Search This Blog

Monday, June 11, 2018

Entropic gravity

From Wikipedia, the free encyclopedia



The theory of entropic gravity abides by Newton's law of universal gravitation on Earth and at interplanetary distances but diverges from this classic nature at interstellar distances.

Entropic gravity, also known as emergent gravity, is a theory in modern physics that describes gravity as an entropic force—a force with macro-scale homogeneity but which is subject to quantum-level disorder—and not a fundamental interaction. The theory, based on string theory, black hole physics, and quantum information theory, describes gravity as an emergent phenomenon that springs from the quantum entanglement of small bits of spacetime information. As such, entropic gravity is said to abide by the second law of thermodynamics under which the entropy of a physical system tends to increase over time.

At its simplest, the theory holds that when gravity becomes vanishingly weak—levels seen only at interstellar distances—it diverges from its classically understood nature and its strength begins to decay linearly with distance from a mass.

Entropic gravity provides the underlying framework to explain Modified Newtonian Dynamics, or MOND, which holds that at a gravitational acceleration threshold of approximately 1.2×10−10 m/s², gravitational strength begins to vary inversely (linearly) with distance from a mass rather than the normal inverse-square law of the distance. This is an exceedingly low threshold, measuring only 12 trillionths gravity’s strength at earth’s surface; an object dropped from a height of one meter would fall for 36 hours were earth’s gravity this weak. It is also 3,000 times less than exists at the point where Voyager 1 crossed our solar system’s heliopause and entered interstellar space.

The theory claims to be consistent with both the macro-level observations of Newtonian gravity as well as Einstein's theory of general relativity and its gravitational distortion of spacetime. Importantly, the theory also explains (without invoking the existence of dark matter and its accompanying math featuring new free parameters that are tweaked to obtain the desired outcome) why galactic rotation curves differ from the profile expected with visible matter[citation needed].

The theory of entropic gravity posits that what has been interpreted as unobserved dark matter is actually the product of quantum effects that can be regarded as a form of positive dark energy that lifts the vacuum energy of space from its ground state value. A central tenet of the theory is that the positive dark energy leads to a thermal-volume law contribution to entropy that overtakes the area law of anti-de Sitter space precisely at the cosmological horizon.

The theory has been controversial within the physics community but has sparked research and experiments to test its validity.

Origin

The thermodynamic description of gravity has a history that goes back at least to research on black hole thermodynamics by Bekenstein and Hawking in the mid-1970s. These studies suggest a deep connection between gravity and thermodynamics, which describes the behavior of heat. In 1995, Jacobson demonstrated that the Einstein field equations describing relativistic gravitation can be derived by combining general thermodynamic considerations with the equivalence principle.[1] Subsequently, other physicists, most notably Thanu Padmanabhan, began to explore links between gravity and entropy.[2][3]

Erik Verlinde's theory

In 2009, Erik Verlinde proposed a conceptual model that describes gravity as an entropic force.[4] He argues (similar to Jacobson's result) that gravity is a consequence of the "information associated with the positions of material bodies".[5] This model combines the thermodynamic approach to gravity with Gerard 't Hooft's holographic principle. It implies that gravity is not a fundamental interaction, but an emergent phenomenon which arises from the statistical behavior of microscopic degrees of freedom encoded on a holographic screen. The paper drew a variety of responses from the scientific community. Andrew Strominger, a string theorist at Harvard said "Some people have said it can't be right, others that it's right and we already knew it — that it’s right and profound, right and trivial."[6]

In July 2011, Verlinde presented the further development of his ideas in a contribution to the Strings 2011 conference, including an explanation for the origin of dark matter.[7]

Verlinde's article also attracted a large amount of media exposure,[8][9] and led to immediate follow-up work in cosmology,[10][11] the dark energy hypothesis,[12] cosmological acceleration,[13][14] cosmological inflation,[15] and loop quantum gravity.[16] Also, a specific microscopic model has been proposed that indeed leads to entropic gravity emerging at large scales.[17]

