Search This Blog

Wednesday, August 24, 2022

Oracle

From Wikipedia, the free encyclopedia

An oracle is a person or agency considered to provide wise and insightful counsel or prophetic predictions, most notably including precognition of the future, inspired by deities. As such, it is a form of divination.

Description

The word oracle comes from the Latin verb ōrāre, "to speak" and properly refers to the priest or priestess uttering the prediction. In extended use, oracle may also refer to the site of the oracle, and to the oracular utterances themselves, called khrēsmē 'tresme' (χρησμοί) in Greek.

Oracles were thought to be portals through which the gods spoke directly to people. In this sense, they were different from seers (manteis, μάντεις) who interpreted signs sent by the gods through bird signs, animal entrails, and other various methods.

The most important oracles of Greek antiquity were Pythia (priestess to Apollo at Delphi), and the oracle of Dione and Zeus at Dodona in Epirus. Other oracles of Apollo were located at Didyma and Mallus on the coast of Anatolia, at Corinth and Bassae in the Peloponnese, and at the islands of Delos and Aegina in the Aegean Sea.

The Sibylline Oracles are a collection of oracular utterances written in Greek hexameters ascribed to the Sibyls, prophetesses who uttered divine revelations in frenzied states.

Origins

Walter Burkert observes that "Frenzied women from whose lips the God speaks" are recorded in the Near East as in Mari in the second millennium BC and in Assyria in the first millennium BC. In Egypt, the goddess Wadjet (eye of the moon) was depicted as a snake-headed woman or a woman with two snake-heads. Her oracle was in the renowned temple in Per-Wadjet (Greek name Buto). The oracle of Wadjet may have been the source for the oracular tradition which spread from Egypt to Greece. Evans linked Wadjet with the "Minoan Snake Goddess".

At the oracle of Dodona she is called Diōnē (the feminine form of Diós, genitive of Zeus; or of dīos, "godly", literally "heavenly"), who represents the earth-fertile soil, probably the chief female goddess of the proto-Indo-European pantheon. Python, daughter (or son) of Gaia was the earth dragon of Delphi represented as a serpent and became the chthonic deity, enemy of Apollo, who slew her and possessed the oracle.

In classical antiquity

Pythia at Delphi

When the Prytanies' seat shines white in the island of Siphnos,
White-browed all the forum—need then of a true seer's wisdom—
Danger will threat from a wooden boat, and a herald in scarlet.

— The Pythoness, in The Histories, Herodotus.

The Pythia was the mouthpiece of the oracles of the god Apollo, and was also known as the Oracle of Delphi.

The Delphic Oracle exerted considerable influence throughout Hellenic culture. Distinctively, this woman was essentially the highest authority both civilly and religiously in male-dominated ancient Greece. She responded to the questions of citizens, foreigners, kings, and philosophers on issues of political impact, war, duty, crime, family, laws—even personal issues. The semi-Hellenic countries around the Greek world, such as Lydia, Caria, and even Egypt also respected her and came to Delphi as supplicants.

Croesus, king of Lydia beginning in 560 BC, tested the oracles of the world to discover which gave the most accurate prophecies. He sent out emissaries to seven sites who were all to ask the oracles on the same day what the king was doing at that very moment. Croesus proclaimed the oracle at Delphi to be the most accurate, who correctly reported that the king was making a lamb-and-tortoise stew, and so he graced her with a magnitude of precious gifts. He then consulted Delphi before attacking Persia, and according to Herodotus was advised: "If you cross the river, a great empire will be destroyed". Believing the response favourable, Croesus attacked, but it was his own empire that ultimately was destroyed by the Persians.

She allegedly also proclaimed that there was no man wiser than Socrates, to which Socrates said that, if so, this was because he alone was aware of his own ignorance. After this confrontation, Socrates dedicated his life to a search for knowledge that was one of the founding events of western philosophy. He claimed that she was "an essential guide to personal and state development." This oracle's last recorded response was given in 362 AD, to Julian the Apostate.

The oracle's powers were highly sought after and never doubted. Any inconsistencies between prophecies and events were dismissed as failure to correctly interpret the responses, not an error of the oracle. Very often prophecies were worded ambiguously, so as to cover all contingencies – especially so ex post facto. One famous such response to a query about participation in a military campaign was "You will go you will return never in war will you perish". This gives the recipient liberty to place a comma before or after the word "never", thus covering both possible outcomes. Another was the response to the Athenians when the vast army of king Xerxes I was approaching Athens with the intent of razing the city to the ground. "Only the wooden palisades may save you", answered the oracle, probably aware that there was sentiment for sailing to the safety of southern Italy and re-establishing Athens there. Some thought that it was a recommendation to fortify the Acropolis with a wooden fence and make a stand there. Others, Themistocles among them, said the oracle was clearly for fighting at sea, the metaphor intended to mean war ships. Others still insisted that their case was so hopeless that they should board every ship available and flee to Italy, where they would be safe beyond any doubt. In the event, variations of all three interpretations were attempted: some barricaded the Acropolis, the civilian population was evacuated over sea to nearby Salamis Island and to Troizen, and the war fleet fought victoriously at Salamis Bay. Should utter destruction have happened, it could always be claimed that the oracle had called for fleeing to Italy after all.

Sibyl at Cumae

Cumae was the first Greek colony on the mainland of Italy, near Naples, dating back to the 8th century BC. The sibylla or prophetess at Cumae became famous because of her proximity to Rome and the Sibylline Books acquired and consulted in emergencies by Rome wherein her prophecies were transcribed. The Cumaean Sibyl was called "Herophile" by Pausanias and Lactantius, "Deiphobe, daughter of Glaucus" by Virgil, as well as "Amaltheia", "Demophile", or "Taraxandra" by others. Sibyl's prophecies became popular with Christians as they were thought to predict the birth of Jesus Christ.

Sibyl at Erythrae

Erythrae near Ionia in Asia Minor was home to a prophetess.

Oracle at Didyma

The ruins of the Temple of Apollo at Didyma

Didyma near Ionia in Asia Minor in the domain of the famous city of Miletus.

Oracle at Dodona

Dodona in northwestern Greece was another oracle devoted to the Mother Goddess identified at other sites with Rhea or Gaia, but here called Dione. The shrine of Dodona, set in a grove of oak trees, was the oldest Hellenic oracle, according to the fifth-century historian Herodotus, and dated from pre-Hellenic times, perhaps as early as the second millennium BC, when the tradition may have spread from Egypt. By the time of Herodotus, Zeus had displaced the Mother Goddess, she had been assimilated to Aphrodite, and the worship of the deified hero Heracles had been added. Dodona became the second most important oracle in ancient Greece, after Delphi. At Dodona, Zeus was worshipped as Zeus Naios or Naos (god of springs Naiads, from a spring under the oaks), or as Zeus Bouleos (chancellor). Priestesses and priests interpreted the rustling of the leaves of the oak trees by the wind to determine the correct actions to be taken.

Oracle at Trophonius

Trophonius was an oracle at Lebadea of Boeotia devoted to the chthonian Zeus Trophonius. Trophonius is derived from the Greek word "trepho" (nourish) and he was a Greek hero, or demon or god. Demeter-Europa was his nurse. Europa (in Greek: broad-eyes) was a Phoenician princess whom Zeus, having transformed himself into a white bull, abducted and carried to Creta, and is equated with Astarte as a moon goddess by ancient sources. Some scholars connect Astarte with the Minoan snake goddess, whose cult as Aphrodite spread from Creta to Greece.

Oracle at Menestheus

Near the Menestheus's port or Menesthei Portus (Greek: Μενεσθέως λιμήν), modern El Puerto de Santa María, Spain, was the Oracle of Menestheus (Greek: Μαντεῖον τοῦ Μενεσθέως), to whom also the inhabitants of Gades offered sacrifices.

Oracle at the Ikaros island in the Persian Gulf

At the Ikaros island in the Persian Gulf (modern Failaka Island in Kuwait), there was an oracle of Artemis Tauropolus.

Oracle at Claros

At Claros, there was the oracle of Apollo Clarius.

Oracle at Ptoion

At Ptoion, there was an oracle of Ptoios and later of Apollo.

Oracle at Gryneium

At Gryneium, there was a sanctuary of Apollo with an ancient oracle.

Oracle of Zeus Ammon at Siwa and Aphytis

The oracle of Zeus Ammon at Siwa Oasis was so famous that Alexander the Great visited it when he conquered Egypt.

The oracle of Zeus Ammon at Aphytis in Chalkidiki.

In other cultures

The term "oracle" is also applied in modern English to parallel institutions of divination in other cultures. Specifically, it is used in the context of Christianity for the concept of divine revelation, and in the context of Judaism for the Urim and Thummim breastplate, and in general any utterance considered prophetic.

Celtic polytheism

In Celtic polytheism, divination was performed by the priestly caste, either the druids or the vates. This is reflected in the role of "seers" in Dark Age Wales (dryw) and Ireland (fáith).

China

Oracle bone of the Shang dynasty, ancient China

In China, oracle bones were used for divination in the late Shang dynasty, (c. 1600–1046 BC). Diviners applied heat to these bones, usually ox scapulae or tortoise plastrons, and interpreted the resulting cracks.

A different divining method, using the stalks of the yarrow plant, was practiced in the subsequent Zhou dynasty (1046–256 BC). Around the late 9th century BC, the divination system was recorded in the I Ching, or "Book of Changes", a collection of linear signs used as oracles. In addition to its oracular power, the I Ching has had a major influence on the philosophy, literature and statecraft of China since the Zhou period.

Hawaii

In Hawaii, oracles were found at certain heiau, Hawaiian temples. These oracles were found in towers covered in white kapa cloth made from plant fibres. In here, priests received the will of gods. These towers were called 'Anu'u. An example of this can be found at Ahu'ena heiau in Kona.

India and Nepal

In ancient India, the oracle was known as akashawani or Ashareera vani (a voice without body or unseen) or asariri (Tamil), literally meaning "voice from the sky" and was related to the message of a god. Oracles played key roles in many of the major incidents of the epics Mahabharata and Ramayana. An example is that Kamsa (or Kansa), the evil uncle of Krishna, was informed by an oracle that the eighth son of his sister Devaki would kill him. The opening verse of the Tiruvalluva Maalai, a medieval Tamil anthology usually dated by modern scholars to between c. 7th and 10th centuries CE, is attributed to an asariri or oracle. However, there are no references in any Indian literature of the oracle being a specific person.

