Search This Blog

Thursday, November 22, 2018

Superflare

From Wikipedia, the free encyclopedia

Superflares are very strong explosions observed on stars with energies up to ten thousand times that of typical solar flares. The stars in this class satisfy conditions which should make them solar analogues, and would be expected to be stable over very long time scales. The original nine candidates were detected by a variety of methods. No systematic study was possible until the launch of the Kepler satellite, which monitored a very large number of solar-type stars with very high accuracy for an extended period. This showed that a small proportion of stars had violent outbursts, up to 10,000 times as powerful as the strongest flares known on the Sun. In many cases there were multiple events on the same star. Younger stars were more likely to flare than old ones, but strong events were seen on stars as old as the Sun.

The flares were initially explained by postulating giant planets in very close orbits, such that the magnetic fields of the star and planet were linked. The orbit of the planet would warp the field lines until the instability released magnetic field energy as a flare. However, no such planet has showed up as a Kepler transit and this theory has been abandoned.

All superflare stars show quasi-periodic brightness variations interpreted as very large starspots carried round by rotation. Spectroscopic studies found spectral lines that were clear indicators of chromospheric activity associated with strong and extensive magnetic fields. This suggests that superflares only differ in scale from solar flares.

Attempts have been made to detect past solar superflares from nitrate concentrations in polar ice, from historical observations of auroras, and from those radioactive isotopes that can be produced by solar energetic particles. Although two promising events have been found in the carbon-14 records in tree rings, it is not possible to associate them definitely with a superflare event.

Solar superflares would have drastic effects, especially if they occurred as multiple events. Since they can occur on stars of the same age, mass and composition as the Sun this cannot be ruled out. However, solar-type superflare stars are very rare and are magnetically much more active than the Sun; if solar superflares do occur, it may be in well-defined episodes that occupy a small fraction of its time.

Superflare stars

A superflare star is not the same as a flare star, which usually refers to a very late spectral type red dwarf. The term is restricted to large transient events on stars that satisfy the following conditions:
  • The star is in spectral class F8 to G8
  • It is on or near the main sequence
  • It is single or part of a very wide binary
  • It is not a rapid rotator
  • It is not exceedingly young
Essentially such stars may be regarded as solar analogues. Originally nine superflare stars were found, some of them similar to the Sun.

Original superflare candidates

The original paper  identified nine candidate objects from a literature search:

Star Type V (mag) Detector Flare Amplitude Duration Energy (erg)
Groombridge 1830 G8 V 6.45 Photography ΔB = 0.62 mag 18 min EB ~ 1035
Kappa1 Ceti G5 V 4.83 Spectroscopy EW(He) = 0.13Å ~ 40 min E ~ 2 × 1034
MT Tauri G5 V 16.8 Photography ΔU = 0.7 mag ~ 10 min EU ~ 1035
Pi1 Ursae Majoris G1.5 Vb 5.64 X-ray LX = 1029 erg/s >~ 35 min EX = 2 × 1033
S Fornacis G1 V 8.64 Visual ΔV ~ 3 mag 17 - 367 min EV ~ 2 × 1038
BD +10°2783 G0 V 10.0 X-ray LX = 2 × 1031 erg/s ~ 49 min EX >> 3 × 1034
Omicron Aquilae F8 V 5.11 Photometry ΔV = 0.09 mag ~ 5 - 15 day EBV ~ 9 × 1037
5 Serpentis F8 IV-V 5.06 Photometry ΔV = 0.09 mag ~ 3 - 25 day EBV ~ 7 × 1037
UU Coronae Borealis F8 V 8.86 Photometry ΔI = 0.30 mag >~ 57 min Eopt ~ 7 × 1035
Type gives the spectral classification including spectral type and luminosity class.

V (mag) means the normal apparent visual magnitude of the star.

EW(He) is the equivalent width of the 5875.6Å He I D3 line seen in emission.

The observations vary for each object. Some are X-ray measurements, others are visual, photographic, spectroscopic or photometric. The energies for the events vary from 2 × 1033 to 2 × 1038 ergs.

Kepler discoveries

The Kepler spacecraft is a space observatory designed to find planets by the method of transits. A photometer continually monitors the brightness of 150,000 stars in a fixed area of the sky (in the constellations of Cygnus, Lyra and Draco) to detect changes in brightness caused by planets passing in front of the stellar disc. More than 90,000 are G-type stars (similar to the Sun) on or near the main sequence. The observed area corresponds to about 0.25% of the entire sky. The photometer is sensitive to wavelengths of 400–865 nm: the entire visible spectrum and part of the infrared. The photometric accuracy achieved by Kepler is typically 0.01% (0.1 mmag) for 30 minute integration times of 12th magnitude stars.

G-type stars

The high accuracy, the large number of stars observed and the long period of observation make Kepler ideal for detecting superflares. Studies published in 2012 and 2013 involved 83,000 stars over a period of 500 days (much of the data analysis was carried out with the help of five first-year undergraduates). The stars were selected from the Kepler Input Catalog to have Teff, the effective temperature, between 5100 and 6000K (the solar value is 5750K) to find stars of similar spectral class to the Sun, and the surface gravity log g > 4.0 to eliminate sub-giants and giants. The spectral classes range from F8 to G8. The integration time was 30 min in the original study. 1547 superflares were found on 279 solar-type stars.The most intense events increased the brightness of the stars by 30% and had an energy of 1036 ergs. White-light flares on the Sun change the brightness by about 0.01%, and the strongest flares have a visible-light energy of about 1032 ergs. (All energies quoted are in the optical bandpass and so are lower limits since some energy is emitted at other wavelengths.) Most events were much less energetic than this: flare amplitudes below 0.1% of the stellar value and energies of 2 × 1033 ergs were detectable with the 30 minute integration. The flares had a rapid rise followed by an exponential decay on a time scale of 1–3 hours. The most powerful events corresponded to energies ten thousand greater than the largest flares observed on the Sun. Some stars flared very frequently: one star showed 57 events in 500 days, a rate of one every nine days. For the statistics of flares, the number of flares decreased with energy E roughly as E−2, a similar behaviour to solar flares. The duration of the flare increased with its energy, again in accordance with the solar behaviour.

