Search This Blog

Monday, December 9, 2019

r-process

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/R-process

The rapid neutron-capture process, or so-called r-process, is a set of nuclear reactions that in nuclear astrophysics is responsible for the creation of approximately half of the atomic nuclei heavier than iron; the "heavy elements", with the other half produced by the p-process and s-process. The r-process usually synthesizes the most neutron-rich stable isotopes of each heavy element. The r-process can typically synthesize the heaviest four isotopes of every heavy element, and the two heaviest isotopes, which are referred to as r-only nuclei, can only be created via the r-process. Abundance peaks for the r-process occur near mass numbers A = 82 (elements Se, Br, and Kr), A = 130 (elements Te, I, and Xe) and A = 196 (elements Os, Ir, and Pt).

The r-process entails a succession of rapid neutron captures (hence the name) by one or more heavy seed nuclei, typically beginning with nuclei in the abundance peak centered on 56Fe. The captures must be rapid in the sense that the nuclei must not have time to undergo radioactive decay (typically via β decay) before another neutron arrives to be captured. This sequence can continue up to the limit of stability of the increasingly neutron-rich nuclei (the neutron drip line) to physically retain neutrons as governed by the short range nuclear force. The r-process therefore must occur in locations where there exist a high density of free neutrons. Early studies theorized that 1024 free neutrons per cm3 would be required, for temperatures about 1GK, in order to match the waiting points, at which no more neutrons can be captured, with the atomic numbers of the abundance peaks for r-process nuclei. This amounts to almost a gram of free neutrons in every cubic centimeter, an astonishing number requiring extreme locations. Traditionally this suggested the material ejected from the reexpanded core of a core-collapse supernova, as part of supernova nucleosynthesis, or decompression of neutron-star matter thrown off by a binary neutron star merger. The relative contributions of these sources to the astrophysical abundance of r-process elements is a matter of ongoing research.

A limited r-process-like series of neutron captures occurs to a minor extent in thermonuclear weapon explosions. These led to the discovery of the elements einsteinium (element 99) and fermium (element 100) in nuclear weapon fallout.

The r-process contrasts with the s-process, the other predominant mechanism for the production of heavy elements, which is nucleosynthesis by means of slow captures of neutrons. The s-process primarily occurs within ordinary stars, particularly AGB stars, where the neutron flux is sufficient to cause neutron captures to recur every 10–100 years, much too slow for the r-process, which requires 100 captures per second. The s-process is secondary, meaning that it requires pre-existing heavy isotopes as seed nuclei to be converted into other heavy nuclei by a slow sequence of captures of free neutrons. The r-process scenarios create their own seed nuclei, so they might proceed in massive stars that contain no heavy seed nuclei. Taken together, the r- and s-processes account for almost the entire abundance of chemical elements heavier than iron. The historical challenge has been to locate physical settings appropriate for their time scales.

History

Following pioneering research into the Big Bang and the formation of helium in stars, an unknown process responsible for producing heavier elements found on Earth from hydrogen and helium was suspected to exist. One early attempt at explanation came from Chandrasekhar and Louis R. Henrich who postulated that elements were produced at temperatures between 6×109 and 8×109 K. Their theory accounted for elements up to chlorine, though there was no explanation for elements of atomic weight heavier than 40 amu at non-negligible abundances. This became the foundation of a study by Fred Hoyle, who hypothesized that conditions in the core of collapsing stars would enable nucleosynthesis of the remainder of the elements via rapid capture of densely packed free neutrons. However, there remained unanswered questions about equilibrium in stars that was required to balance beta-decays and precisely account for abundances of elements that would be formed in such conditions.

The need for a physical setting providing rapid neutron capture, which was known to almost certainly have a role in element formation, was also seen in a table of abundances of isotopes of heavy elements by Hans Suess and Harold Urey in 1956. Their abundance table revealed larger than average abundances of natural isotopes containing magic numbers of neutrons as well as abundance peaks about 10 amu lighter than stable nuclei containing magic numbers of neutrons which were also in abundance, suggesting that radioactive neutron-rich nuclei having the magic neutron numbers but roughly ten fewer protons were formed. These observations also implied that rapid neutron capture occurred faster than beta decay, and the resulting abundance peaks were caused by so-called waiting points at magic numbers. This process, rapid neutron capture by neutron-rich isotopes, became known as the r-process, whereas the s-process was named for its characteristic slow neutron capture. A table apportioning the heavy isotopes phenomenologically between s-process and r-process isotopes was published in 1957 in the B2FH review paper,  which named the r-process and outlined the physics that guides it. Alastair G. W. Cameron also published a smaller study about the r-process in the same year.

The stationary r-process as described by the B2FH paper was first demonstrated in a time-dependent calculation at Caltech by Phillip A. Seeger, William A. Fowler and Donald D. Clayton, who found that no single temporal snapshot matched the solar r-process abundances, but, that when superposed, did achieve a successful characterization of the r-process abundance distribution. Shorter-time distributions emphasize abundances at atomic weights less than A = 140, whereas longer-time distributions emphasized those at atomic weights greater than A = 140. Subsequent treatments of the r-process reinforced those temporal features. Seeger et al. were also able to construct more quantitative apportionment between s-process and r-process of the abundance table of heavy isotopes, thereby establishing a more reliable abundance curve for the r-process isotopes than B2FH had been able to define. Today, the r-process abundances are determined using their technique of subtracting the more reliable s-process isotopic abundances from the total isotopic abundances and attributing the remainder to r-process nucleosynthesis. That r-process abundance curve (vs. atomic weight) has provided for many decades the target for theoretical computations of abundances synthesized by the physical r-process. 