Contemporarily, Theyyam or "theiyam" in Malayalam - a south Indian language - the process by which a devotee invites a Hindu god or goddess to use his or her body as a medium or channel and answer other devotees' questions, still happens. The same is called "arulvaakku" or "arulvaak" in Tamil, another south Indian language - Adhiparasakthi Siddhar Peetam is famous for arulvakku in Tamil Nadu. The people in and around Mangalore in Karnataka call the same, Buta Kola, "paathri" or "darshin"; in other parts of Karnataka, it is known by various names such as, "prashnaavali", "vaagdaana", "asei", "aashirvachana" and so on. In Nepal it is known as, "Devta ka dhaamee" or "jhaakri".

In English, the closest translation for these is, "oracle."

Nigeria

The Igbo people of southeastern Nigeria in Africa have a long tradition of using oracles. In Igbo villages, oracles were usually female priestesses to a particular deity, usually dwelling in a cave or other secluded location away from urban areas, and, much as the oracles of ancient Greece, would deliver prophecies in an ecstatic state to visitors seeking advice. Two of their ancient oracles became especially famous during the pre-colonial period: the Agbala oracle at Awka and the Chukwu oracle at Arochukwu. Although the vast majority of Igbos today are Christian, many of them still use oracles.

Among the related Yoruba peoples of the same country, the Babalawos (and their female counterparts, the Iyanifas) serve collectively as the principal aspects of the tribe's world-famous Ifa divination system. Due to this, they customarily officiate at a great many of its traditional and religious ceremonies.

Norse mythology

In Norse mythology, Odin took the severed head of the god Mimir to Asgard for consultation as an oracle. The Havamal and other sources relate the sacrifice of Odin for the oracular runes whereby he lost an eye (external sight) and won wisdom (internal sight; insight).

Pre-Columbian Americas

In the migration myth of the Mexitin, i.e., the early Aztecs, a mummy-bundle (perhaps an effigy) carried by four priests directed the trek away from the cave of origins by giving oracles. An oracle led to the foundation of Mexico-Tenochtitlan. The Yucatec Mayas knew oracle priests or chilanes, literally 'mouthpieces' of the deity. Their written repositories of traditional knowledge, the Books of Chilam Balam, were all ascribed to one famous oracle priest who had correctly predicted the coming of the Spaniards and its associated disasters.

Tibet

In Tibet, oracles (Chinese: 护法) have played, and continue to play, an important part in religion and government. The word "oracle" is used by Tibetans to refer to the spirit that enters those men and women who act as media between the natural and the spiritual realms. The media are, therefore, known as kuten, which literally means, "the physical basis". In the 29-Article Ordinance for the More Effective Governing of Tibet (Chinese: 欽定藏內善後章程二十九條), an imperial decree published in 1793 by the Qianlong Emperor, article 1 states that the creation of Golden Urn is to ensure prosperity of Gelug, and to eliminate cheating and corruption in the selection process performed by oracles.

The Dalai Lama, who lives in exile in northern India, still consults an oracle known as the Nechung Oracle, which is considered the official state oracle of the government of Tibet. The Dalai Lama has according to centuries-old custom, consulted the Nechung Oracle during the new year festivities of Losar. Nechung and Gadhong are the primary oracles currently consulted; former oracles such as Karmashar and Darpoling are no longer active in exile. The Gadhong oracle has died leaving Nechung to be the only primary oracle. Another oracle the Dalai Lama consults is the Tenma Oracle, for which a young Tibetan woman by the name of Khandro La is the medium for the mountain goddesses Tseringma along with the other 11 goddesses. The Dalai Lama gives a complete description of the process of trance and spirit possession in his book Freedom in Exile. Dorje Shugden oracles were once consulted by the Dalai Lamas until the 14th Dalai Lama banned the practice, even though he consulted Dorje Shugden for advice to escape and was successful in it. Due to the ban, many of the abbots that were worshippers of Dorje Shugden have been forced to go against the Dalai Lama.

Cell damage

From Wikipedia, the free encyclopedia

Cell damage (also known as cell injury) is a variety of changes of stress that a cell suffers due to external as well as internal environmental changes. Amongst other causes, this can be due to physical, chemical, infectious, biological, nutritional or immunological factors. Cell damage can be reversible or irreversible. Depending on the extent of injury, the cellular response may be adaptive and where possible, homeostasis is restored. Cell death occurs when the severity of the injury exceeds the cell's ability to repair itself. Cell death is relative to both the length of exposure to a harmful stimulus and the severity of the damage caused. Cell death may occur by necrosis or apoptosis.

Causes

Targets

The most notable components of the cell that are targets of cell damage are the DNA and the cell membrane.

Types of damage

Some cell damage can be reversed once the stress is removed or if compensatory cellular changes occur. Full function may return to cells but in some cases, a degree of injury will remain.

Reversible

Cellular swelling

Cellular swelling (or cloudy swelling) may occur due to cellular hypoxia, which damages the sodium-potassium membrane pump; it is reversible when the cause is eliminated. Cellular swelling is the first manifestation of almost all forms of injury to cells. When it affects many cells in an organ, it causes some pallor, increased turgor, and increase in weight of the organ. On microscopic examination, small clear vacuoles may be seen within the cytoplasm; these represent distended and pinched-off segments of the endoplasmic reticulum. This pattern of non-lethal injury is sometimes called hydropic change or vacuolar degeneration. Hydropic degeneration is a severe form of cloudy swelling. It occurs with hypokalemia due to vomiting or diarrhea.

The ultrastructural changes of reversible cell injury include:

  • Blebbing
  • Blunting
  • distortion of microvilli
  • loosening of intercellular attachments
  • mitochondrial changes
  • dilation of the endoplasmic reticulum

Fatty change

The cell has been damaged and is unable to adequately metabolize fat. Small vacuoles of fat accumulate and become dispersed within cytoplasm. Mild fatty change may have no effect on cell function; however, more severe fatty change can impair cellular function. In the liver, the enlargement of hepatocytes due to fatty change may compress adjacent bile canaliculi, leading to cholestasis. Depending on the cause and severity of the lipid accumulation, fatty change is generally reversible. Fatty Change is also known as fatty degeneration, fatty metamorphosis, or fatty steatosis.

Irreversible

Necrosis

Necrosis is characterised by cytoplasmic swelling, irreversible damage to the plasma membrane, and organelle breakdown leading to cell death. The stages of cellular necrosis include pyknosis; clumping of chromosomes and shrinking of the nucleus of the cell, karyorrhexis; fragmentation of the nucleus and break up of the chromatin into unstructured granules, and karyolysis; dissolution of the cell nucleus. Cytosolic components that leak through the damaged plasma membrane into the extracellular space can incur an inflammatory response.

There are six types of necrosis:

  • Coagulative necrosis
  • Liquefactive necrosis
  • Caseous necrosis
  • Fat necrosis
  • Fibroid necrosis
  • Gangrenous necrosis

Apoptosis

Apoptosis is the programmed cell death of superfluous or potentially harmful cells in the body. It is an energy-dependent process mediated by proteolytic enzymes called caspases, which trigger cell death through the cleaving of specific proteins in the cytoplasm and nucleus. The dying cells shrink and condense into apoptotic bodies. The cell surface is altered so as to display properties that lead to rapid phagocytosis by macrophages or neighbouring cells. Unlike necrotic cell death, Neighbouring cells are not damaged by apoptosis as cytosolic products are safely isolated by membranes prior to undergoing phagocytosis. It is considered an important component of various bioprocesses including cell turnover, hormone-dependent atrophy, proper development and functioning of the immune and embryonic system, it also helps in chemical-induced cell death which is genetically mediated. There is some evidence that certain symptoms of "apoptosis" such as endonuclease activation can be spuriously induced without engaging a genetic cascade. It is also becoming clear that mitosis and apoptosis are toggled or linked in some way and that the balance achieved depends on signals received from appropriate growth or survival factors. There are research being conducted to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that controls cell cycle arrest and apoptosis. In the average adult between 50 and 70 billion cells die each day due to apoptosis. Inhibition of apoptosis can result in a number of cancers, autoimmune diseases, inflammatory diseases, and viral infections. Hyperactive apoptosis can lead to neurodegenerative diseases, hematologic diseases, and tissue damage.

Repair

When a cell is damaged the body will try to repair or replace the cell to continue normal functions. If a cell dies the body will remove it and replace it with another functioning cell, or fill the gap with connective tissue to provide structural support for the remaining cells. The motto of the repair process is to fill a gap caused by the damaged cells to regain structural continuity. Normal cells try to regenerate the damaged cells but this cannot always happen. Asexual reproduction is what repairs cells

Regeneration

Regeneration of parenchyma cells, or the functional cells, of an organism. The body can make more cells to replace the damaged cells keeping the organ or tissue intact and fully functional.

Replacement

When a cell cannot be regenerated the body will replace it with stromal connective tissue to maintain tissue/organ function. Stromal cells are the cells that support the parenchymal cells in any organ. Fibroblasts, immune cells, pericytes, and inflammatory cells are the most common types of stromal cells.

Biochemical changes in cellular injury

ATP (adenosine triphosphate) depletion is a common biological alteration that occurs with cellular injury. This change can happen despite the inciting agent of the cell damage. A reduction in intracellular ATP can have a number of functional and morphologic consequences during cell injury. These effects include:

  • Failure of the ATP dependent pumps (Na+
    /K+
    pump and Ca2+
    pump), resulting in a net influx of Na+
    and Ca2+
    ions and osmotic swelling.
  • ATP-depleted cells begin to undertake anaerobic metabolism to derive energy from glycogen which is known as 'glycogenolysis'.
  • A consequent decrease in the intracellular pH of the cell arises, which mediates harmful enzymatic processes.
  • Early clumping of nuclear chromatin then occurs, known as 'pyknosis', and leads to eventual cell death.

DNA damage and repair

DNA damage

DNA damage (or RNA damage in the case of some virus genomes) appears to be a fundamental problem for life. As noted by Haynes, the subunits of DNA are not endowed with any peculiar kind of quantum mechanical stability, and thus DNA is vulnerable to all the "chemical horrors" that might befall any such molecule in a warm aqueous medium. These chemical horrors are DNA damages that include various types of modification of the DNA bases, single- and double-strand breaks, and inter-strand cross-links (see DNA damage (naturally occurring). DNA damages are distinct from mutations although both are errors in the DNA. Whereas DNA damages are abnormal chemical and structural alterations, mutations ordinarily involve the normal four bases in new arrangements. Mutations can be replicated, and thus inherited when the DNA replicates. In contrast, DNA damages are altered structures that cannot, themselves, be replicated.