Some Kepler data is taken at one minute sampling, though inevitably with lower accuracy. Using this data, on a smaller sample of stars, reveals flares that are too brief for reliable detection with 30-min integrations, allowing detection of events as low as 1032 ergs, comparable with the brightest flares on the Sun. The occurrence frequency as a function of energy remains a power law E−n when extended to lower energies, with n around 1.5. At this time resolution some superflares show multiple peaks with separations of 100 to 1000 seconds, again comparable to the pulsations in solar flares. The star KIC 9655129 showed two periods, of 78 and 32 minutes, suggesting magnetohydrodynamic oscillations in the flaring region. These observations suggest that superflares are different only in scale and not in type to solar flares.

Superflare stars show a quasi-periodic brightness variation, which is interpreted as evidence of starspots carried around by solar rotation. This allows an estimate of the rotation period of the star; values range from less than one day up to tens of days (the value for the Sun is 25 days). On the Sun, radiometer monitoring from satellites shows that large sunspots can reduce the brightness by up to 0.2%. In superflare stars the most common brightness variations are 1-2%, though they can be as great as 7-8%, suggesting that the area of the starspots can be very much larger than anything found on the Sun. In some cases the brightness variations can be modelled by only one or two large starspots, though not all cases are so simple. The starspots could be groups of smaller spots or single giant spots.

Flares are more common in stars with short periods. However, the energy of the largest flares is not related to the period of rotation. Stars with larger variations also have much more frequent flares; there is as well a tendency for them to have more energetic flares. Large variations can be found on even the most slowly rotating stars: one star had a rotation period of 22.7 days and variations implying spot coverage of 2.5% of the surface, over ten times greater than the maximum solar value. By estimating the size of the starspots from the amplitude variation, and assuming solar values for the magnetic fields in the spots (1000 G), it is possible to estimate the energy available: in all cases there is enough energy in the field to power even the largest flares observed. This suggests that superflares and solar flares have essentially the same mechanism.

In order to determine whether superflares can occur on the Sun, it is important to narrow the definition of Sun-like stars. When the temperature range is divided into stars with Teff above and below 5600K (early and late G-type stars), stars of lower temperature are about twice as likely to show superflare activity as those in the solar range and those that do so have more flares: the occurrence frequency of flares (number per star per year) is about five times as great in the late-type stars. It is well known that both the rotation rate and the magnetic activity of a star decrease with age in G-type stars. When flare stars are divided into fast and slow rotators, using the rotation period estimated from brightness variations, there is a general tendency for the fastest-rotating (and presumably youngest) stars to show a greater probability of activity: in particular, stars rotating in less than 10 days are 20-30 times more likely to have activity. Nevertheless, 44 superflares were found on 19 stars with similar temperatures to the Sun and periods greater than 10 days (out of 14000 such stars examined); four superflares with energies in the range 1-5 × 1033 ergs were detected on stars rotating more slowly than the Sun (of about 5000 in the sample). The distribution of flares with energy has the same shape for all classes of star: although Sun-like stars are less likely to flare, they have the same proportion of very energetic flares as younger and cooler stars.

K and M type stars

Kepler data have also been used to search for flares on stars of later spectral types than G. A sample of 23,253 stars with effective temperature Teff less than 5150K and surface gravity log g > 4.2, corresponding to main sequence stars later than K0V, was examined for flares over a time period of 33.5 days. 373 stars were identified as having obvious flares. Some stars had only one flare, while others showed as many as fifteen. The strongest events increased the brightness of the star by 7-8%. This is not radically different from the peak brightness of flares on G-type stars; however, since K and M stars are less luminous than type G, this suggests that flares on these stars are less energetic. Comparing the two classes of stars studied, it seems that M stars flare more frequently than K stars but the duration of each flare tends to be shorter. It is not possible to draw any conclusions about the relative proportion of G and K type stars showing superflares, or about the frequency of flares on those stars that do show such activity, since the flare detection algorithms and criteria in the two studies are quite different.

Most (though not all) of the K and M stars show the same quasi-periodic brightness variations as the G stars. There is a tendency for more energetic flares to occur on more variable stars; however flare frequency is only weakly related to variability.

Hot Jupiters as an explanation

When superflares were originally discovered on solar-type stars it was suggested that these eruptions may be produced by the interaction of the star's magnetic field with the magnetic field of a gas-giant planet orbiting so close to the primary that the magnetic fields were linked. Rotation or orbital motion would wind up the magnetic fields until a reconfiguration of the fields would cause an explosive release of energy. The RS Canum Venaticorum variables are close binaries, with orbital periods between 1 and 14 days, in which the primary is an F- or G-type main sequence star, and with strong chromospheric activity at all orbital phases. These systems have brightness variations attributed to large starspots on the primary; some show large flares thought to be caused by magnetic reconnection. The companion is close enough to spin up the star by tidal interactions.

A gas giant however would not be massive enough to do this, leaving the various measurable properties of the star (rotation speed, chromospheric activity) unchanged. If the giant and the primary were close enough for the magnetic fields to be linked, the orbit of the planet would wrap the field lines until the configuration became unstable followed by a violent release of energy in the form of a flare. Kepler discovered a number of closely orbiting gas giants, known as hot Jupiters; studies of two such systems showed periodic variations of the chromospheric activity of the primary synchronised to the period of the companion.

Not all planetary transits can be detected by Kepler, since the planetary orbit may be out of the line of sight to Earth. However, the hot Jupiters orbit so close to the primary that the chance of a transit is about 10%. If superflares were caused by close planets the 279 flare stars discovered should have about 28 transiting companions; none of them actually showed evidence of transits, effectively excluding this explanation.