The creation of free neutrons by electron capture during the rapid collapse to high density of a supernova core along with quick assembly of some neutron-rich seed nuclei makes the r-process a primary nucleosynthesis process, meaning a process that can occur even in a star initially of pure H and He, in contrast to the B2FH designation as a secondary process building on preexisting iron. Primary stellar nucleosynthesis begins earlier in the galaxy than does secondary nucleosynthesis. Alternatively the high density of neutrons within neutron stars would be available for rapid assembly into r-process nuclei if a collision were to eject portions of a neutron star, which then rapidly expands freed from confinement. That sequence could also begin earlier in galactic time than would s-process nucleosynthesis; so each scenario fits the earlier growth of r-process abundances in the galaxy. Each of these scenarios is the subject of active theoretical research. Observational evidence of the early r-process enrichment of interstellar gas and of subsequent newly formed of stars, as applied to the abundance evolution of the galaxy of stars, was first laid out by James W. Truran in 1981. He and subsequent astronomers showed that the pattern of heavy-element abundances in the earliest metal-poor stars matched that of the shape of the solar r-process curve, as if the s-process component were missing. This was consistent with the hypothesis that the s-process had not yet begun to enrich interstellar gas when these young stars missing the s-process abundances were born from that gas, for it requires about 100 million years of galactic history for the s-process to get started whereas the r-process can begin after two million years. These s-process–poor, r-process–rich stellar compositions must have been born earlier than any s-process, showing that the r-process emerges from quickly evolving massive stars that become supernovae and leave neutron-star remnants that can merge with another neutron star. The primary nature of the early r-process thereby derives from observed abundance spectra in old stars that had been born early, when the galactic metallicity was still small, but that nonetheless contain their complement of r-process nuclei. 

Periodic table showing the cosmogenic origin of each element. The elements heavier than iron with origins in supernovae are typically those produced by the r-process, which is powered by supernovae neutron bursts
 
Either interpretation, though generally supported by supernova experts, has yet to achieve a totally satisfactory calculation of r-process abundances because the overall problem is numerically formidable, but existing results are supportive. In 2017, new data about the r-process was discovered when the LIGO and Virgo gravitational-wave observatories discovered a merger of two neutron stars ejecting r-process matter.

Noteworthy is that the r-process is responsible for our natural cohort of radioactive elements, such as uranium and thorium, as well as the most neutron-rich isotopes of each heavy element. 

Nuclear physics

There are three candidate sites for r-process nucleosynthesis where the required conditions are thought to exist: low-mass supernovae, Type II supernovae, and neutron star mergers.

Immediately after the severe compression of electrons in a Type II supernova, beta-minus decay is blocked. This is because the high electron density fills all available free electron states up to a Fermi energy which is greater than the energy of nuclear beta decay. However, nuclear capture of those free electrons still occurs, and causes increasing neutronization of matter. This results in an extremely high density of free neutrons which cannot decay, on the order of 1024 neutrons per cm3), and high temperatures. As this re-expands and cools, neutron capture by still-existing heavy nuclei occurs much faster than beta-minus decay. As a consequence, the r-process runs up along the neutron drip line and highly-unstable neutron-rich nuclei are created. 

Three processes which affect the climbing of the neutron drip line are a notable decrease in the neutron-capture cross section in nuclei with closed neutron shells, the inhibiting process of photodisintegration, and the degree of nuclear stability in the heavy-isotope region. Neutron captures in r-process nucleosynthesis leads to the formation of neutron-rich, weakly bound nuclei with neutron separation energies as low as 2 MeV. At this stage, closed neutron shells at N = 50, 82, and 126 are reached, and neutron capture is temporarily paused. These so-called waiting points are characterized by increased binding energy relative to heavier isotopes, leading to low neutron capture cross sections and a buildup of semi-magic nuclei that are more stable toward beta decay. In addition, nuclei beyond the shell closures are susceptible to quicker beta decay owing to their proximity to the drip line; for these nuclei, beta decay occurs before further neutron capture. Waiting point nuclei are then allowed to beta decay toward stability before further neutron capture can occur, resulting in a slowdown or freeze-out of the reaction.

Decreasing nuclear stability terminates the r-process when its heaviest nuclei become unstable to spontaneous fission, when the total number of nucleons approaches 270. The fission barrier may be low enough before 270 such that neutron capture might induce fission instead of continuing up the neutron drip line. After the neutron flux decreases, these highly unstable radioactive nuclei undergo a rapid succession of beta decays until they reach more stable, neutron-rich nuclei. While the s-process creates an abundance of stable nuclei having closed neutron shells, The r-process, in neutron-rich predecessor nuclei, creates an abundance of radioactive nuclei about 10 amu below the s-process peaks after their decay back to stability.

The r-process also occurs in thermonuclear weapons, and was responsible for the initial discovery of neutron-rich almost stable isotopes of actinides like plutonium-244 and the new elements einsteinium and fermium (atomic numbers 99 and 100) in the 1950s. It has been suggested that multiple nuclear explosions would make it possible to reach the island of stability, as the affected nuclides (starting with uranium-238 as seed nuclei) would not have time to beta decay all the way to the quickly spontaneously fissioning nuclides at the line of beta stability before absorbing more neutrons in the next explosion, thus providing a chance to reach neutron-rich superheavy nuclides like copernicium-291 and -293 which should have half-lives of centuries or millennia.

Astrophysical sites

The most probable candidate site for the r-process has long been suggested to be core-collapse supernovae (spectral types Ib, Ic and II), which may provide the necessary physical conditions for the r-process. However, the very low abundance of r-process nuclei in the interstellar gas limits the amount each can have ejected. It requires either that only a small fraction of supernovae eject r-process nuclei to the interstellar medium, or that each supernova ejects only a very small amount of r-process material. The ejected material must be relatively neutron-rich, a condition which has been difficult to achieve in models, so that astrophysicists remain uneasy about their adequacy for successful r-process yields. 