Derivation of the law of gravitation

The law of gravitation is derived from classical statistical mechanics applied to the holographic principle, that states that the description of a volume of space can be thought of as N bits of binary information, encoded on a boundary to that region, a closed surface of area A. The information is evenly distributed on the surface with each bit requiring an area equal to {\displaystyle \ell _{\text{P}}^{2}}, the so-called Planck area, from which N can thus be computed:
{\displaystyle N={\frac {A}{\ell _{\text{P}}^{2}}}}
where \ell_\text{P} is the Planck length. The Planck length is defined as:
{\displaystyle \ell _{\text{P}}={\sqrt {\frac {\hbar G}{c^{3}}}}}
where G is the universal gravitational constant, c is the speed of light, and \hbar is the reduced Planck constant. When substituted in the equation for N we find:
{\displaystyle N={\frac {Ac^{3}}{\hbar G}}}
The statistical equipartition theorem defines the temperature T of a system with N degrees of freedom in terms of its energy E such that:
{\displaystyle E={\frac {1}{2}}Nk_{\text{B}}T}
where k_{\text{B}} is the Boltzmann constant. This is the equivalent energy for a mass M according to:
{\displaystyle E=Mc^{2}}.
The effective temperature experienced due to a uniform acceleration in a vacuum field according to the Unruh effect is:
{\displaystyle T={\frac {\hbar a}{2\pi ck_{\text{B}}}}},
where a is that acceleration, which for a mass m would be attributed to a force F according to Newton's second law of motion:
F=ma.
Taking the holographic screen to be a sphere of radius r, the surface area would be given by:
A=4\pi r^{2}.
From algebraic substitution of these into the above relations, one derives from first principles Newton's law of universal gravitation:
{\displaystyle F=m{\frac {2\pi ck_{\text{B}}T}{\hbar }}=m{\frac {4\pi c}{\hbar }}{\frac {E}{N}}=m{\frac {4\pi c^{3}}{\hbar }}{\frac {M}{N}}=m4\pi {\frac {GM}{A}}=G{\frac {mM}{r^{2}}}}.

Criticism and experimental tests

Entropic gravity, as proposed by Verlinde in his original article, reproduces the Einstein field equations and, in a Newtonian approximation, a 1/r potential for gravitational forces. Since its results do not differ from Newtonian gravity except in regions of extremely small gravitational fields, testing the theory with earth-based laboratory experiments doesn’t appear feasible. Spacecraft-based experiments performed at Lagrangian points within our solar system would be expensive and challenging.

Even so, entropic gravity in its current form has been severely challenged on formal grounds. Matt Visser has shown[18] that the attempt to model conservative forces in the general Newtonian case (i.e. for arbitrary potentials and an unlimited number of discrete masses) leads to unphysical requirements for the required entropy and involves an unnatural number of temperature baths of differing temperatures. Visser concludes:
There is no reasonable doubt concerning the physical reality of entropic forces, and no reasonable doubt that classical (and semi-classical) general relativity is closely related to thermodynamics [52–55]. Based on the work of Jacobson [1–6], Thanu Padmanabhan [7– 12], and others, there are also good reasons to suspect a thermodynamic interpretation of the fully relativistic Einstein equations might be possible. Whether the specific proposals of Verlinde [26] are anywhere near as fundamental is yet to be seen — the rather baroque construction needed to accurately reproduce n-body Newtonian gravity in a Verlinde-like setting certainly gives one pause.
For the derivation of Einstein's equations from an entropic gravity perspective, Tower Wang shows [19] that the inclusion of energy-momentum conservation and cosmological homogeneity and isotropy requirements severely restrict a wide class of potential modifications of entropic gravity, some of which have been used to generalize entropic gravity beyond the singular case of an entropic model of Einstein's equations. Wang asserts that:
As indicated by our results, the modified entropic gravity models of form (2), if not killed, should live in a very narrow room to assure the energy-momentum conservation and to accommodate a homogeneous isotropic universe.
Cosmological observations using available technology can be used to test the theory, and a team from Leiden Observatory statistically observing the lensing effect of gravitational fields at large distances from the centers of more than 33,000 galaxies, found that those gravitational fields were consistent with Verlinde's theory.[20][21][22] Using conventional gravitational theory, the fields implied by these observations (as well as from measured galaxy rotation curves) could only be ascribed to a particular distribution of dark matter.