Several different repair processes can remove DNA damages (see chart in DNA repair). However, those DNA damages that remain un-repaired can have detrimental consequences. DNA damages may block replication or gene transcription. These blockages can lead to cell death. In multicellular organisms, cell death in response to DNA damage may occur by a programmed process, apoptosis. Alternatively, when a DNA polymerase replicates a template strand containing a damaged site, it may inaccurately bypass the damage and, as a consequence, introduce an incorrect base leading to a mutation. Experimentally, mutation rates increase substantially in cells defective in DNA mismatch repair or in Homologous recombinational repair (HRR).

In both prokaryotes and eukaryotes, DNA genomes are vulnerable to attack by reactive chemicals naturally produced in the intracellular environment and by agents from external sources. An important internal source of DNA damage in both prokaryotes and eukaryotes is reactive oxygen species (ROS) formed as byproducts of normal aerobic metabolism. For eukaryotes, oxidative reactions are a major source of DNA damage (see DNA damage (naturally occurring) and Sedelnikova et al.). In humans, about 10,000 oxidative DNA damages occur per cell per day. In the rat, which has a higher metabolic rate than humans, about 100,000 oxidative DNA damages occur per cell per day. In aerobically growing bacteria, ROS appear to be a major source of DNA damage, as indicated by the observation that 89% of spontaneously occurring base substitution mutations are caused by introduction of ROS-induced single-strand damages followed by error-prone replication past these damages. Oxidative DNA damages usually involve only one of the DNA strands at any damaged site, but about 1–2% of damages involve both strands. The double-strand damages include double-strand breaks (DSBs) and inter-strand crosslinks. For humans, the estimated average number of endogenous DNA DSBs per cell occurring at each cell generation is about 50. This level of formation of DSBs likely reflects the natural level of damages caused, in large part, by ROS produced by active metabolism.

Repair of DNA damages

Five major pathways are employed in repairing different types of DNA damages. These five pathways are nucleotide excision repair, base excision repair, mismatch repair, non-homologous end-joining and homologous recombinational repair (HRR) (see chart in DNA repair) and reference. Only HRR can accurately repair double-strand damages, such as DSBs. The HRR pathway requires that a second homologous chromosome be available to allow recovery of the information lost by the first chromosome due to the double-strand damage.

DNA damage appears to play a key role in mammalian aging, and an adequate level of DNA repair promotes longevity (see DNA damage theory of aging and reference). In addition, an increased incidence of DNA damage and/or reduced DNA repair cause an increased risk of cancer (see Cancer, Carcinogenesis and Neoplasm) and reference). Furthermore, the ability of HRR to accurately and efficiently repair double-strand DNA damages likely played a key role in the evolution of sexual reproduction (see Evolution of sexual reproduction and reference). In extant eukaryotes, HRR during meiosis provides the major benefit of maintaining fertility.

Microgrid

From Wikipedia, the free encyclopedia

A microgrid is a local electrical grid with defined electrical boundaries, acting as a single and controllable entity. It is able to operate in grid-connected and in island mode. A 'Stand-alone microgrid' or 'isolated microgrid' only operates off-the-grid and cannot be connected to a wider electric power system.

A grid-connected microgrid normally operates connected to and synchronous with the traditional wide area synchronous grid (macrogrid), but is able to disconnect from the interconnected grid and to function autonomously in "island mode" as technical or economic conditions dictate. In this way, they improve the security of supply within the microgrid cell, and can supply emergency power, changing between island and connected modes. This kind of grids are called 'islandable microgrids'.

A stand-alone microgrid has its own sources of electricity, supplemented with an energy storage system. They are used where power transmission and distribution from a major centralized energy source is too far and costly to operate. They offer an option for rural electrification in remote areas and on smaller geographical islands. A stand-alone microgrid can effectively integrate various sources of distributed generation (DG), especially renewable energy sources (RES).

Control and protection are difficulties to microgrids, as all ancillary services for system stabilization must be generated within the microgrid and low short-circuit levels can be challenging for selective operation of the protection systems. An important feature is also to provide multiple useful energy needs, such as heating and cooling besides electricity, since this allows energy carrier substitution and increased energy efficiency due to waste heat utilization for heating, domestic hot water, and cooling purposes (cross sectoral energy usage).

Definitions

The United States Department of Energy Microgrid Exchange Group defines a microgrid as a group of interconnected loads and distributed energy resources (DERs) within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both connected or island-mode.

The Berkeley Lab defines: "A microgrid consists of energy generation and energy storage that can power a building, campus, or community when not connected to the electric grid, e.g. in the event of a disaster." A microgrid that can be disconnected from the utility grid (at the 'point of common coupling' or PCC) is called an 'islandable microgrid'.

A EU research project describes a microgrid as comprising Low-Voltage (LV) distribution systems with distributed energy resources (DERs) (microturbines, fuel cells, photovoltaics (PV), etc.), storage devices (batteries, flywheels) energy storage system and flexible loads. Such systems can operate either connected or disconnected from the main grid. The operation of microsources in the network can provide benefits to the overall system performance, if managed and coordinated efficiently.

Electropedia defines a microgrid as a group of interconnected loads and distributed energy resources with defined electrical boundaries, which form a local electric power system at distribution voltage levels, meaning both low and medium voltage up to 35 kV. This cluster of associated consumer and producer nodes acts as a single controllable entity and is able to operate in either grid-connected or island mode.

A Stand-alone microgrid or isolated microgrid, sometimes called an 'island grid', only operates off-the-grid and cannot be connected to a wider electric power system. They are usually designed for geographical islands or for rural electrification.

Types of microgrids

A typical scheme of an electric based microgrid with renewable energy resources in grid-connected mode

Campus environment/institutional microgrids

The focus of campus microgrids is aggregating existing on-site generation to support multiple loads located in a tight geographical area where an owner can easily manage them.

Community microgrids

Community microgrids can serve thousands of customers and support the penetration of local energy (electricity, heating, and cooling). In a community microgrid, some houses may have some renewable sources that can supply their demand as well as that of their neighbors within the same community. The community microgrid may also have a centralized or several distributed energy storages. Such microgrids can be in the form of an ac and dc microgrid coupled together through a bi-directional power electronic converter.

Remote off-grid microgrids

These microgrids never connect to the macrogrid and instead operate in an island mode at all times because of economic issues or geographical position. Typically, an "off-grid" microgrid is built in areas that are far distant from any transmission and distribution infrastructure and, therefore, have no connection to the utility grid. Studies have demonstrated that operating a remote area or islands' off-grid microgrids, that are dominated by renewable sources, will reduce the levelized cost of electricity production over the life of such microgrid projects.

Large remote areas may be supplied by several independent microgrids, each with a different owner (operator). Although such microgrids are traditionally designed to be energy self-sufficient, intermittent renewable sources and their unexpected and sharp variations can cause unexpected power shortfall or excessive generation in those microgrids. This will immediately cause unacceptable voltage or frequency deviation in the microgrids. To remedy such situations, it is possible to interconnect such microgrids provisionally to a suitable neighboring microgrid to exchange power and improve the voltage and frequency deviations. This can be achieved through a power electronics-based switch after a proper synchronization or a back to back connection of two power electronic converters and after confirming the stability of the new system. The determination of a need to interconnect neighboring microgrids and finding the suitable microgrid to couple with can be achieved through optimization or decision making approaches.

Military base microgrids

These microgrids are being actively deployed with focus on both physical and cyber security for military facilities in order to assure reliable power without relying on the macrogrid.

Commercial and industrial (C&I) microgrids

These types of microgrids are maturing quickly in North America and eastern Asia; however, the lack of well-known standards for these types of microgrids limits them globally. Main reasons for the installation of an industrial microgrid are power supply security and its reliability. There are many manufacturing processes in which an interruption of the power supply may cause high revenue losses and long start-up time. Industrial microgrids can be designed to supply circular economy (near-)zero-emission industrial processes, and can integrate combined heat and power (CHP) generation, being fed by both renewable sources and waste processing; energy storage can be additionally used to optimize the operations of these sub-systems.

Topologies of microgrids

Architectures are needed to manage the flow of energy from different types of sources into the electrical grid. Thus, the microgrid can be classified into three topologies:

AC microgrid

Power sources with AC output are interfaced to AC bus through AC/AC converter which will transform the AC variable frequency and voltage to AC waveform with another frequency at another voltage. Whilst power sources with DC output use DC/AC converters for the connection to the AC bus.

DC microgrid

In DC microgrid topology, power sources with DC output are connected to DC bus directly or by DC/DC converters. On the other hand, power sources with AC output are connected to the DC bus through AC/DC converter.

Hybrid microgrid

The hybrid microgrid has topology for both power source AC and DC output. In addition, AC and DC buses are connected to each other through a bidirectional converter, allowing power to flow in both directions between the two buses.

Basic components in microgrids

The Solar Settlement, a sustainable housing community project in Freiburg, Germany.

Local generation

A microgrid presents various types of generation sources that feed electricity, heating, and cooling to the user. These sources are divided into two major groups – thermal energy sources (e.g,. natural gas or biogas generators or micro combined heat and power) and renewable generation sources (e.g. wind turbines and solar).

Consumption

In a microgrid, consumption simply refers to elements that consume electricity, heat, and cooling, which range from single devices to the lighting and heating systems of buildings, commercial centers, etc. In the case of controllable loads, electricity consumption can be modified according to the demands of the network.

Energy storage

In microgrid, energy storage is able to perform multiple functions, such as ensuring power quality, including frequency and voltage regulation, smoothing the output of renewable energy sources, providing backup power for the system and playing a crucial role in cost optimization. It includes all of chemical, electrical, pressure, gravitational, flywheel, and heat storage technologies. When multiple energy storages with various capacities are available in a microgrid, it is preferred to coordinate their charging and discharging such that a smaller energy storage does not discharge faster than those with larger capacities. Likewise, it is preferred a smaller one does not get fully charged before those with larger capacities. This can be achieved under a coordinated control of energy storages based on their state of charge. If multiple energy storage systems (possibly working on different technologies) are used and they are controlled by a unique supervising unit (an energy management system - EMS), a hierarchical control based on a master/slaves architecture can ensure best operations, particularly in the islanded mode.