In 2017, entirely new astronomical data about the r-process was discovered in data about the merger of two neutron stars. Using the gravitational wave data captured in GW170817 to identify the location of the merger, several teams observed and studied optical data of the merger, finding spectroscopic evidence of r-process material thrown off by the merging neutron stars. The bulk of this material seems to consist of two types: hot blue masses of highly radioactive r-process matter of lower-mass-range heavy nuclei (A < 140 such as Strontium) and cooler red masses of higher mass-number r-process nuclei (A > 140) rich in actinides (such as Uranium, Thorium, and Californium). When released from the huge internal pressure of the neutron star, these ejecta expand and form seed heavy nuclei that rapidly capture free neutrons, and radiate detected optical light for about a week. Such duration of luminosity would not be possible without heating by internal radioactive decay, which is provided by r-process nuclei near their waiting points. Two distinct mass regions (A < 140 and A > 140) for the r-process yields have been known since the first time dependent calculations of the r-process. Because of these spectroscopic features it has been argued that such nucleosynthesis in the Milky Way has been primarily ejecta from neutron-star mergers rather than from supernovae.

These results offer a new possibility for clarifying six decades of uncertainty over the site of origin of r-process nuclei. Confirming relevance to the r-process is that it is radiogenic power from radioactive decay of r-process nuclei that maintains the visibility of these spun off r-process fragments. Otherwise they would dim quickly. Such alternative sites were first seriously proposed in 1974 as decompressing neutron star matter. It was proposed such matter is ejected from neutron stars merging with black holes in compact binaries. In 1989 (and 1999) this scenario was extended to binary neutron star mergers (a binary star system of two neutron stars that collide). After preliminary identification of these sites, the scenario was confirmed in GW170817. Current astrophysical models suggest that a single neutron star merger event may have generated between 3 and 13 Earth masses of gold.

Supernova core collapse

From Wikipedia, the free encyclopedia
 
 Supernova types by initial mass-metallicity
 
The layers of a massive, evolved star just prior to core collapse (not to scale)
 
Very massive stars can undergo core collapse when nuclear fusion becomes unable to sustain the core against its own gravity; passing this threshold is the cause of all types of supernova except Type Ia. The collapse may cause violent expulsion of the outer layers of the star resulting in a supernova, or the release of gravitational potential energy may be insufficient and the star may collapse into a black hole or neutron star with little radiated energy. 

Core collapse can be caused by several different mechanisms: electron capture; exceeding the Chandrasekhar limit; pair-instability; or photodisintegration. When a massive star develops an iron core larger than the Chandrasekhar mass it will no longer be able to support itself by electron degeneracy pressure and will collapse further to a neutron star or black hole. Electron capture by magnesium in a degenerate O/Ne/Mg core causes gravitational collapse followed by explosive oxygen fusion, with very similar results. Electron-positron pair production in a large post-helium burning core removes thermodynamic support and causes initial collapse followed by runaway fusion, resulting in a pair-instability supernova. A sufficiently large and hot stellar core may generate gamma-rays energetic enough to initiate photodisintegration directly, which will cause a complete collapse of the core.

The table below lists the known reasons for core collapse in massive stars, the types of stars in which they occur, their associated supernova type, and the remnant produced. The metallicity is the proportion of elements other than hydrogen or helium, as compared to the Sun. The initial mass is the mass of the star prior to the supernova event, given in multiples of the Sun's mass, although the mass at the time of the supernova may be much lower.

Type IIn supernovae are not listed in the table. They can be produced by various types of core collapse in different progenitor stars, possibly even by Type Ia white dwarf ignitions, although it seems that most will be from iron core collapse in luminous supergiants or hypergiants (including LBVs). The narrow spectral lines for which they are named occur because the supernova is expanding into a small dense cloud of circumstellar material. It appears that a significant proportion of supposed Type IIn supernovae are supernova impostors, massive eruptions of LBV-like stars similar to the Great Eruption of Eta Carinae. In these events, material previously ejected from the star creates the narrow absorption lines and causes a shock wave through interaction with the newly ejected material.

Core collapse scenarios by mass and metallicity
Cause of collapse Progenitor star approximate initial mass (solar masses) Supernova type Remnant
Electron capture in a degenerate O+Ne+Mg core 9–10 Faint II-P Neutron star
Iron core collapse 10–25 Faint II-P Neutron star
25–40 with low or solar metallicity Normal II-P Black hole after fallback of material onto an initial neutron star
25–40 with very high metallicity II-L or II-b Neutron star
40–90 with low metallicity None Black hole
≥40 with near-solar metallicity Faint Ib/c, or hypernova with gamma-ray burst (GRB) Black hole after fallback of material onto an initial neutron star
≥40 with very high metallicity Ib/c Neutron star
≥90 with low metallicity None, possible GRB Black hole
Pair instability 140–250 with low metallicity II-P, sometimes a hypernova, possible GRB No remnant
Photodisintegration ≥250 with low metallicity None (or luminous supernova?), possible GRB Massive black hole

Remnants of single massive stars
 
Within a massive, evolved star (a) the onion-layered shells of elements undergo fusion, forming an iron core (b) that reaches Chandrasekhar-mass and starts to collapse. The inner part of the core is compressed into neutrons (c), causing infalling material to bounce (d) and form an outward-propagating shock front (red). The shock starts to stall (e), but it is re-invigorated by a process that may include neutrino interaction. The surrounding material is blasted away (f), leaving only a degenerate remnant.
 
When a stellar core is no longer supported against gravity, it collapses in on itself with velocities reaching 70,000 km/s (0.23c), resulting in a rapid increase in temperature and density. What follows next depends on the mass and structure of the collapsing core, with low mass degenerate cores forming neutron stars, higher mass degenerate cores mostly collapsing completely to black holes, and non-degenerate cores undergoing runaway fusion.

