Search This Blog

Tuesday, December 24, 2013

The giant lanterns of San Fernando, Asia's Christmas capital

By Al Gerard de la Cruz, for CNN
updated 10:19 PM EST, Mon December 23, 2013
 
San Fernando is the birthplace of the Philippines' giant Christmas lantern and home to the annual Ligligan Parul (Giant Lantern Festival). Each lantern stands about 20 feet high and features 5,000 or so lights.


San Fernando is the birthplace of the Philippines' giant Christmas lantern and home to the annual Ligligan Parul (Giant Lantern Festival). Each lantern stands about 20 feet high and features 5,000 or so lights.
<<
<
1
2
3
4
5
6
7
8
>
>>
STORY HIGHLIGHTS
  • San Fernando dubbed "Christmas Capital of the Philippines" for its Giant Lantern Festival
  • A giant parol -- Christmas lantern -- costs around US$11,300-15,820 to build
  • Smaller, mass-produced 'parul sampernandus' can be found hanging outside homes all over the Philippines
 
SAN FERNANDO, Philippines (CNN) -- In skeletal form, they look like gargantuan honeycombs, rising 20 feet into the air.
 
They are the largest incarnations of the Philippines' parol, an eye-dazzling electric Christmas lantern that symbolizes the Star of Bethlehem.
 
In action they're truly a sight to behold. Each giant parol features a series of thousands of spinning lights synchronized by seven large steel drums -- the rotors.
 
When the parol spins, the rotor hits a row of hairpins, electrifying the bulbs.
Though smaller parols for household use have more latitude in covering, with choices like capiz shells and fiberglass, the giant lanterns usually stick to polyvinyl plastic.
 
Only 10 or so of the giant parols are produced a year to compete in San Fernando's Ligligan Parul, or Giant Lantern Festival. It has been held every December for the last 80 years in Pampanga province, about 75 kilometers outside of Manila.
 
It's this yuletide fervor for the nationally loved electric star that has lent credence to San Fernando's cachet as the "Christmas Capital of the Philippines." And likely even Asia.
 
Ernesto \'Erning\' David Quiwa, great-grandson of Francisco Estanislao, the first known parol-maker.
Ernesto 'Erning' David Quiwa, great-grandson of Francisco Estanislao, the first known parol-maker.
Five generations of parol makers
 
When visiting the San Fernando barangay (village) of Santa Lucia, the "home of giant lanterns," it's not unusual to behold a parol behemoth under construction right on the curb no matter what time of year.
 
The legend behind some of the biggest and best parols to come out of Santa Lucia in recent times is Ernesto 'Erning' David Quiwa, 66. Quiwa is the great grandson of the first known maker of the famed parol -- Francisco Estanislao.
 
On a recent visit to Quiwa's workshop, the parol master was busy overseeing the production of two giant lanterns. A worker was scaling the scaffolding to configure the 16-footer's 5,250 light bulbs.
Quiwa learned the craft from his uncles, one of whom in 1957 introduced the first parol rotor.
 
All five of Quiwa's children have ventured into the parol business.
 
"I never really taught my children," Quiwa says. "They learned on their own. Maybe it's in the blood."

Wondering About Our Place


To be, or not to be, — that is the question: —
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them? — To die, to sleep, —
No more; and by a sleep to say we end
The heart-ache, and the thousand natural shocks
That flesh is heir to, — 'tis a consummation
Devoutly to be wish'd. To die, to sleep; —
To sleep, perchance to dream: — ay, there's the rub;
For in that sleep of death what dreams may come,
When we have shuffled off this mortal coil,
Must give us pause: there's the respect
That makes calamity of so long life;
For who would bear the whips and scorns of time,
The oppressor's wrong, the proud man's contumely,
The pangs of despis'd love, the law's delay,
The insolence of office, and the spurns
That patient merit of the unworthy takes,
When he himself might his quietus make
With a bare bodkin? who would these fardels bear,
To grunt and sweat under a weary life,
But that the dread of something after death, —
The undiscover'd country, from whose bourn
No traveller returns, — puzzles the will,
And makes us rather bear those ills we have
Than fly to others that we know naught of?
Thus conscience does make cowards of us all;
And thus the native hue of resolution
Is sicklied o'er with the pale cast of thought;
And enterprises of great pith and moment,
With this regard, their currents turn awry,
And lose the name of action.

William Shakespeare, Hamlet Act 3, scene 1, 19–28, circa.1600

 
Bolero by Ravel. An der schönen blauen Donau by Strauss. Rhapsody in Blue by Gershwin. Yesterday I listened to these three pieces of music, among the most beautiful and thrilling that I know of. Each has its own peculiar emotional impact, quite different from each other and yet all calling to me in ways that I am quite sure I could never put words to. I would give anything to know exactly what they have done to my brain and nervous system, which neurons they fire in which sequence, which neurotransmitters – serotonin? dopamine? – they released or absorbed in exactly the right structures and cells of my limbic system and cerebral cortex. There any many other wondrous pieces, from Beethoven to Mozart, to Benny Goodman, the Beatles, and Bob Dylan, and more which provoke the same questions.

There is more. Today I spent several hours driving along River Road in Bucks County, Pennsylvania. The road curvingly parallels the Delaware river in many places, in others the old Delaware Canal. It is carved out of the ancient rock which lines the river, and after several days of rainfall there are numerous small and medium rivulets and waterfalls cascading from the rocks, onto the road surface, and then across it to join the river and its way to the sea. Even without these added splendors, there are the carved, ancient rocks themselves, the trees and other wild flora of May, and the occasional animal, although I did not see any deer, or wild turkey, or any of the other wild animals that inhabit the woodlands on this particular day.