Spectroscopic observations of superflare stars

Spectroscopic studies of superflares allow their properties to be determined in more detail, in the hope of detecting the cause of the flares. The first studies were made using the high dispersion spectrograph on the Subaru telescope in Hawaii. Some 50 apparently solar-type stars, known from the Kepler observations to show superflare activity, have been examined in detail. Of these, only 16 showed evidence of being visual or spectroscopic binaries; these were excluded since close binaries are frequently active, while in the case of visual binaries there is the chance of activity taking place on the companion. Spectroscopy allows accurate determinations of the effective temperature, the surface gravity and the abundance of elements beyond helium ('metallicity'); most of the 34 single stars proved to be main sequence stars of spectral type G and similar composition to the Sun. Since properties such as temperature and surface gravity change over the lifetime of a star, stellar evolution theory allows an estimate of the age of a star: in most cases the age appeared to be above several hundred million years. This is important since very young stars are known to be much more active. Nine of the stars conformed to the narrower definition of solar-type given above, with temperatures greater than 5600K and rotation periods longer than 10 days; some had periods above 20 or even 30 days. Only five of the 34 could be described as fast rotators.

Observations from LAMOST have been used to measure chromospheric activity of 5,648 solar-like stars in the Kepler field, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

All the stars showed the quasi-periodic brightness variations, ranging from 0.1% to nearly 10%, interpreted as the rotation of large starspots. When large spots exist on a star, the activity level of the chromosphere becomes high; in particular, large chromospheric plages form around sunspot groups. The intensities of certain solar and stellar lines generated in the chromosphere, particularly the lines of ionised calcium (Ca II) and the Hα line of hydrogen, are known to be indicators of magnetic activity. Observations of the Ca lines in stars of similar age to the Sun even show cyclic variations reminiscent of the 11 year solar cycle. By observing certain infrared lines of Ca II for the 34 superflare stars it was possible to estimate their chromospheric activity. Measurements of the same lines at points within an active region on the Sun, together with simultaneous measurements of the local magnetic field, show that there is a general relation between field and activity.

Although the stars show a clear correlation between rotational speed and activity, this does not exclude activity on slowly rotating stars: even stars as slow as the Sun can have high activity. All the superflare stars observed had more activity than the Sun, implying larger magnetic fields. There is also a correlation between the activity of a star and its brightness variations (and therefore the starspot coverage): all stars with large amplitude variations showed high activity.

Knowing the approximate area covered by starspots from the size of the variations, and the field strength estimated from the chromospheric activity, allows an estimate of the total energy stored in the magnetic field; in all cases there was enough energy stored in the field to account for even the largest superflares. Both the photometric and the spectroscopic observations are consistent with the theory that superflares are different only in scale from solar flares, and can be accounted for by the release of magnetic energy in active regions very much larger than those on the Sun. Nevertheless, these regions can appear on stars with masses, temperatures, compositions, rotation speeds and ages similar to the Sun.

Detecting past superflares on the Sun

Since stars apparently identical to the Sun can produce superflares it is natural to ask if the Sun itself can do so, and to try to find evidence that it has done in the past. Large flares are invariably accompanied by energetic particles, and these particles produce effects if they reach the earth. The Carrington event of 1859, the largest flare of which we have direct observation, produced global auroral displays extending close to the equator. Energetic particles can produce chemical changes in the atmosphere, which can be permanently recorded in the polar ice. Fast protons generate distinctive isotopes, particularly carbon-14, which can be taken up and preserved by living creatures.

Nitrate concentrations in polar ice

When solar energetic particles reach the Earth's atmosphere they cause ionisation that creates nitric oxide (NO) and other reactive nitrogen species, which then precipitate out in the form of nitrates. Since all energetic particles are deflected to a greater or lesser extent by the geomagnetic field, they enter preferentially at the polar latitudes; since high latitudes also contain permanent ice, it is natural to look for the nitrate signature of particle events in ice cores. A study of a Greenland ice core extending back to 1561 AD achieved resolutions of 10 or 20 samples a year, allowing in principle the detection of single events. Precise dates (within one or two years) can be achieved by counting annual layers in the cores, checked by identification of deposits associated with known volcanic eruptions. The core contained an annual variation of nitrate concentration, accompanied by a number of 'spikes' of different amplitudes. The strongest of these in the entire record was dated to within a few weeks of the Carrington event of 1859. However, other events can produce nitrate spikes, including biomass burning which also produces enhanced ammonium concentrations. An examination of fourteen ice cores from Antarctic and Arctic regions showed large nitrate spikes: however, none of them were dated to 1859 (the closest was 1863). All such spikes were associated with ammonium and other chemical indicators of combustion. There is no evidence that nitrate concentrations can be used as indicators of historic solar activity.

Single events from cosmogenic isotopes

When energetic protons enter the atmosphere they create isotopes by reactions with the major components; the most important of these is carbon-14 (14C), which is created when secondary neutrons react with nitrogen. 14C, which has a half-life of 5,730 years, reacts with oxygen to form carbon dioxide which is taken up by plants; dating wood by its 14C content is the basis of radiocarbon dating. If wood of known age is available the process can be reversed. Measuring the 14C content and using the half-life allows estimation of the content when the wood was formed. The growth rings of trees show patterns, caused by various environmental factors: dendrochronology uses these growth rings of trees, compared across overlapping sequences, to establish accurate dates. Applying this method shows that atmospheric 14C does indeed vary with time, due to solar activity. This is the basis of the carbon dating calibration curve. Clearly, it can also be used to detect any peaks in production caused by solar flares, if those flares create enough energetic particles to produce a measurable increase in 14C.

An examination of the calibration curve, which has a time resolution of five years, showed three intervals in the last 3,000 years in which 14C increased significantly. On the basis of this two Japanese cedar trees were examined with a resolution of a single year, and showed an increase of 1.2% in AD 774, some twenty times larger than anything expected from the normal solar variation. This peak steadily diminished over the next few years. The result was confirmed by studies of German oak, bristlecone pine from California, Siberian larch, and Kauri wood from New Zealand. All determinations agreed on both the time and amplitude of the effect. In addition, measurements of coral skeletons from the South China Sea showed substantial variations in 14C over a few months around the same time; however, the date could only be established to within a period of ±14 years around 783 AD.