The initial collapse of degenerate cores is accelerated by beta decay, photodisintegration and electron capture, which causes a burst of electron neutrinos. As the density increases, neutrino emission is cut off as they become trapped in the core. The inner core eventually reaches typically 30 km diameter and a density comparable to that of an atomic nucleus, and neutron degeneracy pressure tries to halt the collapse. If the core mass is more than about 15 M then neutron degeneracy is insufficient to stop the collapse and a black hole forms directly with no supernova.

In lower mass cores the collapse is stopped and the newly formed neutron core has an initial temperature of about 100 billion kelvin, 6000 times the temperature of the sun's core. At this temperature, neutrino-antineutrino pairs of all flavors are efficiently formed by thermal emission. These thermal neutrinos are several times more abundant than the electron-capture neutrinos. About 1046 joules, approximately 10% of the star's rest mass, is converted into a ten-second burst of neutrinos which is the main output of the event. The suddenly halted core collapse rebounds and produces a shock wave that stalls within milliseconds in the outer core as energy is lost through the dissociation of heavy elements. A process that is not clearly understood is necessary to allow the outer layers of the core to reabsorb around 1044 joules (1 foe) from the neutrino pulse, producing the visible brightness, although there are also other theories on how to power the explosion.

Some material from the outer envelope falls back onto the neutron star, and, for cores beyond about 8 M, there is sufficient fallback to form a black hole. This fallback will reduce the kinetic energy created and the mass of expelled radioactive material, but in some situations it may also generate relativistic jets that result in a gamma-ray burst or an exceptionally luminous supernova.

The collapse of a massive non-degenerate core will ignite further fusion. When the core collapse is initiated by pair instability, oxygen fusion begins and the collapse may be halted. For core masses of 40–60 M, the collapse halts and the star remains intact, but collapse will occur again when a larger core has formed. For cores of around 60–130 M, the fusion of oxygen and heavier elements is so energetic that the entire star is disrupted, causing a supernova. At the upper end of the mass range, the supernova is unusually luminous and extremely long-lived due to many solar masses of ejected 56Ni. For even larger core masses, the core temperature becomes high enough to allow photodisintegration and the core collapses completely into a black hole.

Gamma-ray burst

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Gamma-ray_burst
 
Artist's illustration showing the life of a massive star as nuclear fusion converts lighter elements into heavier ones. When fusion no longer generates enough pressure to counteract gravity, the star rapidly collapses to form a black hole. Theoretically, energy may be released during the collapse along the axis of rotation to form a gamma-ray burst.
 
In gamma-ray astronomy, gamma-ray bursts (GRBs) are extremely energetic explosions that have been observed in distant galaxies. They are the brightest electromagnetic events known to occur in the universe. Bursts can last from ten milliseconds to several hours. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave and radio).

The intense radiation of most observed GRBs is thought to be released during a supernova or superluminous supernova as a high-mass star implodes to form a neutron star or a black hole.

A subclass of GRBs (the "short" bursts) appear to originate from the merger of binary neutron stars. The cause of the precursor burst observed in some of these short events may be the development of a resonance between the crust and core of such stars as a result of the massive tidal forces experienced in the seconds leading up to their collision, causing the entire crust of the star to shatter.

The sources of most GRBs are billions of light years away from Earth, implying that the explosions are both extremely energetic (a typical burst releases as much energy in a few seconds as the Sun will in its entire 10-billion-year lifetime) and extremely rare (a few per galaxy per million years). All observed GRBs have originated from outside the Milky Way galaxy, although a related class of phenomena, soft gamma repeater flares, are associated with magnetars within the Milky Way. It has been hypothesized that a gamma-ray burst in the Milky Way, pointing directly towards the Earth, could cause a mass extinction event.

GRBs were first detected in 1967 by the Vela satellites, which had been designed to detect covert nuclear weapons tests; this was declassified and published in 1973. Following their discovery, hundreds of theoretical models were proposed to explain these bursts, such as collisions between comets and neutron stars. Little information was available to verify these models until the 1997 detection of the first X-ray and optical afterglows and direct measurement of their redshifts using optical spectroscopy, and thus their distances and energy outputs. These discoveries, and subsequent studies of the galaxies and supernovae associated with the bursts, clarified the distance and luminosity of GRBs, definitively placing them in distant galaxies. 

History

Positions on the sky of all gamma-ray bursts detected during the BATSE mission. The distribution is isotropic, with no concentration towards the plane of the Milky Way, which runs horizontally through the center of the image.
 
Gamma-ray bursts were first observed in the late 1960s by the U.S. Vela satellites, which were built to detect gamma radiation pulses emitted by nuclear weapons tested in space. The United States suspected that the Soviet Union might attempt to conduct secret nuclear tests after signing the Nuclear Test Ban Treaty in 1963. On July 2, 1967, at 14:19 UTC, the Vela 4 and Vela 3 satellites detected a flash of gamma radiation unlike any known nuclear weapons signature. Uncertain what had happened but not considering the matter particularly urgent, the team at the Los Alamos National Laboratory, led by Ray Klebesadel, filed the data away for investigation. As additional Vela satellites were launched with better instruments, the Los Alamos team continued to find inexplicable gamma-ray bursts in their data. By analyzing the different arrival times of the bursts as detected by different satellites, the team was able to determine rough estimates for the sky positions of sixteen bursts and definitively rule out a terrestrial or solar origin. The discovery was declassified and published in 1973.