I know – I know as a scientist and as a rational human being – that what I have experienced these last two days would not be possible without millions of years of Darwinian evolution sculpting senses and a nervous system and brain to allow me to experience them. If I were but a rock, I would know none of them. Even if I were a cockroach, perhaps even a fairly evolved organism such a mouse … but because I am human – a sentient being – I experience all of it; all of what gives my life so much of its meaning.

And yet I am missing something.

It is a conundrum that has been known for centuries. One that philosophers have spun and spiraled in their minds to resolve, one that scientists in the relevant fields have grappled with to this day. Some think they have solved it. Yet I beg to differ. Some very straightforward thought experiments show how perplexing it is, how much it defies simple solutions. Theists and other religious pundits think that they solved it long ago, but I believe they are just as deluded. It is the problem of the soul.

What’s this? A scientist speaking of the soul?

Soul is perhaps a bad term. It conjures up the supernatural and the religious, and that, above all, is precisely what we are trying to avoid here too, as in all the previous chapters of this book. Better words are sentience and consciousness. Sentience is somewhat the better of these two because consciousness can refer to the mind and its workings, and what we want to grab hold of is that, however our bodies and minds work, there is an indisputable “we” inside, somewhere, that experiences those workings. This we has a more or less continuous existence, minus deep sleep and any periods of anesthesia or coma we might have had, going back to as far as … well, as far as we have memories of being.

We must concede an undeniable connection to mind and body, for, as I have been emphasizing, without these things there is nothing to experience, and sentience, the experiencer, must have something to experience if it is to exist. At the same time, however, as strong as this connection is, its strength does not reach to identity. Or at least I believe I have good reason for thinking it does not. Naturally, this only deepens the mystery; how can mind / body and sentience be at the same time the same thing and yet two separate things? The answer is that it cannot, yet we struggle mightily to resolve this seeming contradiction.

Don’t think there really are contradictory aspects to it? A few thought experiments should illustrate them nicely. Here’s one: imagine we have a machine, a lá science fiction, into which you step into one booth and out pops in a different booth, by some magical technology we shall in all probability never have, an atom-by-atom exact duplicate of yourself. This, of course, is the basic idea behind matter / energy beaming devices in Star Trek, and though I heartily doubt it will ever be accomplished, it seems at least possible in theory.

Well, what would you expect? Would you still be you? I expect all of you would agree that you would be. But how about this other “person” (I put this in quotes for a specific reason), stepping forth from the other booth? Would you be him / her as well? The answer to this question would seem to have to be an unqualified no, if only for the reason that there are no neural or any other connections between the two brains, which we are quite certain is absolutely necessary for you to experience being two bodies / brains at the same time. On the other hand, if you aren’t both you, then clearly you are the original you and the duplicate, although it would have all your memories, thoughts, and feelings, and be utterly convinced it was the real you, is just as clearly someone else. All this assumes, of course, that they are anyone at all and not a non-sentient simulacrum of you – which can only be true if making at atom-by-atom-duplicate of you is still missing something, something that we have no conception of as of yet. Either way, it isn’t the real you, however identical from a known science point of view it is.

Let me illustrate the problem a different way. I often read by those working in the fields of neurology, psychology, philosophy, and all the ways these fields can be conjoined (neuropsychology, cognitive science, etc.), that sentience is a consequence of brain action, an emergent phenomenon or epiphenomenon, one deriving from brain structure from the macroscopic to the microscopic, from the whole down to neurons and axons and dendrites and neurotransmitters and synapses and, well, and the laws of physics and chemistry as we know them. But there is something wrong with this picture, something, I think, that is actually quite obvious. It is that the Me (hereafter capitalized) that experiences being me does so now in a brain that is different from the brain it experienced being me yesterday, and even more different from the brain it experienced being me a year ago, and ten years ago, twenty, forty, fifty years … all the way back as far as I can remember being sentient.

All I know is this: Richard Dawkins’ statement in his preface to his most inspirational book The Blind Watchmaker, that “Our existence once presented the greatest of mysteries, but it is a mystery no longer because it has been solved,” is both true and false. It is true in the sense that Darwinian evolution, combined with the laws of physics and chemistry in this universe, neatly explains why at this moment some six point seven billion of us humans are running around on the surface of this planet, trying to survive and more, toward what consequences we are both uncertain and afraid of. But it is false in the sense of explaining why we billions experience ourselves doing so – assuming all of us do. Yes, yes, our highly complex and massive brains are part of the solution to this part of the mystery, but – well, is it enough?

* * *

This book being largely composed of scientific ideas and arguments, I wish like anything that I could present some for this most defiant of all mysteries. Alas, I find that after half a century’s worth of reading, exploring, thinking, and probing I cannot. Which leaves me in the position of wishing it would go away, so that it might not torment me, but it refuses to do that either. It is not, mind you, that I am afraid of dying and there being nothing left of either me or Me at all, perplexing and somewhat despairing I find that prospect to be; no, it is a true intellectual riddle, one that has defied all attempts not merely to solve it but even to adequately frame it. At least the reason for this can be stated in a straightforward way. The scientific method is an objective approach to reality, combining observation with hypothesis formation and testing, using both reductionism and holism when appropriate, in the never ending quest to determine just what is out there, all around us, to the ends of the universe. And it is a noble and even, dare I use the word, holy endeavor. But how and in what ways can this method be applied to the subjective reality of experience? How can it explain Me, or You, or any of Us? The answer I keep coming up with is that it cannot, cannot explain Me, You, or any of Us, solely because these are not objective phenomenon “out there” for us to explore and dissect. We can and should dissect and explore brains, and how they work, yes. But in the end, no matter how much we discover doing so I fear we will still not have solved the problem.