Point of common coupling (PCC)

This is the point in the electric circuit where a microgrid is connected to a main grid. Microgrids that do not have a PCC are called isolated microgrids which are usually present in remote sites (e.g., remote communities or remote industrial sites) where an interconnection with the main grid is not feasible due to either technical or economic constraints.

Advantages and challenges of microgrids

Advantages

A microgrid is capable of operating in grid-connected and stand-alone modes and of handling the transition between the two. In the grid-connected mode, ancillary services can be provided by trading activity between the microgrid and the main grid. Other possible revenue streams exist. In the islanded mode, the real and reactive power generated within the microgrid, including that provided by the energy storage system, should be in balance with the demand of local loads. Microgrids offer an option to balance the need to reduce carbon emissions with continuing to provide reliable electric energy in periods of time when renewable sources of power are not available. Microgrids also offer the security of being hardened from severe weather and natural disasters by not having large assets and miles of above-ground wires and other electric infrastructure that need to be maintained or repaired following such events.

A microgrid may transition between these two modes because of scheduled maintenance, degraded power quality or a shortage in the host grid, faults in the local grid, or for economical reasons. By means of modifying energy flow through microgrid components, microgrids facilitate the integration of renewable energy, such as photovoltaic, wind and fuel cell generations, without requiring re-design of the national distribution system. Modern optimization methods can also be incorporated into the microgrid energy management system to improve efficiency, economics, and resiliency.

Challenges

Microgrids, and the integration of DER units in general, introduce a number of operational challenges that need to be addressed in the design of control and protection systems, in order to ensure that the present levels of reliability are not significantly affected, and the potential benefits of Distributed Generation (DG) units are fully harnessed. Some of these challenges arise from assumptions typically applied to conventional distribution systems that are no longer valid, while others are the result of stability issues formerly observed only at a transmission system level. The most relevant challenges in microgrid protection and control include:

  • Bidirectional power flows: The presence of distributed generation (DG) units in the network at low voltage levels can cause reverse power flows that may lead to complications in protection coordination, undesirable power flow patterns, fault current distribution, and voltage control.
  • Stability issues: Interactions between control system of DG units may create local oscillations, requiring a thorough small-disturbance stability analysis. Moreover, transition activities between the grid-connected and islanding (stand-alone) modes of operation in a microgrid can create transient instability. Recent studies have shown that direct-current (DC) microgrid interface can result in a significantly simpler control structure, more energy efficient distribution and higher current carrying capacity for the same line ratings.
  • Modeling: Many characteristics of traditional schemes such as the prevalence of three-phase balanced conditions, primarily inductive transmission lines, and constant-power loads, do not necessarily hold true for microgrids, and consequently, models need to be revised.
  • Low inertia: Microgrids exhibit a low-inertia characteristic that makes them different to bulk power systems, where a large number of synchronous generators ensures a relatively large inertia. This phenomenon is more evident if there is a significant proportion of power electronic-interfaced DG units in the microgrid. The low inertia in the system can lead to severe frequency deviations in island mode operation if a proper control mechanism is not implemented. Synchronous generators run at the same frequency as the grid, thus providing a natural damping effect on sudden frequency variations. Synchronverters are inverters which mimic synchronous generators to provide frequency control. Other options include controlling battery energy storage or a flywheel to balance the frequency.
  • Uncertainty: The operation of microgrids involves addressing much uncertainty, which is something the economical and reliable operation of microgrids relies on. Load profile and weather are two uncertainties that make this coordination more challenging in isolated microgrids, where the critical demand-supply balance and typically higher component failure rates require solving a strongly coupled problem over an extended time horizon. This uncertainty is higher than those in bulk power systems, due to the reduced number of loads and highly correlated variations of available energy resources (the averaging effect is much more limited).

Modelling tools

To plan and install microgrids correctly, engineering modelling is needed. Multiple simulation tools and optimization tools exist to model the economic and electric effects of microgrids. A widely used economic optimization tool is the Distributed Energy Resources Customer Adoption Model (DER-CAM) from Lawrence Berkeley National Laboratory. Another is Homer Energy, originally designed by the National Renewable Energy Laboratory. There are also some power flow and electrical design tools guiding microgrid developers. The Pacific Northwest National Laboratory designed the publicly available GridLAB-D tool and the Electric Power Research Institute (EPRI) designed OpenDSS. A European tool that can be used for electrical, cooling, heating, and process heat demand simulation is EnergyPLAN from Aalborg University in Denmark. The open source grid planning tool OnSSET has been deployed to investigate microgrids using a three‑tier analysis beginning with settlement archetypes (case‑studied using Bolivia).

Microgrid control

Hierarchical Control

In regards to the architecture of microgrid control, or any control problem, there are two different approaches that can be identified: centralized and decentralized. A fully centralized control relies on a large amount of information transmittance between involving units before a decision is made at a single point. Implementation is difficult since interconnected power systems usually cover extended geographic locations and involve an enormous number of units. On the other hand, in a fully decentralized control, each unit is controlled by its local controller without knowing the situation of others. A compromise between those two extreme control schemes can be achieved by means of a hierarchical control scheme consisting of three control levels: primary, secondary, and tertiary.

Primary control

The primary control is designed to satisfy the following requirements:

  • To stabilize the voltage and frequency
  • To offer plug and play capability for DERs and properly share the active and reactive power among them, preferably, without any communication links
  • To mitigate circulating currents that can cause over-current phenomenon in the power electronic devices

The primary control provides the setpoints for a lower controller which are the voltage and current control loops of DERs. These inner control loops are commonly referred to as zero-level control.

Secondary control

Secondary control has typically seconds to minutes sampling time (i.e. slower than the previous one) which justifies the decoupled dynamics of the primary and the secondary control loops and facilitates their individual designs. The setpoint of primary control is given by secondary control in which, as a centralized controller, it restores the microgrid voltage and frequency and compensates for the deviations caused by variations of loads or renewable sources. The secondary control can also be designed to satisfy the power quality requirements, e.g., voltage balancing at critical buses.

Tertiary control

Tertiary control is the last (and the slowest) control level, which considers economical concerns in the optimal operation of the microgrid (sampling time is from minutes to hours), and manages the power flow between microgrid and main grid. This level often involves the prediction of weather, grid tariff, and loads in the next hours or day to design a generator dispatch plan that achieves economic savings. More advanced techniques can also provide end to end control of a microgrid using machine learning techniques such as deep reinforcement learning.

In case of emergencies such as blackouts, tertiary control can manage a group of interconnected microgrids to form what is called "microgrid clustering", acting as a virtual power plant to continue supplying critical loads. During these situations the central controller should select one of the microgrids to be the slack (i.e. master) and the rest as PV and load buses according to a predefined algorithm and the existing conditions of the system (i.e. demand and generation). In this case, the control should be real time or at least at a high sampling rate.

IEEE 2030.7

A less utility-influenced controller framework is that from the Institute of Electrical and Electronics Engineers, the IEEE 2030.7. The concept relies on 4 blocks: a) Device level control (e.g. voltage and frequency control), b) Local area control (e.g. data communication), c) Supervisory (software) control (e.g. forward looking dispatch optimization of generation and load resources), and d) Grid layers (e.g. communication with utility).

Elementary control

A wide variety of complex control algorithms exist, making it difficult for small microgrids and residential distributed energy resource (DER) users to implement energy management and control systems. Communication upgrades and data information systems can be expensive. Some projects try to simplify and reduce the expense of control via off-the-shelf products (e.g. using a Raspberry Pi).

Examples

Hajjah and Lahj, Yemen

The UNDP project “Enhanced Rural Resilience in Yemen” (ERRY) uses community-owned solar microgrids. It cuts energy costs to just 2 cents per hour (whereas diesel-generated electricity costs 42 cents per hour). It won the Ashden Awards for Humanitarian Energy in 2020.

Île d'Yeu

A two year pilot program, called Harmon’Yeu, was initiated in the Spring of 2020 to interconnect 23 houses in the Ker Pissot neighborhood and surrounding areas with a microgrid that was automated as a smart grid with software from Engie. Sixty-four solar panels with a peak capacity of 23.7 kW were installed on five houses and a battery with a storage capacity of 15 kWh was installed on one house. Six houses store excess solar energy in their hot water heaters. A dynamic system apportions the energy provided by the solar panels and stored in the battery and hot water heaters to the system of 23 houses. The smart grid software dynamically updates energy supply and demand in 5 minute intervals, deciding whether to pull energy from the battery or from the panels and when to store it in the hot water heaters. This pilot program was the first such project in France.

Les Anglais, Haiti

A wirelessly managed microgrid is deployed in rural Les Anglais, Haiti. The system consists of a three-tiered architecture with a cloud-based monitoring and control service, a local embedded gateway infrastructure and a mesh network of wireless smart meters deployed at fifty-two buildings.

Non-technical loss (NTL) represents a major challenge when providing reliable electrical service in developing countries, where it often accounts for 11-15% of total generation capacity. An extensive data-driven simulation on seventy-two days of wireless meter data from a 430-home microgrid deployed in Les Anglais investigated how to distinguish NTL from the total power losses, aiding in energy theft detection.

Mpeketoni, Kenya

The Mpeketoni Electricity Project, a community-based diesel-powered micro-grid system, was set up in rural Kenya near Mpeketoni. Due to the installment of these microgrids, Mpeketoni has seen a large growth in its infrastructure. Such growth includes increased productivity per worker, at values of 100% to 200%, and an income level increase of 20–70% depending on the product.

Stone Edge Farm Winery

A micro-turbine, fuel-cell, multiple battery, hydrogen electrolyzer, and PV enabled winery in Sonoma, California.

Spinal cord injury

From Wikipedia, the free encyclopedia
 
Spinal cord injury
Cervical Spine MRI (T2W).jpg
MRI of fractured and dislocated neck vertebra that is compressing the spinal cord
SpecialtyNeurosurgery
TypesComplete, incomplete
Diagnostic methodBased on symptoms, medical imaging
TreatmentSpinal motion restriction, intravenous fluids, vasopressors
Frequencyc. 12,000 per year (USA)

A spinal cord injury (SCI) is damage to the spinal cord that causes temporary or permanent changes in its function. Symptoms may include loss of muscle function, sensation, or autonomic function in the parts of the body served by the spinal cord below the level of the injury. Injury can occur at any level of the spinal cord and can be complete, with a total loss of sensation and muscle function at lower sacral segments, or incomplete, meaning some nervous signals are able to travel past the injured area of the cord up to the Sacral S4-5 spinal cord segments. Depending on the location and severity of damage, the symptoms vary, from numbness to paralysis, including bowel or bladder incontinence. Long term outcomes also range widely, from full recovery to permanent tetraplegia (also called quadriplegia) or paraplegia. Complications can include muscle atrophy, loss of voluntary motor control, spasticity, pressure sores, infections, and breathing problems.