Most early theories of gamma-ray bursts posited nearby sources within the Milky Way Galaxy. From 1991, the Compton Gamma Ray Observatory (CGRO) and its Burst and Transient Source Explorer (BATSE) instrument, an extremely sensitive gamma-ray detector, provided data that showed the distribution of GRBs is isotropic—not biased towards any particular direction in space. If the sources were from within our own galaxy they would be strongly concentrated in or near the galactic plane. The absence of any such pattern in the case of GRBs provided strong evidence that gamma-ray bursts must come from beyond the Milky Way. However, some Milky Way models are still consistent with an isotropic distribution.

In October 2018, astronomers reported that GRB 150101B, a gamma-ray burst event detected in 2015, may be directly related to the historic GW170817, a gravitational wave event detected in 2017, and associated with the merger of two neutron stars. The similarities between the two events, in terms of gamma ray, optical and x-ray emissions, as well as to the nature of the associated host galaxies, are "striking", suggesting the two separate events may both be the result of the merger of neutron stars, and both may be a kilonova, which may be more common in the universe than previously understood, according to the researchers.

In November 2019, astronomers reported a notable gamma ray burst explosion, named GRB 190114C, initially detected in January 2019, that, so far, has been determined to have had the highest energy, 1 Tera electron volts (Tev), ever observed for such a cosmic event.

Counterpart objects as candidate sources

For decades after the discovery of GRBs, astronomers searched for a counterpart at other wavelengths: i.e., any astronomical object in positional coincidence with a recently observed burst. Astronomers considered many distinct classes of objects, including white dwarfs, pulsars, supernovae, globular clusters, quasars, Seyfert galaxies, and BL Lac objects. All such searches were unsuccessful, and in a few cases particularly well-localized bursts (those whose positions were determined with what was then a high degree of accuracy) could be clearly shown to have no bright objects of any nature consistent with the position derived from the detecting satellites. This suggested an origin of either very faint stars or extremely distant galaxies. Even the most accurate positions contained numerous faint stars and galaxies, and it was widely agreed that final resolution of the origins of cosmic gamma-ray bursts would require both new satellites and faster communication.

Afterglow

The Italian–Dutch satellite BeppoSAX, launched in April 1996, provided the first accurate positions of gamma-ray bursts, allowing follow-up observations and identification of the sources.
 
Several models for the origin of gamma-ray bursts postulated that the initial burst of gamma rays should be followed by slowly fading emission at longer wavelengths created by collisions between the burst ejecta and interstellar gas. This fading emission would be called the "afterglow". Early searches for this afterglow were unsuccessful, largely because it is difficult to observe a burst's position at longer wavelengths immediately after the initial burst. The breakthrough came in February 1997 when the satellite BeppoSAX detected a gamma-ray burst (GRB 970228) and when the X-ray camera was pointed towards the direction from which the burst had originated, it detected fading X-ray emission. The William Herschel Telescope identified a fading optical counterpart 20 hours after the burst.[30] Once the GRB faded, deep imaging was able to identify a faint, distant host galaxy at the location of the GRB as pinpointed by the optical afterglow.

Because of the very faint luminosity of this galaxy, its exact distance was not measured for several years. Well after then, another major breakthrough occurred with the next event registered by BeppoSAX, GRB 970508. This event was localized within four hours of its discovery, allowing research teams to begin making observations much sooner than any previous burst. The spectrum of the object revealed a redshift of z = 0.835, placing the burst at a distance of roughly 6 billion light years from Earth. This was the first accurate determination of the distance to a GRB, and together with the discovery of the host galaxy of 970228 proved that GRBs occur in extremely distant galaxies. Within a few months, the controversy about the distance scale ended: GRBs were extragalactic events originating within faint galaxies at enormous distances. The following year, GRB 980425 was followed within a day by a bright supernova (SN 1998bw), coincident in location, indicating a clear connection between GRBs and the deaths of very massive stars. This burst provided the first strong clue about the nature of the systems that produce GRBs.

NASA's Swift Spacecraft launched in November 2004
 
BeppoSAX functioned until 2002 and CGRO (with BATSE) was deorbited in 2000. However, the revolution in the study of gamma-ray bursts motivated the development of a number of additional instruments designed specifically to explore the nature of GRBs, especially in the earliest moments following the explosion. The first such mission, HETE-2, was launched in 2000 and functioned until 2006, providing most of the major discoveries during this period. One of the most successful space missions to date, Swift, was launched in 2004 and as of 2018 is still operational. Swift is equipped with a very sensitive gamma ray detector as well as on-board X-ray and optical telescopes, which can be rapidly and automatically slewed to observe afterglow emission following a burst. More recently, the Fermi mission was launched carrying the Gamma-Ray Burst Monitor, which detects bursts at a rate of several hundred per year, some of which are bright enough to be observed at extremely high energies with Fermi's Large Area Telescope. Meanwhile, on the ground, numerous optical telescopes have been built or modified to incorporate robotic control software that responds immediately to signals sent through the Gamma-ray Burst Coordinates Network. This allows the telescopes to rapidly repoint towards a GRB, often within seconds of receiving the signal and while the gamma-ray emission itself is still ongoing.

New developments since the 2000s include the recognition of short gamma-ray bursts as a separate class (likely from merging neutron stars and not associated with supernovae), the discovery of extended, erratic flaring activity at X-ray wavelengths lasting for many minutes after most GRBs, and the discovery of the most luminous (GRB 080319B) and the former most distant (GRB 090423) objects in the universe. The most distant known GRB, GRB 090429B, is now the most distant known object in the universe. 

Classification

Gamma-ray burst light curves
 
The light curves of gamma-ray bursts are extremely diverse and complex. No two gamma-ray burst light curves are identical, with large variation observed in almost every property: the duration of observable emission can vary from milliseconds to tens of minutes, there can be a single peak or several individual subpulses, and individual peaks can be symmetric or with fast brightening and very slow fading. Some bursts are preceded by a "precursor" event, a weak burst that is then followed (after seconds to minutes of no emission at all) by the much more intense "true" bursting episode. The light curves of some events have extremely chaotic and complicated profiles with almost no discernible patterns.