The conundrum is very real, and very serious, because we know of no method but science that can reliably reveal truths about reality to us. Mysticism and religion have no chance, in fact don’t even pretend to have a chance however many pseudo-arguments their proponents hurl at us. Yet science and reason can’t will or doubletalk the issue away, either, however.

* * *

Still, I have invited you to read a chapter about this subject, and merely repeating how dumbfounded I am about it is going to wear thin very quickly. So I must make some attempt(s), some approach(es), that have a plausible chance of leading us somewhere toward understanding.

And yet, I must proceed carefully. For example, certain writers, notably Roger Penrose (The Emperor’s New Mind) have suggested that sentience emerges from some of the properties of quantum mechanics. He has apparently even identified structures in the brain, known as neural microtubules, which he claims account for consciousness / sentience in a quantum mechanical brain; part of his argument, as I understand it, is that the human mind is able to solve problems in a non-algorithmic way. While I do not claim to fully understand his arguments, other writers, notably Daniel Dennett and Stephen Pinker, have challenged Penrose, saying that in fact all the things the human mind can do can be reduced to algorithms, albeit highly complex ones, without any consideration of the physical hardware (brains, computers, etc.) that these algorithms are executed in.

Personally, I find both approaches inadequate. We really don’t have any good reason to think that a sufficiently complex computer, one that can fully emulate all the properties of a human brain, will actually be sentient. On the other hand, the mysteriousness of much of quantum mechanics shouldn’t seduce us into thinking it has anything to do with the mysteriousness of our own awareness. That is an argument that sounds powerful on first hearing, but is really quite feeble. Lots of things in this universe are still mysteries, at least to some extent, but that is no reason to assume that they are interrelated simply because they are mysterious.

Of course, this doesn’t prove that quantum processes don’t have anything to do with sentience either, so I don’t want to grind my heel into any such speculations. It’s just that there are so many other mysteries as well. For example, why do so many of the natural constants of nature happen to have the value they have – the “fine-tuning” problem that vexes so many scientists? Why are there four fundamental forces, and why do they have the relationships they have? Why is the speed of light in a vacuum what it is? Why does Planck’s constant have the value it has? And so on. Some people, even scientists, note that all these, and other, constants, have values that are absolutely necessary for intelligent beings like us to exist, so perhaps there is some kind of higher intelligence or will that has ordained them so. Other scientists shake their heads at this kind of semi-mysticism and insist that, as we understand the cosmos and the laws of physics better, we will see how they had no choice to be what they are. Or perhaps there are many, many universes – perhaps an infinite of universes – so some simply had to turn out to have the right conditions; and of course we must be living inside one of those universes, or we would not be here to ask the questions and debate the answers.

* * *

My own personal feeling – and personal feeling is exactly what it is – suggests something else to me. A hundred years ago, at the beginning of the twentieth century, there were certain phenomena that stubbornly defied explanation by the then known existing laws of nature. The structure of the atom, as I have already mentioned, is probably the most famous. The conflict between Maxwell’s laws of electrodynamics and Newton’s laws of motion were another. As was the spectrum of blackbody radiation. The heat capacity of multiatomic gasses, and the photoelectric effect were a third and a fourth.

The solutions to these vexing problems involved, not merely new theories based on the existing laws of physics, but new paradigms, new ways of thinking, which opened up a new universe of laws and theories and hypotheses. These new paradigms were so challenging that many scientists have had a hard time accepting them even to this day, while those who do still sometimes puzzle and scratch their heads at what they really mean. Quantum mechanics. Special and General Relativity. Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). The expanding universe and the notion of a beginning to everything, the Big Bang (though this is being challenged today in some quarters), and perhaps an end to all things, including time. The idea that space and time, matter and energy, are related in ways that you cannot treat them as separate phenomena. The use of mathematical group theory to explain the plethora of mass-bearing and force-bearing particles in nature, and the relationships between those particles. The idea of inflation in the very early universe, and how it might have led to many universes forming. And now of strings and supersymmetry.

Standing here, at the opening of the twenty-first century, I can envision a similar revolution in paradigms arising to answer the questions I address in this chapter. But as I said in chapter seven, looking at it now, it is science fiction. Perhaps even fantasy. For example, here’s one possibility: perhaps we will create a “super” brain, one composed of electronics and neuronics, that we can all interface with or even become part of. This brain might eventually spread throughout the solar system and then beyond, perhaps to ultimately fill the entire universe. Perhaps this is when humanity learns its meaning and destiny, and all questions are answered. Even those billions who have lived and died may be reincarnated into this star-spanning mind, and not just humans but every other sentient race that has lived and died, here and elsewhere in the universe.

Following this line of prognostication, maybe sentience is something like another property of the universe, one which requires certain conditions, such as those that occur in our brains, to manifest itself. But if it is that, a property, then what kind of property is it? It isn’t a force, or a kind of particle. Something interwoven into the fabric of spacetime itself? But how? And in what way?

* * *

Sometimes I wonder if the Buddhist concept of Maya and Enlightenment can help us here. Maya is the illusion we all experience, that of being separate beings, apart from each other and the rest of the universe, struggling to find our way through life, and ultimately dying in this illusion. The experience of Enlightenment is supposed to be one in which all Maya drops away and you are fully aware of being one with everyone and everything – an experience regarded as impossible to capture in words or any other physical medium. Yes, I wonder if Buddhism is on to something here. It would have to defy explanation by language or any other form of normal communication. One would have to either experience it, or have no idea what it is. That does sound like it has a sporting chance of being right, or at least it does to me.

But if so, then this does imply that there are laws and properties of reality that we do not, and perhaps can never, understand intellectually, because they are not susceptible to scientific analysis? That they work beneath, or above, the radar of our intellects, however hard we try?