In June 2017, a study by Princeton University researcher Kris Pardo asserted that Verlinde's theory is inconsistent with the observed rotation velocities of dwarf galaxies.[23][24]

Entropic gravity and quantum coherence

Another criticism of entropic gravity is that entropic processes should, as critics argue, break quantum coherence. Experiments with ultra-cold neutrons in the gravitational field of Earth are claimed to show that neutrons lie on discrete levels exactly as predicted by the Schrödinger equation considering the gravitation to be a conservative potential field without any decoherent factors. Archil Kobakhidze argues that this result disproves entropic gravity.[25] Luboš Motl gives explanations of this position in his blog,[26][27] while Chaichian et al. suggest a potential loophole in the argument in weak gravitational fields such as those affecting Earth-bound experiments.[28]

Holographic principle

From Wikipedia, the free encyclopedia

The holographic principle is a principle of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region—preferably a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string-theory interpretation by Leonard Susskind[1] who combined his ideas with previous ones of 't Hooft and Charles Thorn.[1][2] As pointed out by Raphael Bousso,[3] Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.

The holographic principle was inspired by black hole thermodynamics, which conjectures that the maximal entropy in any region scales with the radius squared, and not cubed as might be expected. In the case of a black hole, the insight was that the informational content of all the objects that have fallen into the hole might be entirely contained in surface fluctuations of the event horizon. The holographic principle resolves the black hole information paradox within the framework of string theory.[4] However, there exist classical solutions to the Einstein equations that allow values of the entropy larger than those allowed by an area law, hence in principle larger than those of a black hole. These are the so-called "Wheeler's bags of gold". The existence of such solutions conflicts with the holographic interpretation, and their effects in a quantum theory of gravity including the holographic principle are not yet fully understood.[5]

The AdS/CFT correspondence

The anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.
The duality represents a major advance in our understanding of string theory and quantum gravity.[6] This is because it provides a non-perturbative formulation of string theory with certain boundary conditions and because it is the most successful realization of the holographic principle, an idea in quantum gravity originally proposed by Gerard 't Hooft and promoted by Leonard Susskind.

It also provides a powerful toolkit for studying strongly coupled quantum field theories.[7] Much of the usefulness of the duality results from the fact that it is a strong-weak duality: when the fields of the quantum field theory are strongly interacting, the ones in the gravitational theory are weakly interacting and thus more mathematically tractable. This fact has been used to study many aspects of nuclear and condensed matter physics by translating problems in those subjects into more mathematically tractable problems in string theory.

The AdS/CFT correspondence was first proposed by Juan Maldacena in late 1997. Important aspects of the correspondence were elaborated in articles by Steven Gubser, Igor Klebanov, and Alexander Markovich Polyakov, and by Edward Witten. By 2015, Maldacena's article had over 10,000 citations, becoming the most highly cited article in the field of high energy physics.[8]

Black hole entropy

An object with relatively high entropy is microscopically random, like a hot gas. A known configuration of classical fields has zero entropy: there is nothing random about electric and magnetic fields, or gravitational waves. Since black holes are exact solutions of Einstein's equations, they were thought not to have any entropy either.
But Jacob Bekenstein noted that this leads to a violation of the second law of thermodynamics. If one throws a hot gas with entropy into a black hole, once it crosses the event horizon, the entropy would disappear. The random properties of the gas would no longer be seen once the black hole had absorbed the gas and settled down. One way of salvaging the second law is if black holes are in fact random objects with an entropy that increases by an amount greater than the entropy of the consumed gas.