Although some light curves can be roughly reproduced using certain simplified models, little progress has been made in understanding the full diversity observed. Many classification schemes have been proposed, but these are often based solely on differences in the appearance of light curves and may not always reflect a true physical difference in the progenitors of the explosions. However, plots of the distribution of the observed duration for a large number of gamma-ray bursts show a clear bimodality, suggesting the existence of two separate populations: a "short" population with an average duration of about 0.3 seconds and a "long" population with an average duration of about 30 seconds. Both distributions are very broad with a significant overlap region in which the identity of a given event is not clear from duration alone. Additional classes beyond this two-tiered system have been proposed on both observational and theoretical grounds.

Short gamma-ray bursts

Hubble Space Telescope captures infrared glow of a kilonova blast.
 
Events with a duration of less than about two seconds are classified as short gamma-ray bursts. These account for about 30% of gamma-ray bursts, but until 2005, no afterglow had been successfully detected from any short event and little was known about their origins. Since then, several dozen short gamma-ray burst afterglows have been detected and localized, several of which are associated with regions of little or no star formation, such as large elliptical galaxies and the central regions oflarge galaxy clusters. This rules out a link to massive stars, confirming that short events are physically distinct from long events. In addition, there has been no association with supernovae.

The true nature of these objects was initially unknown, and the leading hypothesis was that they originated from the mergers of binary neutron stars or a neutron star with a black hole. Such mergers were theorized to produce kilonovae, and evidence for a kilonova associated with GRB 130603B was seen. The mean duration of these events of 0.2 seconds suggests (because of causality) a source of very small physical diameter in stellar terms; less than 0.2 light-seconds (about 60,000 km or 37,000 miles—four times the Earth's diameter). The observation of minutes to hours of X-ray flashes after a short gamma-ray burst is consistent with small particles of a primary object like a neutron star initially swallowed by a black hole in less than two seconds, followed by some hours of lesser energy events, as remaining fragments of tidally disrupted neutron star material (no longer neutronium) remain in orbit to spiral into the black hole, over a longer period of time. A small fraction of short gamma-ray bursts are probably produced by giant flares from soft gamma repeaters in nearby galaxies.

The origin of short GRBs in kilonovae was confirmed when short GRB 170817A was detected only 1.7 s after the detection of gravitational wave GW170817, which was a signal from the merger of two neutron stars.

Long gamma-ray bursts

Most observed events (70%) have a duration of greater than two seconds and are classified as long gamma-ray bursts. Because these events constitute the majority of the population and because they tend to have the brightest afterglows, they have been observed in much greater detail than their short counterparts. Almost every well-studied long gamma-ray burst has been linked to a galaxy with rapid star formation, and in many cases to a core-collapse supernova as well, unambiguously associating long GRBs with the deaths of massive stars. Long GRB afterglow observations, at high redshift, are also consistent with the GRB having originated in star-forming regions.

Ultra-long gamma-ray bursts

These events are at the tail end of the long GRB duration distribution, lasting more than 10,000 seconds. They have been proposed to form a separate class, caused by the collapse of a blue supergiant star, a tidal disruption event or a new-born magnetar. Only a small number have been identified to date, their primary characteristic being their gamma ray emission duration. The most studied ultra-long events include GRB 101225A and GRB 111209A. The low detection rate may be a result of low sensitivity of current detectors to long-duration events, rather than a reflection of their true frequency. A 2013 study, on the other hand, shows that the existing evidence for a separate ultra-long GRB population with a new type of progenitor is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion. 

Energetics and beaming

Artist's illustration of a bright gamma-ray burst occurring in a star-forming region. Energy from the explosion is beamed into two narrow, oppositely directed jets.
 
Gamma-ray bursts are very bright as observed from Earth despite their typically immense distances. An average long GRB has a bolometric flux comparable to a bright star of our galaxy despite a distance of billions of light years (compared to a few tens of light years for most visible stars). Most of this energy is released in gamma rays, although some GRBs have extremely luminous optical counterparts as well. GRB 080319B, for example, was accompanied by an optical counterpart that peaked at a visible magnitude of 5.8, comparable to that of the dimmest naked-eye stars despite the burst's distance of 7.5 billion light years. This combination of brightness and distance implies an extremely energetic source. Assuming the gamma-ray explosion to be spherical, the energy output of GRB 080319B would be within a factor of two of the rest-mass energy of the Sun (the energy which would be released were the Sun to be converted entirely into radiation).

Gamma-ray bursts are thought to be highly focused explosions, with most of the explosion energy collimated into a narrow jet. The approximate angular width of the jet (that is, the degree of spread of the beam) can be estimated directly by observing the achromatic "jet breaks" in afterglow light curves: a time after which the slowly decaying afterglow begins to fade rapidly as the jet slows and can no longer beam its radiation as effectively. Observations suggest significant variation in the jet angle from between 2 and 20 degrees.

Because their energy is strongly focused, the gamma rays emitted by most bursts are expected to miss the Earth and never be detected. When a gamma-ray burst is pointed towards Earth, the focusing of its energy along a relatively narrow beam causes the burst to appear much brighter than it would have been were its energy emitted spherically. When this effect is taken into account, typical gamma-ray bursts are observed to have a true energy release of about 1044 J, or about 1/2000 of a Solar mass (M) energy equivalent—which is still many times the mass-energy equivalent of the Earth (about 5.5 × 1041 J). This is comparable to the energy released in a bright type Ib/c supernova and within the range of theoretical models. Very bright supernovae have been observed to accompany several of the nearest GRBs. Additional support for focusing of the output of GRBs has come from observations of strong asymmetries in the spectra of nearby type Ic supernova and from radio observations taken long after bursts when their jets are no longer relativistic.