Carbon-14 is not the only isotope that can be produced by energetic particles. Beryllium-10 (10Be) is also formed from nitrogen and oxygen, and deposited in polar ice. However, 10Be deposition can be strongly related to local weather and shows extreme geographic variability; it is also more difficult to assign dates. Nevertheless, a 10Be increase during the 770s was found in an ice core from the Antarctic, though the signal was less striking because of the lower time resolution (several years); another smaller increase was seen in Greenland. When data from two sites in North Greenland and one in the West Antarctic, all taken with a one-year resolution, were compared they all showed a strong signal: the time profile also matched well with the 14C results (within the uncertainty of dating for the 10Be data).[20] Chlorine-36 (36Cl) can be produced from argon and deposited in polar ice; because argon is a minor atmospheric constituent the abundance is low. The same ice cores which showed 10Be also provided increases of 36Cl, though with a resolution of five years a detailed match was impossible.

A second event in AD 993/4 has also been found from 14C in tree rings, but at a lower intensity. This event also produced measurable increases in 10Be and 36Cl in Greenland ice cores.

If these events are presumed to be produced by fast particles from large flares, it is not easy to estimate the particle energy in the flare or compare it with known events. The Carrington event does not appear in the 14C record, and neither did any other large particle event that has been directly observed. The flux of particles must be estimated by calculating production rates of radiocarbon, and then modelling the behaviour of the CO2 once it has entered the carbon cycle; the fraction of the created radiocarbon taken up by trees depends to some extent on that cycle. As an extra complication, the cosmogenic isotopes are preferentially created by energetic protons (several hundred MeV). The energetic particle spectrum of a solar flare varies considerably between events; one with a 'hard' spectrum, with more high-energy protons, will be more efficient at producing a 14C increase. The most powerful flare which also had a hard spectrum that has been observed instrumentally took place in February 1956 (the beginning of nuclear testing obscures any possible effects in the 14C record); it has been estimated that if a single flare were responsible for the AD 774/5 event it would need to be 25-50 times more powerful than this. A sunspot group may produce several flares over its lifetime, and the effects of such a sequence would be aggregated over the one-year period covered by a single 14C measurement; however, the total effect would still be ten times greater than anything observed in a similar period in modern times.

Solar flares are not the only possibility for producing the cosmogenic isotopes. A long or short gamma-ray burst has been proposed as being consistent with all the details of the AD 774/5 event if it was sufficiently close. However, as known presently, this explanation is very unlikely.

Historical records

A number of attempts have been made to find additional evidence supporting the superflare interpretation of the isotope peak around AD 774/5 by studying historical records. The Carrington event produced auroral displays as far south as Caribbean and Hawaii, corresponding to geomagnetic latitude of about 22°; if the event of 774/5 corresponded to an even more energetic flare there should have been a global auroral event.

Usoskin et al. cited references to aurorae in Chinese chronicles for AD 770 (twice), 773 and 775. They also quote a “red cross” in the sky in AD 773/4 from the Anglo-Saxon Chronicle; “inflamed shields” or “shields burning with a red colour” seen in the sky over Germany in AD 776 recorded in the Royal Frankish Annals; “fire in heaven” seen in Ireland in AD 772; and an apparition in Germany in AD 773 interpreted as riders on white horses. Even if the dates do not precisely conform to the 14C increase this might suggest a period of high solar activity. Zhou et al.[24] add further details from the Chinese chronicles. On a date which they give as 17 January AD 775, there were more than ten bands of white lights “like the spread silk” stretching across eight Chinese constellations; the display lasted for several hours. The observations, made during the Tang dynasty, were made from the capital Xian; although geomagnetic latitudes change over time, this would correspond to the lower twenties.

There are a number of difficulties involved when trying to link the 14C results to historical chronicles. Tree ring dates may be in error because there is no discernible ring for a year (unusually cold weather), or two rings (a second growth during a warm autumn). If the cold weather were global, following a large volcanic eruption, it is conceivable that the effects could also be global: the apparent 14C date may not always match the chronicles.

For the isotope peak in AD 993/994 studied by Hayakawa et al. surveyed contemporary historical documents show clustering auroral observations in late 992, while their relationship with the isotope peak is still under discussion.

General solar activity in the past

Superflares seem to be associated with a general high level of magnetic activity. As well as looking for individual events, it is possible to examine the isotope records to find the activity level in the past and identify periods when it may have been much higher than now. Lunar rocks provide a record unaffected by geomagnetic shielding and transport processes. Both cosmic rays and solar particle events can create isotopes in rocks, and both are affected by solar activity. The cosmic rays are much more energetic and penetrate more deeply, and can be distinguished from the solar particles which affect the outer layers. Several different radioisotopes can be produced with very different half-lives; the concentration of each may be regarded as representing an average of particle flux over its half-life. Since fluxes must be converted into isotope concentrations by simulations there is a certain model-dependence here. The data are consistent with the view that the flux of energetic solar particles with energies above a few tens of MeV has not changed over periods ranging from five thousand to five million years. Of course, a period of intense activity over a time scale short with respect to the half-life would not be detected.

14C measurements, even with low time resolution, can indicate the state of solar activity over the last 11,000 years until about 1900. Although radiocarbon dating has been applied as far back as 50,000 years, during the deglaciations at the start of the Holocene the biosphere and its carbon uptake changed dramatically making estimation before this impractical; after about 1900 the Suess effect makes interpretation difficult. 10Be concentrations in stratified polar ice cores provide an independent measure of activity. Both measures agree reasonably with each other and with the Zurich sunspot number of the last two centuries. As an additional check, it is possible to recover the isotope Titanium-44 (44Ti) from meteorites; this provides a measurement of activity that is not affected by changes in transport process or the geomagnetic field. Although it is limited to about the last two centuries, it is consistent with all but one of the 14C and 10Be reconstructions and confirms their validity. The energetic flare events discussed above are rare; on long time scales (significantly more than a year), the radiogenic particle flux is dominated by cosmic rays. The inner solar system is shielded by the general magnetic field of the sun, which is strongly dependent on the time within a cycle and the strength of the cycle. The result is that times of powerful activity show up as decreases in the concentrations of all these isotopes. Because cosmic rays are also influenced by the geomagnetic field, difficulties in reconstructing this field set a limit to the accuracy of the reconstructions.