In the majority of cases the damage results from physical trauma such as car accidents, gunshot wounds, falls, or sports injuries, but it can also result from nontraumatic causes such as infection, insufficient blood flow, and tumors. Just over half of injuries affect the cervical spine, while 15% occur in each of the thoracic spine, border between the thoracic and lumbar spine, and lumbar spine alone. Diagnosis is typically based on symptoms and medical imaging.

Efforts to prevent SCI include individual measures such as using safety equipment, societal measures such as safety regulations in sports and traffic, and improvements to equipment. Treatment starts with restricting further motion of the spine and maintaining adequate blood pressure. Corticosteroids have not been found to be useful. Other interventions vary depending on the location and extent of the injury, from bed rest to surgery. In many cases, spinal cord injuries require long-term physical and occupational therapy, especially if it interferes with activities of daily living.

In the United States, about 12,000 people a year survive a spinal cord injury. The most commonly affected group are young adult males. SCI has seen great improvements in its care since the middle of the 20th century. Research into potential treatments includes stem cell implantation, hypothermia, engineered materials for tissue support, epidural spinal stimulation, and wearable robotic exoskeletons.

Classification

A human spinal column A person with dermatomes mapped out on the skin
The effects of injury depend on the level along the spinal column (left). A dermatome is an area of the skin that sends sensory messages to a specific spinal nerve (right).
diagram of vertebrae and spinal nerves
Spinal nerves exit the spinal cord between each pair of vertebrae.

Spinal cord injury can be traumatic or nontraumatic, and can be classified into three types based on cause: mechanical forces, toxic, and ischemic (from lack of blood flow). The damage can also be divided into primary and secondary injury: the cell death that occurs immediately in the original injury, and biochemical cascades that are initiated by the original insult and cause further tissue damage. These secondary injury pathways include the ischemic cascade, inflammation, swelling, cell suicide, and neurotransmitter imbalances. They can take place for minutes or weeks following the injury.

At each level of the spinal column, spinal nerves branch off from either side of the spinal cord and exit between a pair of vertebrae, to innervate a specific part of the body. The area of skin innervated by a specific spinal nerve is called a dermatome, and the group of muscles innervated by a single spinal nerve is called a myotome. The part of the spinal cord that was damaged corresponds to the spinal nerves at that level and below. Injuries can be cervical 1–8 (C1–C8), thoracic 1–12 (T1–T12), lumbar 1–5 (L1–L5), or sacral (S1–S5). A person's level of injury is defined as the lowest level of full sensation and function. Paraplegia occurs when the legs are affected by the spinal cord damage (in thoracic, lumbar, or sacral injuries), and tetraplegia occurs when all four limbs are affected (cervical damage).

SCI is also classified by the degree of impairment. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI), published by the American Spinal Injury Association (ASIA), is widely used to document sensory and motor impairments following SCI. It is based on neurological responses, touch and pinprick sensations tested in each dermatome, and strength of the muscles that control key motions on both sides of the body. Muscle strength is scored on a scale of 0–5 according to the table on the right, and sensation is graded on a scale of 0–2: 0 is no sensation, 1 is altered or decreased sensation, and 2 is full sensation. Each side of the body is graded independently.

Muscle strength ASIA Impairment Scale for classifying spinal cord injury
Grade Muscle function Grade Description
0 No muscle contraction A Complete injury. No motor or sensory function is preserved in the sacral segments S4 or S5.
1 Muscle flickers B Sensory incomplete. Sensory but not motor function is preserved below the level of injury, including the sacral segments.
2 Full range of motion, gravity eliminated C Motor incomplete. Motor function is preserved below the level of injury, and more than half of muscles tested below the level of injury have a muscle grade less than 3 (see muscle strength scores, left).
3 Full range of motion, against gravity D Motor incomplete. Motor function is preserved below the level of injury and at least half of the key muscles below the neurological level have a muscle grade of 3 or more.
4 Full range of motion against resistance E Normal. No motor or sensory deficits, but deficits existed in the past.
5 Normal strength

Complete and incomplete injuries

Level and completeness of injuries

Complete Incomplete
Tetraplegia 18.3% 34.1%
Paraplegia 23.0% 18.5%

In a "complete" spinal injury, all functions below the injured area are lost, whether or not the spinal cord is severed. An "incomplete" spinal cord injury involves preservation of motor or sensory function below the level of injury in the spinal cord. To be classed as incomplete, there must be some preservation of sensation or motion in the areas innervated by S4 to S5, e.g. voluntary external anal sphincter contraction. The nerves in this area are connected to the very lowest region of the spinal cord, and retaining sensation and function in these parts of the body indicates that the spinal cord is only partially damaged. Incomplete injury by definition includes a phenomenon known as sacral sparing: some degree of sensation is preserved in the sacral dermatomes, even though sensation may be more impaired in other, higher dermatomes below the level of the lesion. Sacral sparing has been attributed to the fact that the sacral spinal pathways are not as likely as the other spinal pathways to become compressed after injury due to the lamination of fibers within the spinal cord.

Spinal cord injury without radiographic abnormality

Spinal cord injury without radiographic abnormality exists when SCI is present but there is no evidence of spinal column injury on radiographs. Spinal column injury is trauma that causes fracture of the bone or instability of the ligaments in the spine; this can coexist with or cause injury to the spinal cord, but each injury can occur without the other. Abnormalities might show up on magnetic resonance imaging (MRI), but the term was coined before MRI was in common use.

Central cord syndrome

Incomplete lesions of the spinal cord: Central cord syndrome (top), Anterior cord syndrome (middle), and Brown-Séquard syndrome (bottom).

Central cord syndrome, almost always resulting from damage to the cervical spinal cord, is characterized by weakness in the arms with relative sparing of the legs, and spared sensation in regions served by the sacral segments. There is loss of sensation of pain, temperature, light touch, and pressure below the level of injury. The spinal tracts that serve the arms are more affected due to their central location in the spinal cord, while the corticospinal fibers destined for the legs are spared due to their more external location. The most common of the incomplete SCI syndromes, central cord syndrome usually results from neck hyperextension in older people with spinal stenosis. In younger people, it most commonly results from neck flexion. The most common causes are falls and vehicle accidents; however other possible causes include spinal stenosis and impingement on the spinal cord by a tumor or vertebral disk.

Anterior cord syndrome

Anterior cord syndrome, due to damage to the front portion of the spinal cord or reduction in the blood supply from the anterior spinal artery, can be caused by fractures or dislocations of vertebrae or herniated disks. Below the level of injury, motor function, pain sensation, and temperature sensation are lost, while sense of touch and proprioception (sense of position in space) remain intact. These differences are due to the relative locations of the spinal tracts responsible for each type of function.

Brown-Séquard syndrome

Brown-Séquard syndrome occurs when the spinal cord is injured on one side much more than the other. It is rare for the spinal cord to be truly hemisected (severed on one side), but partial lesions due to penetrating wounds (such as gunshot or knife wounds) or fractured vertebrae or tumors are common. On the ipsilateral side of the injury (same side), the body loses motor function, proprioception, and senses of vibration and touch. On the contralateral (opposite side) of the injury, there is a loss of pain and temperature sensations.

Posterior cord syndrome

Posterior cord syndrome, in which just the dorsal columns of the spinal cord are affected, is usually seen in cases of chronic myelopathy but can also occur with infarction of the posterior spinal artery. This rare syndrome causes the loss of proprioception and sense of vibration below the level of injury while motor function and sensation of pain, temperature, and touch remain intact. Usually posterior cord injuries result from insults like disease or vitamin deficiency rather than trauma. Tabes dorsalis, due to injury to the posterior part of the spinal cord caused by syphilis, results in loss of touch and proprioceptive sensation.

Conus medullaris and cauda equina syndromes

Conus medullaris syndrome is an injury to the end of the spinal cord, located at about the T12–L2 vertebrae in adults. This region contains the S4–S5 spinal segments, responsible for bowel, bladder, and some sexual functions, so these can be disrupted in this type of injury. In addition, sensation and the Achilles reflex can be disrupted. Causes include tumors, physical trauma, and ischemia. The Cauda equina syndrome may also be caused by central disc prolapse or slipped disc, infections such as epidural abscess, spinal haemorrhages, secondary to medical procedures and birth abnormalities.

Cauda equina syndrome (CES) results from a lesion below the level at which the spinal cord splits into the cauda equina, at levels L2–S5 below the conus medullaris. Thus it is not a true spinal cord syndrome since it is nerve roots that are damaged and not the cord itself; however, it is common for several of these nerves to be damaged at the same time due to their proximity. CES can occur by itself or alongside conus medullaris syndrome. It can cause low back pain, weakness or paralysis in the lower limbs, loss of sensation, bowel and bladder dysfunction, and loss of reflexes. Patient may present with bilateral sciatica with central disc prolapse and altered gait. Unlike in conus medullaris syndrome, symptoms often occur on only one side of the body. The cause is often compression, e.g. by a ruptured intervertebral disk or tumor. Since the nerves damaged in CES are actually peripheral nerves because they have already branched off from the spinal cord, the injury has better prognosis for recovery of function: the peripheral nervous system has a greater capacity for healing than the central nervous system.