Short (time duration) GRBs appear to come from a lower-redshift (i.e. less distant) population and are less luminous than long GRBs. The degree of beaming in short bursts has not been accurately measured, but as a population they are likely less collimated than long GRBs or possibly not collimated at all in some cases.

Progenitors

Hubble Space Telescope image of Wolf–Rayet star WR 124 and its surrounding nebula. Wolf–Rayet stars are candidates for being progenitors of long-duration GRBs.
 
Because of the immense distances of most gamma-ray burst sources from Earth, identification of the progenitors, the systems that produce these explosions, is challenging. The association of some long GRBs with supernovae and the fact that their host galaxies are rapidly star-forming offer very strong evidence that long gamma-ray bursts are associated with massive stars. The most widely accepted mechanism for the origin of long-duration GRBs is the collapsar model, in which the core of an extremely massive, low-metallicity, rapidly rotating star collapses into a black hole in the final stages of its evolution. Matter near the star's core rains down towards the center and swirls into a high-density accretion disk. The infall of this material into a black hole drives a pair of relativistic jets out along the rotational axis, which pummel through the stellar envelope and eventually break through the stellar surface and radiate as gamma rays. Some alternative models replace the black hole with a newly formed magnetar, although most other aspects of the model (the collapse of the core of a massive star and the formation of relativistic jets) are the same.

The closest analogs within the Milky Way galaxy of the stars producing long gamma-ray bursts are likely the Wolf–Rayet stars, extremely hot and massive stars, which have shed most or all of their hydrogen to radiation pressure. Eta Carinae and WR 104 have been cited as possible future gamma-ray burst progenitors. It is unclear if any star in the Milky Way has the appropriate characteristics to produce a gamma-ray burst.

The massive-star model probably does not explain all types of gamma-ray burst. There is strong evidence that some short-duration gamma-ray bursts occur in systems with no star formation and no massive stars, such as elliptical galaxies and galaxy halos. The favored theory for the origin of most short gamma-ray bursts is the merger of a binary system consisting of two neutron stars. According to this model, the two stars in a binary slowly spiral towards each other because gravitational radiation releases energy until tidal forces suddenly rip the neutron stars apart and they collapse into a single black hole. The infall of matter into the new black hole produces an accretion disk and releases a burst of energy, analogous to the collapsar model. Numerous other models have also been proposed to explain short gamma-ray bursts, including the merger of a neutron star and a black hole, the accretion-induced collapse of a neutron star, or the evaporation of primordial black holes.

An alternative explanation proposed by Friedwardt Winterberg is that in the course of a gravitational collapse and in reaching the event horizon of a black hole, all matter disintegrates into a burst of gamma radiation.

Tidal disruption events

This new class of GRB-like events was first discovered through the detection of GRB 110328A by the Swift Gamma-Ray Burst Mission on 28 March 2011. This event had a gamma-ray duration of about 2 days, much longer than even ultra-long GRBs, and was detected in X-rays for many months. It occurred at the center of a small elliptical galaxy at redshift z = 0.3534. There is an ongoing debate as to whether the explosion was the result of stellar collapse or a tidal disruption event accompanied by a relativistic jet, although the latter explanation has become widely favoured. 

A tidal disruption event of this sort is when a star interacts with a supermassive black hole, shredding the star, and in some cases creating a relativistic jet which produces bright emission of gamma ray radiation. The event GRB 110328A (also denoted Swift J1644+57) was initially argued to be produced by the disruption of a main sequence star by a black hole of several million times the mass of the Sun, although it has subsequently been argued that the disruption of a white dwarf by a black hole of mass about 10 thousand times the Sun may be more likely.

Emission mechanisms

Gamma-ray-burst Mechanism
 
The means by which gamma-ray bursts convert energy into radiation remains poorly understood, and as of 2010 there was still no generally accepted model for how this process occurs. Any successful model of GRB emission must explain the physical process for generating gamma-ray emission that matches the observed diversity of light curves, spectra, and other characteristics. Particularly challenging is the need to explain the very high efficiencies that are inferred from some explosions: some gamma-ray bursts may convert as much as half (or more) of the explosion energy into gamma-rays. Early observations of the bright optical counterparts to GRB 990123 and to GRB 080319B, whose optical light curves were extrapolations of the gamma-ray light spectra, have suggested that inverse Compton may be the dominant process in some events. In this model, pre-existing low-energy photons are scattered by relativistic electrons within the explosion, augmenting their energy by a large factor and transforming them into gamma-rays.

The nature of the longer-wavelength afterglow emission (ranging from X-ray through radio) that follows gamma-ray bursts is better understood. Any energy released by the explosion not radiated away in the burst itself takes the form of matter or energy moving outward at nearly the speed of light. As this matter collides with the surrounding interstellar gas, it creates a relativistic shock wave that then propagates forward into interstellar space. A second shock wave, the reverse shock, may propagate back into the ejected matter. Extremely energetic electrons within the shock wave are accelerated by strong local magnetic fields and radiate as synchrotron emission across most of the electromagnetic spectrum. This model has generally been successful in modeling the behavior of many observed afterglows at late times (generally, hours to days after the explosion), although there are difficulties explaining all features of the afterglow very shortly after the gamma-ray burst has occurred.

Alternative explanations

Rather than cataclysmic explosions, it has been suggested that gamma ray bursts could conceivably represent optical illusions caused by constant emitters entering into the region of space-time occupied by a gamma emitter.

Rate of occurrence and potential effects on life

On 27 October 2015, at 22:40 GMT, the NASA/ASI/UKSA Swift satellite discovered its 1000th gamma-ray burst (GRB).
 