Bekenstein assumed that black holes are maximum entropy objects—that they have more entropy than anything else in the same volume. In a sphere of radius R, the entropy in a relativistic gas increases as the energy increases. The only known limit is gravitational; when there is too much energy [entropy?] the gas collapses into a black hole. Bekenstein used this to put an upper bound on the entropy in a region of space, and the bound was proportional to the area of the region. He concluded that the black hole entropy is directly proportional to the area of the event horizon.[9]

Stephen Hawking had shown earlier that the total horizon area of a collection of black holes always increases with time. The horizon is a boundary defined by light-like geodesics; it is those light rays that are just barely unable to escape. If neighboring geodesics start moving toward each other they eventually collide, at which point their extension is inside the black hole. So the geodesics are always moving apart, and the number of geodesics which generate the boundary, the area of the horizon, always increases. Hawking's result was called the second law of black hole thermodynamics, by analogy with the law of entropy increase, but at first, he did not take the analogy too seriously.

Hawking knew that if the horizon area were an actual entropy, black holes would have to radiate. When heat is added to a thermal system, the change in entropy is the increase in mass-energy divided by temperature:
{\displaystyle {\rm {d}}S={\frac {{\rm {\delta }}M\ c^{2}}{T}}.}
(Here the term δM c2 is substituted for the thermal energy added to the system, generally by non-integrable random processes, in contrast to dS, which is a function of a few "state variables" only, i.e. in conventional thermodynamics only of the Kelvin temperature T and a few additional state variables as, e.g., the pressure)

If black holes have a finite entropy, they should also have a finite temperature. In particular, they would come to equilibrium with a thermal gas of photons. This means that black holes would not only absorb photons, but they would also have to emit them in the right amount to maintain detailed balance.

Time-independent solutions to field equations do not emit radiation, because a time-independent background conserves energy. Based on this principle, Hawking set out to show that black holes do not radiate. But, to his surprise, a careful analysis convinced him that they do, and in just the right way to come to equilibrium with a gas at a finite temperature. Hawking's calculation fixed the constant of proportionality at 1/4; the entropy of a black hole is one quarter its horizon area in Planck units.[10]

The entropy is proportional to the logarithm of the number of microstates, the ways a system can be configured microscopically while leaving the macroscopic description unchanged. Black hole entropy is deeply puzzling — it says that the logarithm of the number of states of a black hole is proportional to the area of the horizon, not the volume in the interior.[11]

Later, Raphael Bousso came up with a covariant version of the bound based upon null sheets.[12]

Black hole information paradox

Hawking's calculation suggested that the radiation which black holes emit is not related in any way to the matter that they absorb. The outgoing light rays start exactly at the edge of the black hole and spend a long time near the horizon, while the infalling matter only reaches the horizon much later. The infalling and outgoing mass/energy interact only when they cross. It is implausible that the outgoing state would be completely determined by some tiny residual scattering.[13]

Hawking interpreted this to mean that when black holes absorb some photons in a pure state described by a wave function, they re-emit new photons in a thermal mixed state described by a density matrix. This would mean that quantum mechanics would have to be modified because, in quantum mechanics, states which are superpositions with probability amplitudes never become states which are probabilistic mixtures of different possibilities.[note 1]

Troubled by this paradox, Gerard 't Hooft analyzed the emission of Hawking radiation in more detail.[14] He noted that when Hawking radiation escapes, there is a way in which incoming particles can modify the outgoing particles. Their gravitational field would deform the horizon of the black hole, and the deformed horizon could produce different outgoing particles than the undeformed horizon. When a particle falls into a black hole, it is boosted relative to an outside observer, and its gravitational field assumes a universal form. 't Hooft showed that this field makes a logarithmic tent-pole shaped bump on the horizon of a black hole, and like a shadow, the bump is an alternative description of the particle's location and mass. For a four-dimensional spherical uncharged black hole, the deformation of the horizon is similar to the type of deformation which describes the emission and absorption of particles on a string-theory world sheet. Since the deformations on the surface are the only imprint of the incoming particle, and since these deformations would have to completely determine the outgoing particles, 't Hooft believed that the correct description of the black hole would be by some form of string theory.