If all this is true, however, then what should we do? What can we do?

What we must do, I maintain yet again, is not give in to despair simply because we don’t know the solution to the puzzle, and may never know the solution to it. Also, remember that many mysteries have resisted solution for centuries, only to finally be solved by an application of new paradigms and ways of looking at things. Above all, we must not give up, even if things appear hopeless. A hundred years from now, we may find ourselves shaking our collective heads at our current confusion. I am tempted, however, to call this question – the question of sentience – the ultimate question, to which all others are sublimated. I really do believe that if and when we solve it, there will be a collective sigh of satisfaction greater than the solution to any question that has proceeded it.

* * *

Somehow or other, whether by luck or design or an intermingling of the two, we find ourselves where and when we are. We inhabit a planet orbiting a yellow dwarf star at the edge of a rather typical spiral galaxy. The star is but one among billions in the galaxy it has found itself in, and the galaxy may be one of trillions in a universe many billions of years old and perhaps far, far older. In all that, our individual lives occupy only a few decades of time, a century if we are fortunate. There seems to be nothing particularly special about this where and when we exist, except that is one of the few places we could be in the universe, perhaps the only even, and perhaps one of the few universes we could be in. Maybe the only one. Moreover, we do not know what will happen, not merely to ourselves as individuals, but to us as a species over the next few centuries.

We have spent thousands of years beating our heads against an invincible wall, wondering what the answer to all this is, and for all our pounding still pretty much have no idea. Of course, the answer may well be that “this is all there is”, that once our bodies cease to function that is the end of both us and Us, and no beliefs, religions, philosophies, or wishful thinking can change that. Sad though that is in one respect, even if it is true I believe we should be grateful, grateful for the opportunity to have existed at all and had the opportunity to marvel at this universe we have manifested in. It is even really not so sad either, when you think about it; after all, in the billions or trillions or infinity of years before we existed we suffered not one iota for not being, so certainly after we are gone we will not suffer at all then either. It is only sad, to me at least, in that We will cease to exist with so many wonderful questions unanswered. That, I have to admit, is a bitter pill to force down.

But let us assume that this is not the case. Let us imagine that sentience, while inactive without a brain to model the universe about it, nonetheless still exists in some potential form. I use the word potential with a very specific meaning. We speak of potential energy, as when an object is raised to a certain height, or an elastic material stretched, or as a chemical potential that can lead to an energetic reaction. The energy does not exist in any active form, yet it is still there, waiting to be manifested. Quite possibly, sentience without a brain with which to experience some kind of reality, can be held in an analogous potential form. What would that mean? One possibility is the repeated incarnations of the “soul” as claimed by many Eastern religions, although I am not certain I can believe in that.

I have difficulties with this, because in Eastern religions, the soul can reincarnate as almost anything: another person, an animal, a plant, or even a rock. Yet rocks and plants, and probably even most animals, do not possess the capacity for sentience, as they lack a sufficiently complex brain and nervous system. There are other practical problems as well. Even if we reincarnate as human beings, since the number of human beings on this planet has been exponentially increasing over thousands of years, where are all the new souls to come from to inhabit all these new bodies? There is a disparity here that is hard to reconcile.

There is another tack I would like to try. I am an aficionado of the television series House, which, if you aren’t (fie on you!), is about the brilliant but renegade and rather misanthropic Dr. Gregory House and the characters and cases which spin around him in a mythical teaching hospital between Princeton and Plainsboro, NJ. One of the episodes involves Dr. House temporarily reviving a patient who has been in a coma for ten years, for the purpose of extracting family background in order to save the coma patient’s son’s life (it ends with the coma patient committing suicide in order to donate his heart to his dying son – now you know why I say fie on you if you don’t watch it). Before I begin, I have to say I find the premises of this episode highly dubious at the least: someone who has been in a coma for ten years will have undergone so much muscle atrophy and coordination loss that I doubt he could walk, let alone drive a car to Atlantic City and basically act like someone who has just woken from a short nap. But that is beside the point I want to make.

No, my question is: is the sentience that results from the coma awakening, and spends his last day in a quest for the perfect hoagie then ends by sacrificing his life for his son’s, the same sentience that ended ten years earlier? An even better question might be, does this question even make any sense? The re-awakened father would of course insist that he his in every way conceivable the same person, but how much does that utterly sincere insistence count for? And what possible tests and / or measurements could we make to settle the issue?

I have to confess to something. This is not a mere academic issue to me. I was once in a coma, from which I fortunately awoke after several days. But does that make any difference? Like that father in House, I absolutely insist that I am the same Me that fell into that coma, but how can I, or anyone, really know? And again I ask, does the question even make sense?

Maybe it is an absurd question. Or, not so much absurd as worded incorrectly. Perhaps what seems to happen to Us in those moments, or days, or years, when we still exist but We do not is that time ceases to exist for Us. Just like, according to Einstein’s Special and General Theories of Relativity, time ceases to exist under certain conditions – if we were to ride on a beam of light or (if I understand what I have read correctly) fall into an infinitely deep gravity well – time comes to a complete stop for Us whenever the conditions needed to manifest Us ceases to exist. The question then is, do those conditions exist only within our own brains, for if so, then our current lives are the only ones We can ever manifest in?

