as he didn't know it there was no reason for him to challenge the physical laws of that world. Similarly, they use the example of a goldfish in a curved bowl. The fish would experience a curvature of light as its reality and while it wouldn't be accurate to someone outside the bowl, to the fish it would be.
Scientific American: The Elusive Theory of Everything
"In our view, there is no picture or theory-independent concept of reality. Instead we adopt a view that we call model - dependent realism: the idea that a physical theory or world is a model (generally of a mathematical nature) and a set of rules that connect the elements of the model to observations. According to model - dependent realism, it is pointless to ask whether a model is real, only whether it agrees with observation. If two models agree with observation, neither model can be considered more real than the other. A person can use whichever model is more convenient in the situation under consideration."
This view is a staunch reversal for Hawking, who 30 years ago argued that not only would physicists find a theory of everything, but that it would happen by the year 2000. In his first speech as Lucasian Chair at Cambridge titled "Is the end in sight for theoretical physics?," Hawking argued that the unification of quantum mechanics and general relativity into one theory was inevitable and that the coming age of computers would render physicists obsolete, if not physics itself.
Of course, Hawking has become rather well known for jumping way out on a limb with his public remarks and for decades he embraced supergravity as having the potential to solve theoretical physicist's ills, even hosting a major conference on it in 1982. However, but Hawking has never harbored allegiances to theories that describe a physical reality.
So, while two well-known physicists coming out against a theory of everything is compelling, it really shouldn't seem like anything new for Hawking.
"I take the positivist view point that a physical theory is just a mathematical model and that it is meaningless to ask whether it corresponds to reality. All that one can ask is that its predictions should be in agreement with observation."
Stephen hawking, The Nature of Space and Time (1996)
‘Habitable zones’ around stars ten times wider than we thought – study
Published time: January 08, 2014 14:31 by RT
A new paper published in the journal, Planetary and Space Science, describes how living organisms have just as much chance of surviving in areas below their uninhabitable planets’ surfaces.
This includes planets a staggering distance away from their stars, as well as even those that were recently discovered to be drifting in space by themselves, with no apparent host star. It is all about temperature.
The previous commonly accepted assertion was that the ‘Goldilocks’ zone was a requirement. It is the zone both far away and near to its star to provide the kind of climate capable of sustaining life, because it supports water which is neither boiling hot nor frozen.
Now a team of researchers from Aberdeen and St. Andrews universities has an updated view of things. PhD student Sean McMahon, author of the paper, says “that theory fails to take into account life that can exist beneath a planet's surface. As you get deeper …the temperature increases, and once you get down to a temperature where liquid water can exist – life can exist there too.”
To prove this, the scientists devised a computer model to cleverly approximate temperatures below the surfaces of planets by inputting the distance to their respective stars and crossing that with the
planet’s size.
Using that model they discovered that the radius around a star, capable of supporting life, increased three-fold if new data on depth at which life can exist below the surface of a given planet were taken into account.
"The deepest known life on Earth is 5.3 km below the surface, but there may well be life even 10 km deep in places on Earth that haven't yet been drilled,” McMahon said.
What adds to the excitement is that the model allows for potentially expanding the habitable zone even more. If indeed we do find life 10km below the Earth’s surface, the math tells us that Earth-like planets could support life as far as 14 times the distance previously considered to be the Goldilocks zone.
To put this into perspective – our current habitable zone is considered to reach out as far as Mars. But new measurements that account for life existing under rocky surfaces take that radius as far as Jupiter and Saturn.
For example, the recently discovered Gliese 581 d could be a candidate. Sure, it is about 20 trillion kilometers away, but its cold surface could well hide life a couple of kilometers below the surface, scientists assume.
Scientists are excited at the subsurface theory on sustaining life. We can now widen our search for life, they hope, adding that the new findings are so radical that the fact of life on Earth (which itself is very different from the thousands of planets we know about) could itself be anomalous because life receives much more protection inside a warm, mineral-rich rock than risking survival on its inhospitable surface.
A new paper published in the journal, Planetary and Space Science, describes how living organisms have just as much chance of surviving in areas below their uninhabitable planets’ surfaces.
This includes planets a staggering distance away from their stars, as well as even those that were recently discovered to be drifting in space by themselves, with no apparent host star. It is all about temperature.
The previous commonly accepted assertion was that the ‘Goldilocks’ zone was a requirement. It is the zone both far away and near to its star to provide the kind of climate capable of sustaining life, because it supports water which is neither boiling hot nor frozen.
Now a team of researchers from Aberdeen and St. Andrews universities has an updated view of things. PhD student Sean McMahon, author of the paper, says “that theory fails to take into account life that can exist beneath a planet's surface. As you get deeper …the temperature increases, and once you get down to a temperature where liquid water can exist – life can exist there too.”
To prove this, the scientists devised a computer model to cleverly approximate temperatures below the surfaces of planets by inputting the distance to their respective stars and crossing that with the planet’s size.
Using that model they discovered that the radius around a star, capable of supporting life, increased three-fold if new data on depth at which life can exist below the surface of a given planet were taken into account.
"The deepest known life on Earth is 5.3 km below the surface, but there may well be life even 10 km deep in places on Earth that haven't yet been drilled,” McMahon said.
What adds to the excitement is that the model allows for potentially expanding the habitable zone even more. If indeed we do find life 10km below the Earth’s surface, the math tells us that Earth-like planets could support life as far as 14 times the distance previously considered to be the Goldilocks zone.
To put this into perspective – our current habitable zone is considered to reach out as far as Mars. But new measurements that account for life existing under rocky surfaces take that radius as far as Jupiter and Saturn.