Signs and symptoms

Actions of the spinal nerves
Level Motor Function
C1C6 Neck flexors
C1T1 Neck extensors
C3, C4, C5 Supply diaphragm (mostly C4)
C5, C6 Move shoulder, raise arm (deltoid); flex elbow (biceps)
C6 externally rotate (supinate) the arm
C6, C7 Extend elbow and wrist (triceps and wrist extensors); pronate wrist
C7, T1 Flex wrist; supply small muscles of the hand
T1T6 Intercostals and trunk above the waist
T7L1 Abdominal muscles
L1L4 Flex thigh
L2, L3, L4 Adduct thigh; Extend leg at the knee (quadriceps femoris)
L4, L5, S1 abduct thigh; Flex leg at the knee (hamstrings); Dorsiflex foot (tibialis anterior); Extend toes
L5, S1, S2 Extend leg at the hip (gluteus maximus); Plantar flex foot and flex toes

Signs (observed by a clinician) and symptoms (experienced by a patient) vary depending on where the spine is injured and the extent of the injury. A section of skin innervated through a specific part of the spine is called a dermatome, and injury to that part of the spine can cause pain, numbness, or a loss of sensation in the related areas. Paraesthesia, a tingling or burning sensation in affected areas of the skin, is another symptom. A person with a lowered level of consciousness may show a response to a painful stimulus above a certain point but not below it. A group of muscles innervated through a specific part of the spine is called a myotome, and injury to that part of the spinal cord can cause problems with movements that involve those muscles. The muscles may contract uncontrollably (spasticity), become weak, or be completely paralysed. Spinal shock, loss of neural activity including reflexes below the level of injury, occurs shortly after the injury and usually goes away within a day. Priapism, an erection of the penis, may be a sign of acute spinal cord injury.

The specific parts of the body affected by loss of function are determined by the level of injury. Some signs, such as bowel and bladder dysfunction can occur at any level. Neurogenic bladder involves a compromised ability to empty the bladder and is a common symptom of spinal cord injury. This can lead to high pressures in the bladder that can damage the kidneys.

Lumbosacral

The effects of injuries at or above the lumbar or sacral regions of the spinal cord (lower back and pelvis) include decreased control of the legs and hips, genitourinary system, and anus. People injured below level L2 may still have use of their hip flexor and knee extensor muscles. Bowel and bladder function are regulated by the sacral region. It is common to experience sexual dysfunction after injury, as well as dysfunction of the bowel and bladder, including fecal and urinary incontinence.

Thoracic

In addition to the problems found in lower-level injuries, thoracic (chest height) spinal lesions can affect the muscles in the trunk. Injuries at the level of T1 to T8 result in inability to control the abdominal muscles. Trunk stability may be affected; even more so in higher level injuries. The lower the level of injury, the less extensive its effects. Injuries from T9 to T12 result in partial loss of trunk and abdominal muscle control. Thoracic spinal injuries result in paraplegia, but function of the hands, arms, and neck are not affected.

One condition that occurs typically in lesions above the T6 level is autonomic dysreflexia (AD), in which the blood pressure increases to dangerous levels, high enough to cause potentially deadly stroke. It results from an overreaction of the system to a stimulus such as pain below the level of injury, because inhibitory signals from the brain cannot pass the lesion to dampen the excitatory sympathetic nervous system response. Signs and symptoms of AD include anxiety, headache, nausea, ringing in the ears, blurred vision, flushed skin, and nasal congestion. It can occur shortly after the injury or not until years later.

Other autonomic functions may also be disrupted. For example, problems with body temperature regulation mostly occur in injuries at T8 and above. Another serious complication that can result from lesions above T6 is neurogenic shock, which results from an interruption in output from the sympathetic nervous system responsible for maintaining muscle tone in the blood vessels. Without the sympathetic input, the vessels relax and dilate. Neurogenic shock presents with dangerously low blood pressure, low heart rate, and blood pooling in the limbs—which results in insufficient blood flow to the spinal cord and potentially further damage to it.

Cervical

Spinal cord injuries at the cervical (neck) level result in full or partial tetraplegia (also called quadriplegia). Depending on the specific location and severity of trauma, limited function may be retained. Additional symptoms of cervical injuries include low heart rate, low blood pressure, problems regulating body temperature, and breathing dysfunction. If the injury is high enough in the neck to impair the muscles involved in breathing, the person may not be able to breathe without the help of an endotracheal tube and mechanical ventilator.

Function after complete cervical spinal cord injury
Level Motor Function Respiratory function
C1–C4 Full paralysis of the limbs Cannot breathe without mechanical ventilation
C5 Paralysis of the wrists, hands, and triceps Difficulty coughing, may need help clearing secretions
C6 Paralysis of the wrist flexors, triceps, and hands
C7–C8 Some hand muscle weakness, difficulty grasping and releasing

Complications

Complications of spinal cord injuries include pulmonary edema, respiratory failure, neurogenic shock, and paralysis below the injury site.

In the long term, the loss of muscle function can have additional effects from disuse, including atrophy of the muscle. Immobility can lead to pressure sores, particularly in bony areas, requiring precautions such as extra cushioning and turning in bed every two hours (in the acute setting) to relieve pressure. In the long term, people in wheelchairs must shift periodically to relieve pressure. Another complication is pain, including nociceptive pain (indication of potential or actual tissue damage) and neuropathic pain, when nerves affected by damage convey erroneous pain signals in the absence of noxious stimuli. Spasticity, the uncontrollable tensing of muscles below the level of injury, occurs in 65–78% of chronic SCI. It results from lack of input from the brain that quells muscle responses to stretch reflexes. It can be treated with drugs and physical therapy. Spasticity increases the risk of contractures (shortening of muscles, tendons, or ligaments that result from lack of use of a limb); this problem can be prevented by moving the limb through its full range of motion multiple times a day. Another problem lack of mobility can cause is loss of bone density and changes in bone structure. Loss of bone density (bone demineralization), thought to be due to lack of input from weakened or paralysed muscles, can increase the risk of fractures. Conversely, a poorly understood phenomenon is the overgrowth of bone tissue in soft tissue areas, called heterotopic ossification. It occurs below the level of injury, possibly as a result of inflammation, and happens to a clinically significant extent in 27% of people.

Muscle mass is reduced as muscles atrophy with disuse.

People with SCI are at especially high risk for respiratory and cardiovascular problems, so hospital staff must be watchful to avoid them. Respiratory problems (especially pneumonia) are the leading cause of death in people with SCI, followed by infections, usually of pressure sores, urinary tract infections and respiratory infections. Pneumonia can be accompanied by shortness of breath, fever, and anxiety.

Another potentially deadly threat to respiration is deep venous thrombosis (DVT), in which blood forms a clot in immobile limbs; the clot can break off and form a pulmonary embolism, lodging in the lung and cutting off blood supply to it. DVT is an especially high risk in SCI, particularly within 10 days of injury, occurring in over 13% in the acute care setting. Preventative measures include anticoagulants, pressure hose, and moving the patient's limbs. The usual signs and symptoms of DVT and pulmonary embolism may be masked in SCI cases due to effects such as alterations in pain perception and nervous system functioning.

Urinary tract infection (UTI) is another risk that may not display the usual symptoms (pain, urgency, and frequency); it may instead be associated with worsened spasticity. The risk of UTI, likely the most common complication in the long term, is heightened by use of indwelling urinary catheters. Catheterization may be necessary because SCI interferes with the bladder's ability to empty when it gets too full, which could trigger autonomic dysreflexia or damage the bladder permanently. The use of intermittent catheterization to empty the bladder at regular intervals throughout the day has decreased the mortality due to kidney failure from UTI in the first world, but it is still a serious problem in developing countries.

An estimated 24–45% of people with SCI have disorders of depression, and the suicide rate is as much as six times that of the rest of the population. The risk of suicide is worst in the first five years after injury. In young people with SCI, suicide is the leading cause of death. Depression is associated with an increased risk of other complications such as UTI and pressure ulcers that occur more when self-care is neglected.

Causes

Falling as a part of recreational activities can cause spinal cord injuries.

Spinal cord injuries are most often caused by physical trauma. Forces involved can be hyperflexion (forward movement of the head); hyperextension (backward movement); lateral stress (sideways movement); rotation (twisting of the head); compression (force along the axis of the spine downward from the head or upward from the pelvis); or distraction (pulling apart of the vertebrae). Traumatic SCI can result in contusion, compression, or stretch injury. It is a major risk of many types of vertebral fracture. Pre-existing asymptomatic congenital anomalies can cause major neurological deficits, such as hemiparesis, to result from otherwise minor trauma.

In the US, Motor vehicle accidents are the most common cause of SCIs; second are falls, then violence such as gunshot wounds, then sports injuries. Another study from Asia, found that the most common cause of the SCI is fall (31.70%) from various sites such as fall from roof-tops (9.75%), electric pole (7.31%), fall from tree (7.31%) etc. Whereas road traffic accidents count for 19.51%, firearm injuries (12.19%), slipped foot (7.31%) and sports injuries (4.87%). As a result of injury, 26.82% In some countries falls are more common, even surpassing vehicle crashes as the leading cause of SCI. The rates of violence-related SCI depend heavily on place and time. Of all sports-related SCIs, shallow water dives are the most common cause; winter sports and water sports have been increasing as causes while association football and trampoline injuries have been declining. Hanging can cause injury to the cervical spine, as may occur in attempted suicide. Military conflicts are another cause, and when they occur they are associated with increased rates of SCI. Another potential cause of SCI is iatrogenic injury, caused by an improperly done medical procedure such as an injection into the spinal column.

SCI can also be of a nontraumatic origin. Nontraumatic lesions cause anywhere from 30 to 80% of all SCI; the percentage varies by locale, influenced by efforts to prevent trauma. Developed countries have higher percentages of SCI due to degenerative conditions and tumors than developing countries. In developed countries, the most common cause of nontraumatic SCI is degenerative diseases, followed by tumors; in many developing countries the leading cause is infection such as HIV and tuberculosis. SCI may occur in intervertebral disc disease, and spinal cord vascular disease. Spontaneous bleeding can occur within or outside of the protective membranes that line the cord, and intervertebral disks can herniate. Damage can result from dysfunction of the blood vessels, as in arteriovenous malformation, or when a blood clot becomes lodged in a blood vessel and cuts off blood supply to the cord. When systemic blood pressure drops, blood flow to the spinal cord may be reduced, potentially causing a loss of sensation and voluntary movement in the areas supplied by the affected level of the spinal cord. Congenital conditions and tumors that compress the cord can also cause SCI, as can vertebral spondylosis and ischemia. Multiple sclerosis is a disease that can damage the spinal cord, as can infectious or inflammatory conditions such as tuberculosis, herpes zoster or herpes simplex, meningitis, myelitis, and syphilis.