The 14C reconstruction of activity over the last 11,000 years shows no period significantly higher than the present; in fact, the general level of activity in the second half of the 20th century was the highest since 9000 BC. In particular, the activity in the period around the AD 774 14C event (averaged over decades) was somewhat lower than the long-term average, while the AD 993 event coincided with a small minimum. A more detailed scrutiny of the period AD 731 to 825, combining several 14C datasets of one- and two-year resolution with auroral and sunspot accounts does show a general increase in solar activity (from a low level) after about AD 733, reaching its highest level after 757 and remaining high in the 760s and 770s; there were several aurorae around this time, and even a low-latitude aurora in China.

Effects of a hypothetical solar superflare

The effect of the sort of superflare apparently found on the original nine candidate stars would be catastrophic for the Earth and would leave traces on the Solar System; the event on S Fornacis for example involved an increase in the stars' luminosity by a factor of about twenty. Thomas Gold suggested that the glaze on the top surface of certain lunar rocks might be caused by a solar outburst involving a luminosity increase of over a hundred times for 10 to 100 seconds at some time in the last 30,000 years. Apart from the terrestrial effects, this would cause local ice melting followed by refreezing as far out as the moons of Jupiter. There is no evidence of superflares on this scale having occurred in the Solar System.
.
Even for much smaller superflares, at the lower end of the Kepler range, the effects would be serious. In 1859 the Carrington event caused failures in the telegraph system in Europe and North America. Possible consequences today would include:
  • Damage to or loss of all artificial satellites
  • Airline passengers on trans-polar flights would receive high radiation doses from the energetic particles (as would any astronauts or the crew of the International Space Station)
  • Significant depletion of the ozone layer with increased risk of cataracts, sunburn and skin cancer, as well as damage to growing plants. The recovery time would be of the order of months to years. In the strongest cases there would be severe damage to the biosphere, especially to primary photosynthesis in the oceans
  • Failure of the electricity distribution system (as in the March 1989 geomagnetic storm), possibly with damage to transformers and switching equipment
  • Loss of power to the cooling systems of spent fuel rods stored at nuclear power stations
  • Loss of most radio communication because of increased ionisation in the atmosphere
It is evident that superflares often repeat rather than occurring as isolated events. The NO and other odd nitrogens created by flare particles catalyse the destruction of ozone without being consumed themselves, and have a long lifetime in the stratosphere. Flares at a frequency of one a year or even less would have a cumulative effect; the destruction of the ozone layer could be permanent and lead to at least a low-level extinction event.

Superflares have also been suggested as a solution to the Faint young Sun paradox.

Can superflares occur on the Sun?

Since superflares can occur on stars apparently equivalent in every way to the Sun, it is natural to ask if they can occur on the Sun itself. An estimate based on the original Kepler photometric studies suggested a frequency on solar-type stars (early G-type and rotation period more than 10 days) of once every 800 years for an energy of 1034 erg and every 5000 years at 1035 erg. One-minute sampling provided statistics for less energetic flares and gave a frequency of one flare of energy 1033 erg every 5–600 years for a star rotating as slowly as the Sun; this would be rated as X100 on the solar flare scale. This is based on a straightforward comparison of the number of stars studied with the number of flares observed. An extrapolation of the empirical statistics for solar flares to an energy of 1035 erg suggests a frequency of one in 10,000 years.

However, this does not match the known properties of superflare stars. Such stars are extremely rare in the Kepler data; one study showed only 279 such stars in 31,457 studied, a proportion below 1%; for older stars this fell to 0.25%. Also, about half of the stars which were active showed repeating flares: one had as many as 57 events in 500 days. Concentrating on solar-type stars, the most active averaged one flare every 100 days; the frequency of superflare occurrence in the most active Sun-like stars is 1000 times larger than that of the general average for such stars. This suggests that such behaviour is not present throughout a star's lifetime, but is confined to episodes of extraordinary activity. This is also suggested by the clear relation between the magnetic activity of a star and its superflare activity; in particular, superflare stars are much more active (based on starspot area) than the Sun.

There is no evidence for any flare greater than the Carrington event (about 1032 erg, or 1/10,000 of the largest superflares) in the last 200 years. Although larger events from the 14C record ca. 775 AD is unambiguously identified as a solar event, its association to the flare energy is unclear, and it is unlikely to exceed 1032 erg.

The more energetic superflares seem to be ruled out by energetic considerations for our sun, which suggest it is not capable of a flare of more than 1034 ergs. A calculation of the free energy in magnetic fields in active regions that could be released as flares gives a lower upper bound of around 3×1032 erg suggesting the most energetic a super flare can be is three times that of the Carrington event.

Some stars have a magnetic field 5 times that of Earth and rotate much faster and these could theoretically have a flare of up to 1034 ergs. This could explain some superflares at the lower end of the range. To go higher than this may require an anti-solar rotation curve - one in which the polar regions rotate faster than the equatorial regions.

Solar flare

From Wikipedia, the free encyclopedia

File:Solar Blast.ogv
Solar flare and its prominence eruption recorded on June 7, 2011 by SDO in extreme ultraviolet
 
Evolution of magnetism on the Sun.
 
On August 31, 2012 a long prominence/filament of solar material that had been hovering in the Sun's atmosphere, the corona, erupted out into space at 4:36 p.m. EDT. Seen here from the Solar Dynamics Observatory, the flare caused an aurora on Earth on September 3.

A solar flare is a sudden flash of increased brightness on the Sun, usually observed near its surface and in close proximity to a sunspot group. Powerful flares are often, but not always, accompanied by a coronal mass ejection. Even the most powerful flares are barely detectable in the total solar irradiance.

Solar flares occur in a power-law spectrum of magnitudes; an energy release of typically 10 joules of energy suffices to produce a clearly observable event, while a major event can emit up to 1025 joules.
Flares eject clouds of electrons, ions, and atoms through the Sun's corona into outer space, and also emit radio waves.

If ejection is in the direction of the Earth, particles associated with this disturbance can penetrate into the upper atmosphere (the ionosphere) and cause bright auroras, and may even disrupt long range radio communication. It usually takes a day or two for the solar ejecta to reach Earth. Flares also occur on other stars, where the term stellar flare applies.

On July 23, 2012, a massive, potentially damaging, solar storm (solar flare, coronal mass ejection and electromagnetic radiation) barely missed Earth. According to NASA, there may be as much as a 12% chance of a similar event occurring between 2012 and 2022.