For example, the recently discovered Gliese 581 d could be a candidate. Sure, it is about 20 trillion kilometers away, but its cold surface could well hide life a couple of kilometers below the surface, scientists assume.
Scientists are excited at the subsurface theory on sustaining life. We can now widen our search for life, they hope, adding that the new findings are so radical that the fact of life on Earth (which itself is very different from the thousands of planets we know about) could itself be anomalous because life receives much more protection inside a warm, mineral-rich rock than risking survival on its inhospitable surface.
The artist's concept depicts Kepler-62f, a super-Earth-size planet in the habitable zone of a star smaller and cooler than the sun, located about 1,200 light-years from Earth in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech
Life on Earth-like planets can exist at least ten times farther away from their stars than previously thought, scientists found, putting in question our whole perspective on habitable zone distances.
This includes planets a staggering distance away from their stars, as well as even those that were recently discovered to be drifting in space by themselves, with no apparent host star. It is all about temperature.
The previous commonly accepted assertion was that the ‘Goldilocks’ zone was a requirement. It is the zone both far away and near to its star to provide the kind of climate capable of sustaining life, because it supports water which is neither boiling hot nor frozen.
Now a team of researchers from Aberdeen and St. Andrews universities has an updated view of things. PhD student Sean McMahon, author of the paper, says “that theory fails to take into account life that can exist beneath a planet's surface. As you get deeper …the temperature increases, and once you get down to a temperature where liquid water can exist – life can exist there too.”
To prove this, the scientists devised a computer model to cleverly approximate temperatures below the surfaces of planets by inputting the distance to their respective stars and crossing that with the
planet’s size.
Using that model they discovered that the radius around a star, capable of supporting life, increased three-fold if new data on depth at which life can exist below the surface of a given planet were taken into account.
"The deepest known life on Earth is 5.3 km below the surface, but there may well be life even 10 km deep in places on Earth that haven't yet been drilled,” McMahon said.
What adds to the excitement is that the model allows for potentially expanding the habitable zone even more. If indeed we do find life 10km below the Earth’s surface, the math tells us that Earth-like planets could support life as far as 14 times the distance previously considered to be the Goldilocks zone.
To put this into perspective – our current habitable zone is considered to reach out as far as Mars. But new measurements that account for life existing under rocky surfaces take that radius as far as Jupiter and Saturn.
For example, the recently discovered Gliese 581 d could be a candidate. Sure, it is about 20 trillion kilometers away, but its cold surface could well hide life a couple of kilometers below the surface, scientists assume.
Scientists are excited at the subsurface theory on sustaining life. We can now widen our search for life, they hope, adding that the new findings are so radical that the fact of life on Earth (which itself is very different from the thousands of planets we know about) could itself be anomalous because life receives much more protection inside a warm, mineral-rich rock than risking survival on its inhospitable surface.
Life on Earth-like planets can exist at least ten times farther away from their stars than previously thought, scientists found, putting in question our whole perspective on habitable zone distances.
A new paper published in the journal, Planetary and Space Science, describes how living organisms have just as much chance of surviving in areas below their uninhabitable planets’ surfaces.
This includes planets a staggering distance away from their stars, as well as even those that were recently discovered to be drifting in space by themselves, with no apparent host star. It is all about temperature.
The previous commonly accepted assertion was that the ‘Goldilocks’ zone was a requirement. It is the zone both far away and near to its star to provide the kind of climate capable of sustaining life, because it supports water which is neither boiling hot nor frozen.
Now a team of researchers from Aberdeen and St. Andrews universities has an updated view of things. PhD student Sean McMahon, author of the paper, says “that theory fails to take into account life that can exist beneath a planet's surface. As you get deeper …the temperature increases, and once you get down to a temperature where liquid water can exist – life can exist there too.”
To prove this, the scientists devised a computer model to cleverly approximate temperatures below the surfaces of planets by inputting the distance to their respective stars and crossing that with the planet’s size.
Using that model they discovered that the radius around a star, capable of supporting life, increased three-fold if new data on depth at which life can exist below the surface of a given planet were taken into account.
"The deepest known life on Earth is 5.3 km below the surface, but there may well be life even 10 km deep in places on Earth that haven't yet been drilled,” McMahon said.
What adds to the excitement is that the model allows for potentially expanding the habitable zone even more. If indeed we do find life 10km below the Earth’s surface, the math tells us that Earth-like planets could support life as far as 14 times the distance previously considered to be the Goldilocks zone.
To put this into perspective – our current habitable zone is considered to reach out as far as Mars. But new measurements that account for life existing under rocky surfaces take that radius as far as Jupiter and Saturn.
For example, the recently discovered Gliese 581 d could be a candidate. Sure, it is about 20 trillion kilometers away, but its cold surface could well hide life a couple of kilometers below the surface, scientists assume.
Scientists are excited at the subsurface theory on sustaining life. We can now widen our search for life, they hope, adding that the new findings are so radical that the fact of life on Earth (which itself is very different from the thousands of planets we know about) could itself be anomalous because life receives much more protection inside a warm, mineral-rich rock than risking survival on its inhospitable surface.
Subscribe to:
Posts (Atom)
Personality theories of addiction
From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Personality_theories_of_addiction ...
-
From Wikipedia, the free encyclopedia Islamic State of Iraq and the Levant الدولة الإسلامية في العراق والشام ( ...
-
From Wikipedia, the free encyclopedia A reproduction of the palm -leaf manuscript in Siddham script ...