* * *

I suspect that I have frustrated and dissatisfied you, dear reader, for I keep promising answers to this deepest of questions, but invariably find myself only circling about and finding myself at my own beginnings, my own head-shaking ignorance and failure of my own imagination and curiosity to solve this most impenetrable of puzzles

Will I give up then? No, first of all because I see no way of letting go of my curiosity and wonder and imagination, without letting go of what it means to be a living, sentient mind in a universe we still have so much to explore within. If there are places and times I have no concept of how to reach, then I am simply going to accept them for the time being, and hope that at some point in the future my eyes will start to open about them. Nor will I relinquish the scientific approach to thinking about reality, for it has served us so well, and has provided answers to what appeared to be impenetrable mysteries, and so I cannot give up hope on it, certainly not at this time and place in humanity’s evolution. Perhaps, of course, these things will lead to my death with so many important questions unanswered, and, yes, as I have admitted, that disturbs me. But, as I said, to stop now and lay down all of the weapons and tools of the mind and surrender to ignorance; that is something I cannot even conceive of doing. I would certainly die of despair if I even so much as tried.

So we have come around and around, and it the end must still admit that this greatest of mysteries has not yielded to science, at least not yet. And yet, that is all right. Mysteries are the lifeblood of science, and indeed of all our wonderings and imaginative escapades. Maybe, like the character in the Monty Python sketch I mentioned early in this book, we even need them, need these challenges to our curiosity, as though they are part of what gives our lives meaning. I know that they have given my life at least a healthy part of its meaning.

* * *

"There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable. There is another theory which states that this has already happened."



Douglas Adams, The Hitchhiker's Guide to the Galaxy (1979)



"Now my own suspicion is that the universe is not only queerer than we suppose, but queerer than we can suppose."



JBS Haldane, Possible Worlds and Other Papers (1927), p. 286



As I said at the beginning, a large part of this book is about what it means to be human, with curiosity, wonder, and imagination being fundamental parts of the answer. I also stressed the special importance of imagination, supplemented by technology, along with the warning that if we really wish to understand the universe we live in, we must not limit ourselves to our sensory experiences and our intuitions about them. We saw how important that became once we started deviating from the norms of our existence, whether in space or time. When we are dwelling in the world of the ultra-small or large, slow or fast, the laws of physics deviate from common sense in ways we would never have predicted. Phenomena such as the uncertainty principle and the depths of geologic time, time dilation and the bending of spacetime become increasingly important as we move further and further away from the norms of our everyday existence. We found that if we allowed those deviations to take us logically wherever they went then, however strange our discoveries, they could be integrated into the whole of understanding.

We also came to understand that the paths we took were our personal ones, each unique to us even if, ultimately, we all found ourselves in the same place in the end, that end being still finding ourselves facing the same ages old mysteries of our own existence. This is one of the crucial paradoxes of the human condition, I believe; that we all experience our lives as infinitely separated individuals, while underneath we are all tied together by the same laws, the same processes, the same foundations. It is as though each of us perceives ourselves as alone in a tiny boat on the open ocean, winds whipping and waves constantly washing water into the boat, forcing us to bale with all our strength and persistence just to stay afloat, while in fact, ironically, we are all collectively in one huge boat, with each of us making our tiny contribution to keeping the boat afloat and headed for – what land we are uncertain, but whatever it is we shall all arrive there together, in the end.

In the end, maybe this is our place in the scheme(s) of things. I am not the first person to speculate that we may be nothing more than reality’s attempt to comprehend itself. If so however, then we are faced with another mystery, that of how reality can have intentions or goals at all instead of being nothing more than the blind working out of physical laws. A mystery which only becomes deeper if we assume that intelligence, in some form, is itself part of that reality.

I stated at the outset of this book that I do not intend to give in to nihilism or despair, and I will take the time to reaffirm this promise again. Somehow we reasoning, questioning, imagining animals have found ourselves in this universe, and that alone should provoke our minds to keep trying to discover how and why. Indeed it is my view that we are probably still closer to the beginning of our quest than the end. I will also take the time to state my personal gratitude that we are in the middle of it.

We are born as, and grow up into, creatures of curiosity, wonderment, imagination, and rational thought. I do not care what nation or culture you were raised into, what you were taught, or what experiences you have had. Merely by being human, you still have all these traits within you, each one waiting to boil up to the surface at any time. I know that I have been astonishingly fortunate in this respect, in one sense more than most in this world, but at the same time I can’t believe that I have been any more gifted in these things than anyone else. I have just had the good fortune to have these things nurtured and encouraged.

I remember being a child with all these things within me, and nothing gives me more pleasure than today, at fifty-three years of age, to discover that same child just as strong. Though I have spent a half-century’s worth of growing, experiencing, maturing; though I have married, raised children, and known “The heart-ache, and the thousand natural shocks that flesh is heir to” including pain I thought I would never recover from or survive; though I have stared into space and wondered what the point of those pains were … that part of me has never been diminished or defeated in any way.

And so there is nothing more for me to do except present myself as an inspiration, and as a hope. If you have any doubts, then go somewhere where the lights and pollution of the city cannot find you. Wait until the sun goes down, and then lie on the grass, staring skywards at the stars. Stare, and remember that for each one you see, there are trillions beyond your sight, beyond the sight of the most powerful telescopes for that matter. Gaze at the fierce beacons pouring their fires down upon you, and wonder. Though this universe we live in is far vaster than our imaginations can even begin to encompass, I believe you will know what I mean. Though we are but the most mortal of beings, barely eking a century’s worth of experience of the billions of years those beacons have shown, each of us has still our own meaning, our own purpose, whether we know it or not. I believe this will dispel all those doubts.

Does Depression Change the Way People Perceive the World?