Gamma ray bursts can have harmful or destructive effects on life. Considering the universe as a whole, the safest environments for life similar to that on Earth are the lowest density regions in the outskirts of large galaxies. Our knowledge of galaxy types and their distribution suggests that life as we know it can only exist in about 10% of all galaxies. Furthermore, galaxies with a redshift, z, higher than 0.5 are unsuitable for life as we know it, because of their higher rate of GRBs and their stellar compactness.

All GRBs observed to date have occurred well outside the Milky Way galaxy and have been harmless to Earth. However, if a GRB were to occur within the Milky Way and its emission were beamed straight towards Earth, the effects could be harmful and potentially devastating for the ecosystems. Currently, orbiting satellites detect on average approximately one GRB per day. The closest observed GRB as of March 2014 was GRB 980425, located 40 megaparsecs (130,000,000 ly) away (z=0.0085) in an SBc-type dwarf galaxy. GRB 980425 was far less energetic than the average GRB and was associated with the Type Ib supernova SN 1998bw.

Estimating the exact rate at which GRBs occur is difficult; for a galaxy of approximately the same size as the Milky Way, estimates of the expected rate (for long-duration GRBs) can range from one burst every 10,000 years, to one burst every 1,000,000 years. Only a small percentage of these would be beamed towards Earth. Estimates of rate of occurrence of short-duration GRBs are even more uncertain because of the unknown degree of collimation, but are probably comparable.

Since GRBs are thought to involve beamed emission along two jets in opposing directions, only planets in the path of these jets would be subjected to the high energy gamma radiation.

Although nearby GRBs hitting Earth with a destructive shower of gamma rays are only hypothetical events, high energy processes across the galaxy have been observed to affect the Earth's atmosphere.

Effects on Earth

Earth's atmosphere is very effective at absorbing high energy electromagnetic radiation such as x-rays and gamma rays, so these types of radiation would not reach any dangerous levels at the surface during the burst event itself. The immediate effect on life on Earth from a GRB within a few kiloparsecs would only be a short increase in ultraviolet radiation at ground level, lasting from less than a second to tens of seconds. This ultraviolet radiation could potentially reach dangerous levels depending on the exact nature and distance of the burst, but it seems unlikely to be able to cause a global catastrophe for life on Earth.

The long-term effects from a nearby burst are more dangerous. Gamma rays cause chemical reactions in the atmosphere involving oxygen and nitrogen molecules, creating first nitrogen oxide then nitrogen dioxide gas. The nitrogen oxides cause dangerous effects on three levels. First, they deplete ozone, with models showing a possible global reduction of 25–35%, with as much as 75% in certain locations, an effect that would last for years. This reduction is enough to cause a dangerously elevated UV index at the surface. Secondly, the nitrogen oxides cause photochemical smog, which darkens the sky and blocks out parts of the sunlight spectrum. This would affect photosynthesis, but models show only about a 1% reduction of the total sunlight spectrum, lasting a few years. However, the smog could potentially cause a cooling effect on Earth's climate, producing a "cosmic winter" (similar to an impact winter, but without an impact), but only if it occurs simultaneously with a global climate instability. Thirdly, the elevated nitrogen levels in the atmosphere would wash out and produce nitric acid rain. Nitric acid is toxic to a variety of organisms, including amphibian life, but models predict that it would not reach levels that would cause a serious global effect. The nitrates might in fact be of benefit to some plants.

All in all, a GRB within a few kiloparsecs, with its energy directed towards Earth, will mostly damage life by raising the UV levels during the burst itself and for a few years thereafter. Models show that the destructive effects of this increase can cause up to 16 times the normal levels of DNA damage. It has proved difficult to assess a reliable evaluation of the consequences of this on the terrestrial ecosystem, because of the uncertainty in biological field and laboratory data.

Hypothetical effects on Earth in the past

GRBs close enough to affect life in some way might occur once every five million years or so – around a thousand times since life on Earth began.

The major Ordovician–Silurian extinction events 450 million years ago may have been caused by a GRB. The late Ordovician species of trilobites that spent portions of their lives in the plankton layer near the ocean surface were much harder hit than deep-water dwellers, which tended to remain within quite restricted areas. This is in contrast to the usual pattern of extinction events, wherein species with more widely spread populations typically fare better. A possible explanation is that trilobites remaining in deep water would be more shielded from the increased UV radiation associated with a GRB. Also supportive of this hypothesis is the fact that during the late Ordovician, burrowing bivalve species were less likely to go extinct than bivalves that lived on the surface.

A case has been made that the 774–775 carbon-14 spike was the result of a short GRB, though a very strong solar flare is another possibility.

GRB candidates in the Milky Way

No gamma-ray bursts from within our own galaxy, the Milky Way, have been observed, and the question of whether one has ever occurred remains unresolved. In light of evolving understanding of gamma-ray bursts and their progenitors, the scientific literature records a growing number of local, past, and future GRB candidates. Long duration GRBs are related to superluminous supernovae, or hypernovae, and most luminous blue variables (LBVs), and rapidly spinning Wolf–Rayet stars are thought to end their life cycles in core-collapse supernovae with an associated long-duration GRB. Knowledge of GRBs, however, is from metal-poor galaxies of former epochs of the universe's evolution, and it is impossible to directly extrapolate to encompass more evolved galaxies and stellar environments with a higher metallicity, such as the Milky Way.

WR 104: A nearby GRB candidate

A Wolf–Rayet star in WR 104, about 8,000 light-years (2,500 pc) away, is considered a nearby GRB candidate that could have destructive effects on terrestrial life. It is expected to explode in a core-collapse-supernova at some point within the next 500,000 years and it is possible that this explosion will create a GRB. If that happens, there is a small chance that Earth will be in the path of its gamma ray jet.

Social privilege

From Wikipedia, the free encyclopedia https://en.wikipedi...