Description

Solar flares affect all layers of the solar atmosphere (photosphere, chromosphere, and corona). The plasma medium is heated to tens of millions of Kelvin, while electrons, protons, and heavier ions are accelerated to near the speed of light. Flares produce electromagnetic radiation across the electromagnetic spectrum at all wavelengths, from radio waves to gamma rays. Most of the energy is spread over frequencies outside the visual range and so the majority of the flares are not visible to the naked eye and must be observed with special instruments. Flares occur in active regions around sunspots, where intense magnetic fields penetrate the photosphere to link the corona to the solar interior. Flares are powered by the sudden (timescales of minutes to tens of minutes) release of magnetic energy stored in the corona. The same energy releases may produce coronal mass ejections (CMEs), although the relationship between CMEs and flares is still not well understood.

X-rays and UV radiation emitted by solar flares can affect Earth's ionosphere and disrupt long-range radio communications. Direct radio emission at decimetric wavelengths may disturb the operation of radars and other devices that use those frequencies.

Solar flares were first observed on the Sun by Richard Christopher Carrington and independently by Richard Hodgson in 1859 as localized visible brightenings of small areas within a sunspot group. Stellar flares can be inferred by looking at the lightcurves produced from the telescope or satellite data of variety of other stars.

The frequency of occurrence of solar flares varies, from several per day when the Sun is particularly "active" to less than one every week when the Sun is "quiet", following the 11-year cycle (the solar cycle). Large flares are less frequent than smaller ones.

Cause

Flares occur when accelerated charged particles, mainly electrons, interact with the plasma medium. Evidence suggests that the phenomenon of magnetic reconnection leads to this copious acceleration of charged particles. On the Sun, magnetic reconnection may happen on solar arcades – a series of closely occurring loops following magnetic lines of force. These lines of force quickly reconnect into a lower arcade of loops leaving a helix of magnetic field unconnected to the rest of the arcade. The sudden release of energy in this reconnection is the origin of the particle acceleration. The unconnected magnetic helical field and the material that it contains may violently expand outwards forming a coronal mass ejection. This also explains why solar flares typically erupt from active regions on the Sun where magnetic fields are much stronger.

Although there is a general agreement on the source of a flare's energy, the mechanisms involved are still not well understood. It is not clear how the magnetic energy is transformed into the kinetic energy of the particles, nor is it known how some particles can be accelerated to the GeV range (109 electron volt) and beyond. There are also some inconsistencies regarding the total number of accelerated particles, which sometimes seems to be greater than the total number in the coronal loop. Scientists are unable to forecast flares.

Classification

Powerful X-class flares create radiation storms that produce auroras and can give airline passengers flying over the poles small radiation doses.
 
On August 1, 2010, the Sun shows a C3-class solar flare (white area on upper left), a solar tsunami (wave-like structure, upper right) and multiple filaments of magnetism lifting off the stellar surface.
 
Multi-spacecraft observations of the March 20, 2014 X-class flare.
The classification system for solar flares uses the letters A, B, C, M or X, according to the peak flux in watts per square metre (W/m2) of X-rays with wavelengths 100 to 800 picometre, as measured at the Earth by the GOES spacecraft.

Classification Peak flux range at 100–800 picometre
(watts/square metre)
A < 10−7
B 10−7 – 10−6
C 10−6 – 10−5
M 10−5 – 10−4
X > 10−4

The strength of an event within a class is noted by a numerical suffix ranging from 1 to 9, which is also the factor for that event within the class. Hence, an X2 flare is twice the strength of an X1 flare, an X3 flare is three times as powerful as an X1, and only 50% more powerful than an X2. An X2 is four times more powerful than an M5 flare.

H-alpha classification

An earlier flare classification was based on spectral observations. The scheme uses both the intensity and emitting surface. The classification in intensity is qualitative, referring to the flares as: faint (f), normal (n) or brilliant (b). The emitting surface is measured in terms of millionths of the hemisphere and is described below. (The total hemisphere area AH = 15.5 × 1012 km2.)

Classification Corrected area
(millionths of hemisphere)
S < 100
1 100–250
2 250–600
3 600–1200
4 > 1200

A flare then is classified taking S or a number that represents its size and a letter that represents its peak intensity, v.g.: Sn is a normal sunflare.

Hazards

Massive X6.9 class solar flare, August 9, 2011.
 
While this flare produced a coronal mass ejection (CME), this CME is not traveling towards the Earth, and no local effects are expected.
 
Solar flares strongly influence the local space weather in the vicinity of the Earth. They can produce streams of highly energetic particles in the solar wind or stellar wind, known as a solar proton event. These particles can impact the Earth's magnetosphere (see main article at geomagnetic storm), and present radiation hazards to spacecraft and astronauts. Additionally, massive solar flares are sometimes accompanied by coronal mass ejections (CMEs) which can trigger geomagnetic storms that have been known to disable satellites and knock out terrestrial electric power grids for extended periods of time.

The soft X-ray flux of X class flares increases the ionization of the upper atmosphere, which can interfere with short-wave radio communication and can heat the outer atmosphere and thus increase the drag on low orbiting satellites, leading to orbital decay. Energetic particles in the magnetosphere contribute to the aurora borealis and aurora australis. Energy in the form of hard x-rays can be damaging to spacecraft electronics and are generally the result of large plasma ejection in the upper chromosphere.

The radiation risks posed by solar flares are a major concern in discussions of a manned mission to Mars, the Moon, or other planets. Energetic protons can pass through the human body, causing biochemical damage, presenting a hazard to astronauts during interplanetary travel. Some kind of physical or magnetic shielding would be required to protect the astronauts. Most proton storms take at least two hours from the time of visual detection to reach Earth's orbit. A solar flare on January 20, 2005 released the highest concentration of protons ever directly measured, giving astronauts as little as 15 minutes to reach shelter.

Observations

Flares produce radiation across the electromagnetic spectrum, although with different intensity. They are not very intense in visible light, but they can be very bright at particular atomic lines. They normally produce bremsstrahlung in X-rays and synchrotron radiation in radio.