Depression is a state of low mood and aversion to activity that can affect a person's thoughts, behavior, feelings and sense of well-being.[1] Depressed people feel sad, anxious, empty, hopeless, worried, helpless, worthless, guilty, irritable, hurt, or restless. They may lose interest in activities that once were pleasurable, experience loss of appetite or overeating, have problems concentrating, remembering details, or making decisions, and may contemplate, attempt, or commit suicide. Insomnia, excessive sleeping, fatigue, loss of energy, or aches, pains, or digestive problems that are resistant to treatment may also be present.[2]
Depressed mood is not always a psychiatric disorder. It may also be a normal reaction to certain life events, a symptom of some medical conditions, or a side effect of some drugs or medical treatments. Depressed mood is also a primary or associated feature of certain psychiatric syndromes such as clinical depression. (wiki)

People with depression often say that they experience the world differently from others. They commonly report changes in appetite, and sometimes say that “time seems to drag on.” And the English language contains many metaphors that link depression with color—we often say, for example, that someone with depression is “feeling blue.” A series of recent studies now offers preliminary evidence that depression may, indeed, alter aspects of perception.
In the most recent, mathematical psychologist Diana Kornbrot of the University of Hertfordshire and her colleagues recruited 46 students and used the Beck Depression Inventory (BDI) to gauge their mood. The BDI consists of 21 multiple-choice questions, and is widely used by psychiatrists to assess the severity of depression.

Kornbrot and her colleagues split the study participants into two groups, one with high BDI scores, corresponding to dysphoria, or mild depression, the other with low scores. They then asked the participants to listen to a series of sounds that varied from 3 seconds to 65 seconds in length, and to estimate how long they were as accurately as possible. Participants also were asked to produce sounds of varying lengths using a computer keyboard.

The researchers found a correlation between participants’ BDI scores and the accuracy with which they could estimate the length of the sounds they heard and produced: Those with higher scores made more accurate estimates than those with lower scores.

“What we see is that those with mild depression seem to be better at paying attention to short periods of time,” says psychologist Rachel Msetfi of the University of Limerick, a co-author of the study. The finding suggests that people with depression experience a time dilation effect, and lends support to the controversial notion of depressive realism, which posits that people who are depressed have a more accurate perception of reality than others.

Msetfi thinks that this time dilation might be related to one of the symptoms of severe depression. People with severe depression often experience helplessness, or the feeling that they are not in control of their lives, and this is usually accompanied by a feeling of guilt.

Time perception is crucial for agency, the sense that we are in control of our actions. Normally, our actions are followed very closely in time by their consequences; this can give us the sense that the two are causally related, and that we are responsible for the consequences of our actions.

 Other work suggests that the brain actively compresses time to make action and cause seem closer together in time. This process, referred to as intentional binding, enhances our sense of agency. When the interval between an action and its effects is deliberately extended, people feel less in control of their actions. There is evidence that this process is perturbed in people with schizophrenia, and this may contribute to their propensity to misattribute their thoughts or actions to external forces.

“Subtle changes in the way we process time may contribute to the sense of helplessness [in people with depression],” says Msetfi. “If you have disturbances in the way you process time and context and the relationship between them, then you’re going to have some disturbance in your experience of everyday life and reality.”

Msetfi suggests that perturbations of what she calls the ‘psychological time-space continuum’ might be a general deficit that underpins other psychopathological conditions. “I don’t have any solid evidence to support that yet, though,” she says.

Another recent study, led by Petra Platte of the University of Würzburg, suggests that depression alters peoples’ perception of taste, too. Platte and her colleagues used film clips to induce sad, happy or neutral moods in 70 otherwise healthy participants. They used the BDI to assess the participants’ mood, and asked them to rate the intensity of sweet, sour, bitter, fatty, and umami stimuli, all of which were given at several different concentrations.

They found that mood modulated the participants’ perception of the stimuli—those with higher BDI scores could not differentiate between low and high fat concentrations after the induction of both negative and positive moods. The researchers suggest that this apparent deficit in taste perception might foster unhealthy eating habits in people with mild, subclinical depression.

It follows that we would expect to see a higher incidence of obesity in people who are depressed. Obesity and depression are indeed correlated, but the relationship between them is a complex and reciprocal one. It is by no means clear whether altered taste perception is what causes obesity in patients with depression.

In 2010, another group of German researchers reported that people with major depressive disorder (MDD) have reduced sensitivity to visual contrast compared with healthy controls. Emanuel Bubl of the University of Freiburg and colleagues recruited 40 patients diagnosed with MDD and 40 healthy controls matched for age and sex. They showed all the participants black and white checkerboard patterns, and used pattern electroretinography to measure the responses of their eyes. This technique uses electrodes placed on the cornea to measure the electrical activity of cells in the retina, with the size of the response indicating the extent of contrast gain.

Patients with MDD responded differently than the controls; they had markedly reduced contrast gain-related activity, suggesting that they were less sensitive to contrast. Within the group of MDD participants, the size of the responses was closely correlated with the severity of depression. The more severe the depression, the greater the reduction in contrast gain, and those who were taking anti-depressants also displayed slightly larger responses than those who were not.

Buble and his colleagues found that they could predict which of the participants had been diagnosed with MDD from the pattern electroretinography recordings alone, with an accuracy of greater than 90 percent. But they could not determine whether the effect they observed was specific to depression.  

Several other studies published in recent years suggest that sensitivity to pain is similarly reduced in depression. Taken together, these findings suggest that depression alters basic perceptual processes across multiple sensory modalities.

Big caveats

But cognitive neuropsychologist Keith Laws of the University of Hertfordshire, who was not involved in any of the studies, has reservations about the findings. “In two of the studies, they’re looking at people who score within the normal range of the BDI,” he says. “These are completely healthy people, so it’s difficult to know what they mean in the context of people with depression.”

Moreover, the results are based largely on participants’ self-reports of the mood they were in at the time. Such reports are highly subjective in nature, and not necessarily accurate. And the studies divided participants into two groups according to their BDI scores, and then compared the averaged results of the groups, rather than those of individual participants. Consequently, the results from both groups overlapped significantly, making it difficult to draw any firm conclusions from them.