Prevention

Vehicle-related SCI is prevented with measures including societal and individual efforts to reduce driving under the influence of drugs or alcohol, distracted driving, and drowsy driving. Other efforts include increasing road safety (such as marking hazards and adding lighting) and vehicle safety, both to prevent accidents (such as routine maintenance and antilock brakes) and to mitigate the damage of crashes (such as head restraints, air bags, seat belts, and child safety seats). Falls can be prevented by making changes to the environment, such as nonslip materials and grab bars in bathtubs and showers, railings for stairs, child and safety gates for windows. Gun-related injuries can be prevented with conflict resolution training, gun safety education campaigns, and changes to the technology of guns (such as trigger locks) to improve their safety. Sports injuries can be prevented with changes to sports rules and equipment to increase safety, and education campaigns to reduce risky practices such as diving into water of unknown depth or head-first tackling in association football.

Diagnosis

X-rays (top) are more available, but can miss details like herniated disks that MRIs can show (bottom).

A person's presentation in context of trauma or non-traumatic background determines suspicion for a spinal cord injury. The features are namely paralysis, sensory loss, or both at any level. Other symptoms may include incontinence.

A radiographic evaluation using an X-ray, CT scan, or MRI can determine if there is damage to the spinal column and where it is located. X-rays are commonly available and can detect instability or misalignment of the spinal column, but do not give very detailed images and can miss injuries to the spinal cord or displacement of ligaments or disks that do not have accompanying spinal column damage. Thus when X-ray findings are normal but SCI is still suspected due to pain or SCI symptoms, CT or MRI scans are used. CT gives greater detail than X-rays, but exposes the patient to more radiation, and it still does not give images of the spinal cord or ligaments; MRI shows body structures in the greatest detail. Thus it is the standard for anyone who has neurological deficits found in SCI or is thought to have an unstable spinal column injury.

Neurological evaluations to help determine the degree of impairment are performed initially and repeatedly in the early stages of treatment; this determines the rate of improvement or deterioration and informs treatment and prognosis. The ASIA Impairment Scale outlined above is used to determine the level and severity of injury.

Management

Prehospital treatment

Spine motion restriction with a long spine board

The first stage in the management of a suspected spinal cord injury is geared toward basic life support and preventing further injury: maintaining airway, breathing, and circulation and restricting further motion of the spine. In the emergency setting, most people who has been subjected to forces strong enough to cause SCI are treated as though they have instability in the spinal column and have spinal motion restricted to prevent damage to the spinal cord. Injuries or fractures in the head, neck, or pelvis as well as penetrating trauma near the spine and falls from heights are assumed to be associated with an unstable spinal column until it is ruled out in the hospital. High-speed vehicle crashes, sports injuries involving the head or neck, and diving injuries are other mechanisms that indicate a high SCI risk. Since head and spinal trauma frequently coexist, anyone who is unconscious or has a lowered level of consciousness as a result of a head injury is spinal motion restricted.

A rigid cervical collar is applied to the neck, and the head is held with blocks on either side and the person is strapped to a backboard. Extrication devices are used to move people without excessively moving the spine if they are still inside a vehicle or other confined space. The use of a cervical collar has been shown to increase mortality in people with penetrating trauma and is thus not routinely recommended in this group.

Modern trauma care includes a step called clearing the cervical spine, ruling out spinal cord injury if the patient is fully conscious and not under the influence of drugs or alcohol, displays no neurological deficits, has no pain in the middle of the neck and no other painful injuries that could distract from neck pain. If these are all absent, no spinal motion restriction is necessary.

If an unstable spinal column injury is moved, damage may occur to the spinal cord. Between 3 and 25% of SCIs occur not at the time of the initial trauma but later during treatment or transport. While some of this is due to the nature of the injury itself, particularly in the case of multiple or massive trauma, some of it reflects the failure to adequately restrict motion of the spine. SCI can impair the body's ability to keep warm, so warming blankets may be needed.

Early hospital treatment

Initial care in the hospital, as in the prehospital setting, aims to ensure adequate airway, breathing, cardiovascular function, and spinal motion restriction. Imaging of the spine to determine the presence of a SCI may need to wait if emergency surgery is needed to stabilize other life-threatening injuries. Acute SCI merits treatment in an intensive care unit, especially injuries to the cervical spinal cord. People with SCI need repeated neurological assessments and treatment by neurosurgeons. People should be removed from the spine board as rapidly as possible to prevent complications from its use.

If the systolic blood pressure falls below 90 mmHg within days of the injury, blood supply to the spinal cord may be reduced, resulting in further damage. Thus it is important to maintain the blood pressure which may be done using intravenous fluids and vasopressors. Vasopressors used include phenylephrine, dopamine, or norepinephrine. Mean arterial blood pressure is measured and kept at 85 to 90 mmHg for seven days after injury.

The CAMPER Trial led by Dr Kwon and subsequent studies by the UCSF TRACK-SCI group (Dhall) have shown that spinal cord perfusion pressure (SCPP) goals are more closely associated with better neurologic recovery than MAP goals. Some institutions have adopted these SCPP goals and lumbar CSF drain placement as a standard of care. The treatment for shock from blood loss is different from that for neurogenic shock, and could harm people with the latter type, so it is necessary to determine why someone is in shock. However it is also possible for both causes to exist at the same time. Another important aspect of care is prevention of insufficient oxygen in the bloodstream, which could deprive the spinal cord of oxygen. People with cervical or high thoracic injuries may experience a dangerously slowed heart rate; treatment to speed it may include atropine.

The corticosteroid medication methylprednisolone has been studied for use in SCI with the hope of limiting swelling and secondary injury. As there does not appear to be long term benefits and the medication is associated with risks such as gastrointestinal bleeding and infection its use is not recommended as of 2018. Its use in traumatic brain injury is also not recommended.

Surgery may be necessary, e.g. to relieve excess pressure on the cord, to stabilize the spine, or to put vertebrae back in their proper place. In cases involving instability or compression, failing to operate can lead to worsening of the condition. Surgery is also necessary when something is pressing on the cord, such as bone fragments, blood, material from ligaments or intervertebral discs, or a lodged object from a penetrating injury. Although the ideal timing of surgery is still debated, studies have found that earlier surgical intervention (within 12 hours of injury) is associated with better outcomes. This type of surgery is often referred to as "Ultra-Early", coined by Burke et al. at UCSF. Sometimes a patient has too many other injuries to be a surgical candidate this early. Surgery is controversial because it has potential complications (such as infection), so in cases where it is not clearly needed (e.g. the cord is being compressed), doctors must decide whether to perform surgery based on aspects of the patient's condition and their own beliefs about its risks and benefits. Recent large-scale studies have shown that patients who do undergo earlier surgery (within 12–24 hours) experience significantly lower rates of life-threatening complications and spend less time in hospital and critical care. However, in cases where a more conservative approach is chosen, bed rest, cervical collars, motion restriction devices, and optionally traction are used. Surgeons may opt to put traction on the spine to remove pressure from the spinal cord by putting dislocated vertebrae back into alignment, but herniation of intervertebral disks may prevent this technique from relieving pressure. Gardner-Wells tongs are one tool used to exert spinal traction to reduce a fracture or dislocation and to reduce motion to the affected areas.

Rehabilitation

SCI patients often require extended treatment in specialized spinal unit or an intensive care unit. The rehabilitation process typically begins in the acute care setting. Usually, the inpatient phase lasts 8–12 weeks and then the outpatient rehabilitation phase lasts 3–12 months after that, followed by yearly medical and functional evaluation. Physical therapists, occupational therapists, recreational therapists, nurses, social workers, psychologists, and other health care professionals work as a team under the coordination of a physiatrist to decide on goals with the patient and develop a plan of discharge that is appropriate for the person's condition.

An Orthopedic device like this also known as a drop foot orthosis has only one functional element for lifting the forefoot in order to compensate for a weakness in the dorsiflexors. If other muscle groups, such as the plantar flexors, are weak, additional functional elements must be taken into account. An ankle-foot orthoses (AFO) of the drop foot orthosis type is therefore not suitable for the care of patients with weakness in other muscle groups.

In the acute phase physical therapists focus on the patient's respiratory status, prevention of indirect complications (such as pressure ulcers), maintaining range of motion, and keeping available musculature active.

For people whose injuries are high enough to interfere with breathing, there is great emphasis on airway clearance during this stage of recovery. Weakness of respiratory muscles impairs the ability to cough effectively, allowing secretions to accumulate within the lungs. As SCI patients have reduced total lung capacity and tidal volume, physical therapists teach them accessory breathing techniques (e.g. apical breathing, glossopharyngeal breathing) that typically are not taught to healthy individuals. Physical therapy treatment for airway clearance may include manual percussions and vibrations, postural drainage, respiratory muscle training, and assisted cough techniques. Patients are taught to increase their intra-abdominal pressure by leaning forward to induce cough and clear mild secretions. The quad cough technique is done lying on the back with the therapist applying pressure on the abdomen in the rhythm of the cough to maximize expiratory flow and mobilize secretions. Manual abdominal compression is another technique used to increase expiratory flow which later improves coughing. Other techniques used to manage respiratory dysfunction include respiratory muscle pacing, use of a constricting abdominal binder, ventilator-assisted speech, and mechanical ventilation.

The amount of functional recovery and independence achieved in terms of activities of daily living, recreational activities, and employment is affected by the level and severity of injury. The Functional Independence Measure (FIM) is an assessment tool that aims to evaluate the function of patients throughout the rehabilitation process following a spinal cord injury or other serious illness or injury. It can track a patient's progress and degree of independence during rehabilitation. People with SCI may need to use specialized devices and to make modifications to their environment in order to handle activities of daily living and to function independently. Weak joints can be stabilized with devices such as ankle-foot orthoses (AFOs) or knee-ankle-foot orthoses (KAFOs), but walking may still require a lot of effort. Increasing activity will increase chances of recovery.

Patient after incomplete paraplegia (lesion height L3) with a knee-ankle-foot orthosis (KAFO) with an integrated stance phase control knee joint.

For treatment of paralysis levels in the lower thoracic spine or lower, starting therapy with an orthosis is promising from the intermediate phase (2–26 weeks after the incident). In patients with complete paraplegia (ASIA A), this applies to lesion heights between T12 and S5. In patients with incomplete paraplegia (ASIA B-D), orthoses are even suitable for lesion heights above T12. In both cases, however, a detailed muscle function test must be carried out to precisely plan the construction with an orthosis.

Prognosis

Holly Koester incurred a spinal injury as a result of a motor vehicle collision and is now a wheelchair racer.