History

Optical observations

Richard Carrington observed a flare for the first time on 1 September 1859 projecting the image produced by an optical telescope through a broad-band filter. It was an extraordinarily intense white light flare. Since flares produce copious amounts of radiation at , adding a narrow ( ≈1 Å) passband filter centered at this wavelength to the optical telescope, allows the observation of not very bright flares with small telescopes. For years Hα was the main, if not the only, source of information about solar flares. Other passband filters are also used.

Radio observations

During World War II, on February 25 and 26, 1942, British radar operators observed radiation that Stanley Hey interpreted as solar emission. Their discovery did not go public until the end of the conflict. The same year Southworth also observed the Sun in radio, but as with Hey, his observations were only known after 1945. In 1943 Grote Reber was the first to report radioastronomical observations of the Sun at 160 MHz. The fast development of radioastronomy revealed new peculiarities of the solar activity like storms and bursts related to the flares. Today ground-based radiotelescopes observe the Sun from c. 15 MHz up to 400 GHz.

Space telescopes

Since the beginning of space exploration, telescopes have been sent to space, where they work at wavelengths shorter than UV, which are completely absorbed by the atmosphere, and where flares may be very bright. Since the 1970s, the GOES series of satellites observe the Sun in soft X-rays, and their observations became the standard measure of flares, diminishing the importance of the classification. Hard X-rays were observed by many different instruments, the most important today being the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Nonetheless, UV observations are today the stars of solar imaging with their incredible fine details that reveal the complexity of the solar corona. Spacecraft may also bring radio detectors at extremely long wavelengths (as long as a few kilometers) that cannot propagate through the ionosphere.

Optical telescopes

Two successive photos of a solar flare phenomenon. The solar disc was blocked in these photos for better visualization of the flare's accompanying protruding prominence.

Radio telescopes

  • Nançay Radioheliographe (NRH) is an interferometer composed of 48 antennas observing at meter-decimeter wavelengths. The radioheliographe is installed at the Nançay Radio Observatory, France.
  • Owens Valley Solar Array (OVSA) is a radio interferometer operated by the New Jersey Institute of Technology consisting of 7 antennas, observing from 1 to 18 GHz in both left and right circular polarization. OVSA is located in Owens Valley, California. It is now being improved, increasing to 15 the total number of antennas and upgrading its control system.
  • Nobeyama Radioheliograph (NoRH) is an interferometer installed at the Nobeyama Radio Observatory, Japan, formed by 84 small (80 cm) antennas, with receivers at 17 GHz (left and right polarization) and 34 GHz operating simultaneously. It continuously observes the Sun, producing daily snapshots.
  • Siberian Solar Radio Telescope (SSRT) is a special-purpose solar radio telescope designed for studying solar activity in the microwave range (5.7 GHz) where the processes occurring in the solar corona are accessible to observation over the entire solar disk. It is a crossed interferometer, consisting of two arrays of 128x128 parabolic antennas 2.5 meters in diameter each, spaced equidistantly at 4.9 meters and oriented in the E-W and N-S directions. It is located in a wooded valley separating two mountain ridges of the Eastern Sayan Mountains and Khamar-Daban, 220 km from Irkutsk, Russia.
  • Nobeyama Radio Polarimeters are a set of radio telescopes installed at the Nobeyama Radio Observatory that continuously observes the full Sun (no images) at the frequencies of 1, 2, 3.75, 9.4, 17, 35, and 80 GHz, at left and right circular polarization.
  • Solar Submillimeter Telescope is a single dish telescope, that observes continuously the Sun at 212 and 405 GHz. It is installed at Complejo Astronomico El Leoncito in Argentina. It has a focal array composed by 4 beams at 212 GHz and 2 at 405 GHz, therefore it can instantaneously locate the position of the emitting source SST is the only solar submillimeter telescope currently in operation.
  • Polarization Emission of Millimeter Activity at the Sun (POEMAS) is a system of two circular polarization solar radio telescopes, for observations of the Sun at 45 and 90 GHz. The novel characteristic of these instruments is the capability to measure circular right- and left-hand polarizations at these high frequencies. The system is installed at Complejo Astronomico El Leoncito in Argentina. It started operations in November 2011. In November 2013 it went offline for repairs. It is expected to return to observing in January 2015.
  • Bleien Radio Observatory is a set of radio telescopes operating near Gränichen (Switzerland). They continuously observe the solar flare radio emission from 10 MHz (ionospheric limit) to 5 GHz. The broadband spectrometers are known as Phoenix and CALLISTO.

Space telescopes

GOES-17 captures a C2-class solar flare on May 28, 2018 across different spectral bands