“It’s very interesting work, but I’m not altogether convinced by it,” says Laws, “and I think all of these studies need to be replicated and extended in order to determine whether depression actually does alter perception.”

 - By Moheb Costandi, from BrainFacts.org (

Hawking & Mlodinow: No 'theory of everything'


Hawking & Mlodinow: No 'theory of everything'

In a Scientific American essay based on their new book A Grand Design, Stephen Hawking and Leonard Mlodinow are now claiming physicists may never find a theory of everything. Instead, they propose a "family of interconnected theories" might emerge, with each describing a certain reality under specific conditions.

Most of the history of physics has been dominated by a realist approach. Scientists simply accepted that their observations could give direct information about an objective reality. In classical physics, such a view was easily defensible, but the emergence of quantum mechanics has shaken even the staunchest realist.

In a quantum world, particles don't have definite locations or even definite velocities until they've been observed. This is a far cry from Newton's world, and Hawking/Mlodinow argue that - in light of quantum mechanics - it doesn't matter what is actually real and what isn't, all that matters is what we experience as reality.

As an example, they talk about Neo from The Matrix. Even though Neo's world was virtual, as long as he didn't know it there was no reason for him to challenge the physical laws of that world. Similarly, they use the example of a goldfish in a curved bowl. The fish would experience a curvature of light as its reality and while it wouldn't be accurate to someone outside the bowl, to the fish it would be.

Scientific American: The Elusive Theory of Everything (paywalled)

"In our view, there is no picture or theory-independent concept of reality. Instead we adopt a view that we call model - dependent realism: the idea that a physical theory or world is a model (generally of a mathematical nature) and a set of rules that connect the elements of the model to observations. According to model - dependent realism, it is pointless to ask whether a model is real, only whether it agrees with observation. If two models agree with observation, neither model can be considered more real than the other. A person can use whichever model is more convenient in the situation under consideration."

This view is a staunch reversal for Hawking, who 30 years ago argued that not only would physicists find a theory of everything, but that it would happen by the year 2000. In his first speech as Lucasian Chair at Cambridge titled "Is the end in sight for theoretical physics?," Hawking argued that the unification of quantum mechanics and general relativity into one theory was inevitable and that the coming age of computers would render physicists obsolete, if not physics itself.

Of course, Hawking has become rather well known for jumping way out on a limb with his public remarks and for decades he embraced supergravity as having the potential to solve theoretical physicist's ills, even hosting a major conference on it in 1982. However, but Hawking has never harbored allegiances to theories that describe a physical reality.

So, while two well-known physicists coming out against a theory of everything is compelling, it really shouldn't seem like anything new for Hawking.
"I take the positivist view point that a physical theory is just a mathematical model and that it is meaningless to ask whether it corresponds to reality. All that one can ask is that its predictions should be in agreement with observation."
Stephen hawking, The Nature of Space and Time (1996)

An Open Letter to "Duck Dynasty" and Supporters

Posted: 12/23/2013 8:43 am                                                                                                     
  

Last week two members of the all-woman band "Pussy Riot" were being freed from prison after serving over a year because they had the audacity to peacefully protest the Russian government and its oppressive policies.

That would never happen in this country. What we call--and you yell--"Freedom of Speech" is meant to protect the right of any citizen to say whatever they wish (within reason of public safety) without repercussions from the government.

Though it's certainly a heated debate, the spirit of freedom of speech is in protecting the opinion of the minority on an issue--whether that be a minority of background or population or power. It's meant to give everyone the chance to voice their opinion.

And although your opinion on homosexuality is now in the minority in this country, your privilege as straight folks to say things that perpetuate dangerous myths and hatred has helped keep in place laws that treat those in the LGBT community as second class citizens.

The First Amendment ONLY guarantees the government can't oppress you for your opinions, it does not dictate to private entities what they can and cannot do in regards to the words that come out of your mouth.

So, when you say stupid shit like "I never, with my eyes, saw the mistreatment of any black person. Not once." or "whether they're homosexuals, drunks, terrorists. We let God sort 'em out later, you see what I'm saying?" or literally compare non-Christians to Nazis, a private company like A&E has every right to can your ass, regardless of who does and does not agree with them.

Further, I've noticed a strange absence of that much-heralded "let the free market do its job" commentary that was so prevalent when folks were boycotting Chick-fil-A for their anti-gay bigotry. Now, that A&E has literally made a decision in response to the market, you're crying foul. What happened to capitalism being a driving force for social equality?

You absolutely have freedom of speech, but you do not have the right to a guaranteed audience or freedom from criticism or freedom from private sector consequences.

So, please take your duck whistles and complaints to the nearest Chick-fil-A and let the rest of us celebrate the triumph of the human spirit and actual bravery in free speech with those folks from Pussy Riot.
 
          Follow Charles Clymer on Twitter: www.twitter.com/cmclymer
 

Indonesia cave reveals history of ancient tsunamis

Read more at http://www.philly.com/philly/news/nation_world/20131224_ap_13f270d59776449c9fd9890c6dccf395.html#idC1bUcJWibKebEQ.99
 

In this Monday, Dec. 2, 2013 photo, a guide uses candles to illuminate the interior of a cave which scientists said reveals a history of ancient tsunamis in Lhong, Aceh province, Indonesia. The cave discovered near the source of 2004´s massive earthquake-spawned tsunami in Indonesia contains the footprints of past gigantic waves dating up to 7,500 years ago, a rare natural record suggesting future generations living in the coastal area must stay prepared because disasters can occur in relatively short bursts or after long lulls. (AP Photo/Heri Juanda)