Spinal cord injuries generally result in at least some incurable impairment even with the best possible treatment. The best predictor of prognosis is the level and completeness of injury, as measured by the ASIA impairment scale. The neurological score at the initial evaluation done 72 hours after injury is the best predictor of how much function will return. Most people with ASIA scores of A (complete injuries) do not have functional motor recovery, but improvement can occur. Most patients with incomplete injuries recover at least some function. Chances of recovering the ability to walk improve with each AIS grade found at the initial examination; e.g. an ASIA D score confers a better chance of walking than a score of C. The symptoms of incomplete injuries can vary and it is difficult to make an accurate prediction of the outcome. A person with a mild, incomplete injury at the T5 vertebra will have a much better chance of using his or her legs than a person with a severe, complete injury at exactly the same place. Of the incomplete SCI syndromes, Brown-Séquard and central cord syndromes have the best prognosis for recovery and anterior cord syndrome has the worst.

People with nontraumatic causes of SCI have been found to be less likely to develop complete injuries and some complications such as pressure sores and deep vein thrombosis, and to have shorter hospital stays. Their scores on functional tests were better than those of people with traumatic SCI upon hospital admission, but when they were tested upon discharge, those with traumatic SCI had improved such that both groups' results were the same. In addition to the completeness and level of the injury, age and concurrent health problems affect the extent to which a person with SCI will be able to live independently and to walk. However, in general people with injuries to L3 or below will likely be able to walk functionally, T10 and below to walk around the house with bracing, and C7 and below to live independently. New therapies are beginning to provide hope for better outcomes in patients with SCI, but most are in the experimental/translational stage.

One important predictor of motor recovery in an area is presence of sensation there, particularly pain perception. Most motor recovery occurs in the first year post-injury, but modest improvements can continue for years; sensory recovery is more limited. Recovery is typically quickest during the first six months. Spinal shock, in which reflexes are suppressed, occurs immediately after the injury and resolves largely within three months but continues resolving gradually for another 15.

Sexual dysfunction after spinal injury is common. Problems that can occur include erectile dysfunction, loss of ability to ejaculate, insufficient lubrication of the vagina, and reduced sensation and impaired ability to orgasm. Despite this, many people learn ways to adapt their sexual practices so they can lead satisfying sex lives.

Although life expectancy has improved with better care options, it is still not as good as the uninjured population. The higher the level of injury, and the more complete the injury, the greater the reduction in life expectancy. Mortality is very elevated within a year of injury.

Epidemiology

Breakdown of age at time of injury in the US from 1995–1999.

  0–15 (3.0%)
  16–30 (42.1%)
  31–45 (28.1%)
  46–60 (15.1%)
  61–75 (8.5%)
  76+ (3.2%)

Worldwide, the number of new cases since 1995 of SCI ranges from 10.4 to 83 people per million per year. This wide range of numbers is probably partly due to differences among regions in whether and how injuries are reported. In North America, about 39 people per every million incur SCI traumatically each year, and in Western Europe, the incidence is 16 per million. In the United States, the incidence of spinal cord injury has been estimated to be about 40 cases per 1 million people per year or around 12,000 cases per year. In China, the incidence is approximately 60,000 per year. The estimated number of people living with SCI in the world ranges from 236 to 4187 per million. Estimates vary widely due to differences in how data are collected and what techniques are used to extrapolate the figures. Little information is available from Asia, and even less from Africa and South America. In Western Europe the estimated prevalence is 300 per million people and in North America it is 853 per million. It is estimated at 440 per million in Iran, 526 per million in Iceland, and 681 per million in Australia. In the United States there are between 225,000 and 296,000 individuals living with spinal cord injuries, and different studies have estimated prevalences from 525 to 906 per million.

SCI is present in about 2% of all cases of blunt force trauma. Anyone who has undergone force sufficient to cause a thoracic spinal injury is at high risk for other injuries also. In 44% of SCI cases, other serious injuries are sustained at the same time; 14% of SCI patients also have head trauma or facial trauma. Other commonly associated injuries include chest trauma, abdominal trauma, pelvic fractures, and long bone fractures.

Males account for four out of five traumatic spinal cord injuries. Most of these injuries occur in men under 30 years of age. The average age at the time of injury has slowly increased from about 29 years in the 1970s to 41. In Pakistan, spinal cord injury is more common in males (92.68%) as compared to females in the 20-30 years of age group with a median age of 40 years, although people from 12-70 years of age suffered from spinal cord injury.  Rates of injury are at their lowest in children, at their highest in the late teens to early twenties, then get progressively lower in older age groups; however rates may rise in the elderly. In Sweden between 50 and 70% of all cases of SCI occur in people under 30, and 25% occur in those over 50. While SCI rates are highest among people age 15–20, fewer than 3% of SCIs occur in people under 15. Neonatal SCI occurs in one in 60,000 births, e.g. from breech births or injuries by forceps. The difference in rates between the sexes diminishes in injuries at age 3 and younger; the same number of girls are injured as boys, or possibly more. Another cause of pediatric injury is child abuse such as shaken baby syndrome. For children, the most common cause of SCI (56%) is vehicle crashes. High numbers of adolescent injuries are attributable in a large part to traffic accidents and sports injuries. For people over 65, falls are the most common cause of traumatic SCI. The elderly and people with severe arthritis are at high risk for SCI because of defects in the spinal column. In nontraumatic SCI, the gender difference is smaller, the average age of occurrence is greater, and incomplete lesions are more common.

History

The ancient Egyptian Edwin Smith Papyrus is the earliest known description of SCI.

SCI has been known to be devastating for millennia; the ancient Egyptian Edwin Smith Papyrus from 2500 BC, the first known description of the injury, says it is "not to be treated". Hindu texts dating back to 1800 BC also mention SCI and describe traction techniques to straighten the spine. The Greek physician Hippocrates, born in the fifth century BC, described SCI in his Hippocratic Corpus and invented traction devices to straighten dislocated vertebrae. But it was not until Aulus Cornelius Celsus, born 30 BC, noted that a cervical injury resulted in rapid death that the spinal cord itself was implicated in the condition. In the second century AD the Greek physician Galen experimented on monkeys and reported that a horizontal cut through the spinal cord caused them to lose all sensation and motion below the level of the cut. The seventh-century Greek physician Paul of Aegina described surgical techniques for treatment of broken vertebrae by removing bone fragments, as well as surgery to relieve pressure on the spine. Little medical progress was made during the Middle Ages in Europe; it was not until the Renaissance that the spine and nerves were accurately depicted in human anatomy drawings by Leonardo da Vinci and Andreas Vesalius.

In 1762 a surgeon named Andre Louis removed a bullet from the lumbar spine of a patient, who regained motion in the legs. In 1829 the surgeon Gilpin Smith performed a successful laminectomy that improved the patient's sensation. However, the idea that SCI was untreatable remained predominant until the early 20th century. In 1934, the mortality rate in the first two years after injury was over 80%, mostly due to infections of the urinary tract and pressure sores, the latter of which were believed to be intrinsic to SCI rather than a result of continuous bedrest. It was not until the second half of the century that breakthroughs in imaging, surgery, medical care, and rehabilitation medicine contributed to a substantial improvement in SCI care. The relative incidence of incomplete compared to complete injuries has improved since the mid-20th century, due mainly to the emphasis on faster and better initial care and stabilization of spinal cord injury patients. The creation of emergency medical services to professionally transport people to the hospital is given partial credit for an improvement in outcomes since the 1970s. Improvements in care have been accompanied by increased life expectancy of people with SCI; survival times have improved by about 2000% since 1940. In 2015/2016 23% of people in nine spinal injury centres in England had their discharge delayed because of disputes about who should pay for the equipment they needed.

Research directions

Scientists are investigating various avenues for treatment of spinal cord injury. Therapeutic research is focused on two main areas: neuroprotection and neuroregeneration. The former seeks to prevent the harm that occurs from secondary injury in the minutes to weeks following the insult, and the latter aims to reconnect the broken circuits in the spinal cord to allow function to return. Neuroprotective drugs target secondary injury effects including inflammation, damage by free radicals, excitotoxicity (neuronal damage by excessive glutamate signaling), and apoptosis (cell suicide). Several potentially neuroprotective agents that target pathways like these are under investigation in human clinical trials.

Human bone marrow derived mesenchymal stem cells seen under phase contrast microscope (63 x magnification)

Stem cell transplantation is an important avenue for SCI research: the goal is to replace lost spinal cord cells, allow reconnection in broken neural circuits by regrowing axons, and to create an environment in the tissues that is favorable to growth. A key avenue of SCI research is research on stem cells, which can differentiate into other types of cells—including those lost after SCI. Types of cells being researched for use in SCI include embryonic stem cells, neural stem cells, mesenchymal stem cells, olfactory ensheathing cells, Schwann cells, activated macrophages, and induced pluripotent stem cells. Hundreds of stem cell studies have been done in humans, with promising but inconclusive results. An ongoing Phase 2 trial in 2016 presented data showing that after 90 days, 2 out of 4 subjects had already improved two motor levels and had thus already achieved its endpoint of 2/5 patients improving two levels within 6–12 months. Six-month data is expected in January 2017.

Another type of approach is tissue engineering, using biomaterials to help scaffold and rebuild damaged tissues. Biomaterials being investigated include natural substances such as collagen or agarose and synthetic ones like polymers and nitrocellulose. They fall into two categories: hydrogels and nanofibers. These materials can also be used as a vehicle for delivering gene therapy to tissues.

One avenue being explored to allow paralyzed people to walk and to aid in rehabilitation of those with some walking ability is the use of wearable powered robotic exoskeletons. The devices, which have motorized joints, are put on over the legs and supply a source of power to move and walk. Several such devices are already available for sale, but investigation is still underway as to how they can be made more useful.

Preliminary studies of epidural spinal cord stimulators for motor complete injuries have demonstrated some improvement and in some cases to enable walking to some degree bypassing the injury.

In 2014 Darek Fidyka underwent pioneering spinal surgery that used nerve grafts, from his ankle, to 'bridge the gap' in his severed spinal cord and olfactory ensheathing cells (OECs) to stimulate the spinal cord cells. The surgery was performed in Poland in collaboration with Prof. Geoff Raisman, chair of neural regeneration at University College London's Institute of Neurology, and his research team. The OECs were taken from the patient's olfactory bulbs in his brain and then grown in the lab, these cells were then injected above and below the impaired spinal tissue.

From Wikipedia, the free encyclopedia https://en.wikipedi...