The following spacecraft missions have flares as their main observation target.
  • Yohkoh – The Yohkoh (originally Solar A) spacecraft observed the Sun with a variety of instruments from its launch in 1991 until its failure in 2001. The observations spanned a period from one solar maximum to the next. Two instruments of particular use for flare observations were the Soft X-ray Telescope (SXT), a glancing incidence low energy X-ray telescope for photon energies of order 1 keV, and the Hard X-ray Telescope (HXT), a collimation counting instrument which produced images in higher energy X-rays (15-92 keV) by image synthesis.
  • WIND – The Wind spacecraft is devoted to the study of the interplanetary medium. Since the Solar Wind is its main driver, solar flares effects can be traced with the instruments aboard Wind. Some of the WIND experiments are: a very low frequency spectrometer, (WAVES), particles detectors (EPACT, SWE) and a magnetometer (MFI).
  • GOES – The GOES spacecraft are satellites in geostationary orbits around the Earth that have measured the soft X-ray flux from the Sun since the mid-1970s, following the use of similar instruments on the Solrad satellites. GOES X-ray observations are commonly used to classify flares, with A, B, C, M, and X representing different powers of ten – an X-class flare has a peak 1-8 Å flux above 0.0001 W/m2.
  • RHESSI – The Reuven Ramaty High Energy Solar Spectral Imager is designed to image solar flares in energetic photons from soft X rays (c. 3 keV) to gamma rays (up to c. 20 MeV) and to provide high resolution spectroscopy up to gamma-ray energies of c. 20 MeV. Furthermore, it has the capability to perform spatially resolved spectroscopy with high spectral resolution.
  • SOHO – The Solar and Heliospheric Observatory is collaboration between the ESA and NASA which is in operation since December 1995. It carries 12 different instruments, among them the Extreme ultraviolet Imaging Telescope (EIT), the Large Angle and Spectrometric Coronagraph (LASCO) and the Michelson Doppler Imager (MDI). SOHO is in a halo orbit around the earth-sun L1 point.
  • TRACE – The Transition Region and Coronal Explorer is a NASA Small Explorer program (SMEX) to image the solar corona and transition region at high angular and temporal resolution. It has passband filters at 173 Å, 195 Å, 284 Å, 1600 Å with a spatial resolution of 0.5 arc sec, the best at these wavelengths.
  • SDO – The Solar Dynamics Observatory is a NASA project composed of 3 different instruments: the Helioseismic and Magnetic Imager (HMI), the Atmospheric Imaging Assembly (AIA) and the Extreme Ultraviolet Variability Experiment (EVE). It has been operating since February 2010 in a geosynchronous earth orbit.
  • Hinode –The Hinode spacecraft, originally called Solar B, was launched by the Japan Aerospace Exploration Agency in September 2006 to observe solar flares in more precise detail. Its instrumentation, supplied by an international collaboration including Norway, the U.K., the U.S., and Africa focuses on the powerful magnetic fields thought to be the source of solar flares. Such studies shed light on the causes of this activity, possibly helping to forecast future flares and thus minimize their dangerous effects on satellites and astronauts.
  • ACE – The Advanced Composition Explorer was launched in 1997 into a halo orbit around the earth-sun L1 point. It carries spectrometers, magnetometers and charged particle detectors to analyze the solar wind. The Real Time Solar Wind (RTSW) beacon is continually monitored by a network of NOAA-sponsored ground stations to provide early warning of earth-bound CMEs.
  • MAVEN – The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, which launched from Cape Canaveral Air Force Station on November 18, 2013, is the first mission devoted to understanding the Martian upper atmosphere. The goal of MAVEN is to determine the role that loss of atmospheric gas to space played in changing the Martian climate through time. The Extreme Ultraviolet (EUV) monitor on MAVEN is part of the Langmuir Probe and Waves (LPW) instrument and measures solar EUV input and variability, and wave heating of the Martian upper atmosphere.
In addition to these solar observing facilities, many non-solar astronomical satellites observe flares either intentionally (e.g., NuSTAR), or simply because the penetrating hard radiations coming from a flare can readily penetrate most forms of shielding.

Examples of large solar flares

Short narrated video about Fermi's observations of the highest-energy light ever associated with an eruption on the sun as of March 2012
 
Active Region 1515 released an X1.1 class flare from the lower right of the sun on July 6, 2012, peaking at 7:08 PM EDT. This flare caused a radio blackout, labeled as an R3 on the National Oceanic and Atmospheric Administrations scale that goes from R1 to R5.
 
Space weather—March 2012.

The most powerful flare ever observed was the first one to be observed, on September 1, 1859, and was reported by British astronomer Richard Carrington and independently by an observer named Richard Hodgson. The event is named the Solar storm of 1859, or the "Carrington event". The flare was visible to a naked eye (in white light), and produced stunning auroras down to tropical latitudes such as Cuba or Hawaii, and set telegraph systems on fire. The flare left a trace in Greenland ice in the form of nitrates and beryllium-10, which allow its strength to be measured today. Cliver and Svalgaard reconstructed the effects of this flare and compared with other events of the last 150 years. In their words: "While the 1859 event has close rivals or superiors in each of the above categories of space weather activity, it is the only documented event of the last ∼150 years that appears at or near the top of all of the lists."

The ultra-fast coronal mass ejection of August 1972 is suspected of triggering magnetic fuses on naval mines during the Vietnam War, and would have been a life-threatening event to Apollo astronauts if it had occurred during a mission to the Moon.

In modern times, the largest solar flare measured with instruments occurred on November 4, 2003. This event saturated the GOES detectors, and because of this its classification is only approximate. Initially, extrapolating the GOES curve, it was estimated to be X28. Later analysis of the ionospheric effects suggested increasing this estimate to X45. This event produced the first clear evidence of a new spectral component above 100 GHz.

Other large solar flares also occurred on April 2, 2001 (X20), October 28, 2003 (X17.2 and 10), September 7, 2005 (X17), February 17, 2011 (X2), August 9, 2011 (X6.9), March 7, 2012 (X5.4), July 6, 2012 (X1.1). On July 6, 2012, a solar storm hit just after midnight UK time, when an X1.1 solar flare fired out of the AR1515 sunspot. Another X1.4 solar flare from AR 1520 region of the Sun, second in the week, reached the Earth on July 15, 2012 with a geomagnetic storm of G1–G2 level. A X1.8-class flare was recorded on October 24, 2012. There has been major solar flare activity in early 2013, notably within a 48-hour period starting on May 12, 2013, a total of four X-class solar flares were emitted ranging from an X1.2 and upwards of an X3.2, the latter of which was one of the largest year 2013 flares. Departing sunspot complex AR2035-AR2046 erupted on April 25, 2014 at 0032 UT, producing a strong X1.3-class solar flare and an HF communications blackout on the day-side of Earth. NASA's Solar Dynamics Observatory recorded a flash of extreme ultraviolet radiation from the explosion. The Solar Dynamics Observatory recorded an X9.3-class flare at around 1200 UTC on September 6, 2017.

Flare spray

Flare sprays are a type of eruption associated with solar flares. They involve faster ejections of material than eruptive prominences, and reach velocities of 20 to 2000 kilometers per second.

Prediction


Current methods of flare prediction are problematic, and there is no certain indication that an active region on the Sun will produce a flare. However, many properties of sunspots and active regions correlate with flaring. For example, magnetically complex regions (based on line-of-sight magnetic field) called delta spots produce the largest flares. A simple scheme of sunspot classification due to McIntosh, or related to fractal complexity. is commonly used as a starting point for flare prediction. Predictions are usually stated in terms of probabilities for occurrence of flares above M or X GOES class within 24 or 48 hours. The U.S. National Oceanic and Atmospheric Administration (NOAA) issues forecasts of this kind.



Mandatory Palestine

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Mandatory_Palestine   Palestine 1920–...