In this Monday, Dec. 2, 2013 photo, a guide uses candles to illuminate the interior of a cave which scientists said reveals a history of ancient tsunamis in Lhong, Aceh province, Indonesia. The cave discovered near the source of 2004's massive earthquake-spawned tsunami in Indonesia contains the footprints of past gigantic waves dating up to 7,500 years ago, a rare natural record suggesting future generations living in the coastal area must stay prepared because disasters can occur in relatively short bursts or after long lulls. (AP Photo/Heri Juanda)
             
MARGIE MASON, The Associated Press
JAKARTA, Indonesia (AP) - A cave discovered near the source of Indonesia's massive earthquake-spawned tsunami contains the footprints of past gigantic waves dating up to 7,500 years ago, a rare natural record that suggests the next disaster could be centuries away - or perhaps only decades.
The findings provide the longest and most detailed timeline for tsunamis that have occurred off the far western tip of Sumatra island in Aceh province. That's where 100-foot (30-meter) waves triggered by a magnitude-9.1 earthquake on Dec. 26, 2004, killed 230,000 people in several countries, more than half of them in Indonesia.

The limestone cave, located within a couple hundred yards (meters) of the coast near Banda Aceh, is about 3 feet (1 meter) above knee-high tide and protected from storms and wind. Only huge waves that inundate the coastal area are able to gush inside.

Researchers in 2011 uncovered seabed sand deposits that were swept into the cave over thousands of years and neatly layered between bat droppings like a geological cake. Radiocarbon analysis of materials, including clamshells and the remains of microscopic organisms, provided evidence of 11 tsunamis before 2004.

The disasters were by no means evenly spaced, said lead researcher Charles Rubin from the Earth Observatory of Singapore. The last one occurred about 2,800 years ago, but there were four others in the preceding 500 years.

And it's possible there were others. Researchers know, for instance, that there were two mammoth earthquakes in the region around 1393 and 1450. Rubin said a big tsunami could have carried away evidence of other events through erosion.

The scientists are still working to determine the size of the waves that entered the cave.

"The take-home message is perhaps that the 2004 event doesn't mean it won't happen for another 500 years," said Rubin, who added that the cave was discovered by chance and not part of planned field work. "We did see them clustered together closer in time. I wouldn't put out a warning that we're going to have an earthquake, but it shows that the timing is really variable."

The quake that triggered the 2004 tsunami surprised scientists because the fault that unleashed the megathrust temblor had been quiet for hundreds of years. And since the last big earthquake had struck more than 500 years earlier, there was no surviving oral history that could have helped people understand the risk.

Since 2004, much research has been done to try to learn about the area's past by examining sand deposits, uplifted coral and GPS data.

"The findings are very significant," Katrin Monecke, a geosciences professor at Wellesley College in Massachusetts wrote in an email. She worked on tsunami sand deposits discovered in marshes in the area, but was not involved with the cave research, which was presented this month at an American
Geophysical Union conference in San Francisco. "The sand sheets in the cave cover a very long time span and give an excellent idea about earthquake frequency."

Despite the long record preserved in the cave, Rubin said it did not provide any clear clues about tsunami frequency or when events might happen in a relatively close period of time.

Geologist Kerry Sieh, director of the Singapore group and also part of the cave investigation, has predicted that another monster quake could rock the area in the next few decades. They tend to come in cycles and the 2004 temblor heaped more pressure on the fault. However, the history is so variable, it's impossible to make an exact forecast.

"By learning about the type of tsunamis that happened in the past, maybe we can do planning for mitigation for the next tsunami," said Nazli Ismail, head of the physics and geophysics department at Syiah Kuala University in Banda Aceh who worked on the project.

Indonesia is an archipelago located on the so-called "Ring of Fire," a horseshoe of fault lines and volcanoes surrounding the Pacific Basin. It is home to some of the world's biggest and deadliest seismic activity.

Isaac Newton - Born December 25, 1642

Isaac Newton - Wikipedia, the free encyclopedia
David Strumfels -- Newton is widely regarded as the most brilliant scientist who ever lived.



Sir Isaac Newton PRS MP (/ˈnjtən/;[8] 25 December 1642 – 20 March 1727) was an English physicist and mathematician who is widely regarded as one of the most influential scientists of all time and as a key figure in the scientific revolution. His book Philosophiæ Naturalis Principia Mathematica ("Mathematical Principles of Natural Philosophy"), first published in 1687, laid the foundations for most of classical mechanics. Newton also made seminal contributions to optics and shares credit with Gottfried Leibniz for the invention of the infinitesimal calculus.

Newton's Principia formulated the laws of motion and universal gravitation that dominated scientists' view of the physical universe for the next three centuries. It also demonstrated that the motion of objects on the Earth and that of celestial bodies could be described by the same principles. By deriving Kepler's laws of planetary motion from his mathematical description of gravity, Newton removed the last doubts about the validity of the heliocentric model of the cosmos.

Newton built the first practical reflecting telescope and developed a theory of colour based on the observation that a prism decomposes white light into the many colours of the visible spectrum. He also formulated an empirical law of cooling and studied the speed of sound. In addition to his work on the calculus, as a mathematician Newton contributed to the study of power series, generalised the binomial theorem to non-integer exponents, and developed Newton's method for approximating the roots of a function.

Newton was a fellow of Trinity College and the second Lucasian Professor of Mathematics at the University of Cambridge. He was a devout but unorthodox Christian and, unusually for a member of the Cambridge faculty, he refused to take holy orders in the Church of England, perhaps because he privately rejected the doctrine of the Trinity. In addition to his work on the mathematical sciences,
Newton also dedicated much of his time to the study of alchemy and biblical chronology, but most of his work in those areas remained unpublished until long after his death. In his later life, Newton became president of the Royal Society. He also served the British government as Warden and Master of the Royal Mint.

Peel Commission

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Peel_Commission   Report of the Palest...