This idea was made more precise by Leonard Susskind, who had also been developing holography, largely independently. Susskind argued that the oscillation of the horizon of a black hole is a complete description[note 2] of both the infalling and outgoing matter, because the world-sheet theory of string theory was just such a holographic description. While short strings have zero entropy, he could identify long highly excited string states with ordinary black holes. This was a deep advance because it revealed that strings have a classical interpretation in terms of black holes.

This work showed that the black hole information paradox is resolved when quantum gravity is described in an unusual string-theoretic way assuming the string-theoretical description is complete, unambiguous and non-redundant.[16] The space-time in quantum gravity would emerge as an effective description of the theory of oscillations of a lower-dimensional black-hole horizon, and suggest that any black hole with appropriate properties, not just strings, would serve as a basis for a description of string theory.

In 1995, Susskind, along with collaborators Tom Banks, Willy Fischler, and Stephen Shenker, presented a formulation of the new M-theory using a holographic description in terms of charged point black holes, the D0 branes of type IIA string theory. The matrix theory they proposed was first suggested as a description of two branes in 11-dimensional supergravity by Bernard de Wit, Jens Hoppe, and Hermann Nicolai. The later authors reinterpreted the same matrix models as a description of the dynamics of point black holes in particular limits. Holography allowed them to conclude that the dynamics of these black holes give a complete non-perturbative formulation of M-theory. In 1997, Juan Maldacena gave the first holographic descriptions of a higher-dimensional object, the 3+1-dimensional type IIB membrane, which resolved a long-standing problem of finding a string description which describes a gauge theory. These developments simultaneously explained how string theory is related to some forms of supersymmetric quantum field theories.

Limit on information density

Entropy, if considered as information (see information entropy), is measured in bits. The total quantity of bits is related to the total degrees of freedom of matter/energy.

For a given energy in a given volume, there is an upper limit to the density of information (the Bekenstein bound) about the whereabouts of all the particles which compose matter in that volume, suggesting that matter itself cannot be subdivided infinitely many times and there must be an ultimate level of fundamental particles. As the degrees of freedom of a particle are the product of all the degrees of freedom of its sub-particles, were a particle to have infinite subdivisions into lower-level particles, the degrees of freedom of the original particle would be infinite, violating the maximal limit of entropy density. The holographic principle thus implies that the subdivisions must stop at some level, and that the fundamental particle is a bit (1 or 0) of information.

The most rigorous realization of the holographic principle is the AdS/CFT correspondence by Juan Maldacena. However, J.D. Brown and Marc Henneaux had rigorously proved already in 1986, that the asymptotic symmetry of 2+1 dimensional gravity gives rise to a Virasoro algebra, whose corresponding quantum theory is a 2-dimensional conformal field theory.[17]

High-level summary

The physical universe is widely seen to be composed of "matter" and "energy". In his 2003 article published in Scientific American magazine, Jacob Bekenstein speculatively summarized a current trend started by John Archibald Wheeler, which suggests scientists may "regard the physical world as made of information, with energy and matter as incidentals." Bekenstein asks "Could we, as William Blake memorably penned, 'see a world in a grain of sand,' or is that idea no more than 'poetic license,'"[18] referring to the holographic principle.

Unexpected connection

Bekenstein's topical overview "A Tale of Two Entropies"[19] describes potentially profound implications of Wheeler's trend, in part by noting a previously unexpected connection between the world of information theory and classical physics. This connection was first described shortly after the seminal 1948 papers of American applied mathematician Claude E. Shannon introduced today's most widely used measure of information content, now known as Shannon entropy. As an objective measure of the quantity of information, Shannon entropy has been enormously useful, as the design of all modern communications and data storage devices, from cellular phones to modems to hard disk drives and DVDs, rely on Shannon entropy.

In thermodynamics (the branch of physics dealing with heat), entropy is popularly described as a measure of the "disorder" in a physical system of matter and energy. In 1877 Austrian physicist Ludwig Boltzmann described it more precisely in terms of the number of distinct microscopic states that the particles composing a macroscopic "chunk" of matter could be in, while still looking like the same macroscopic "chunk". As an example, for the air in a room, its thermodynamic entropy would equal the logarithm of the count of all the ways that the individual gas molecules could be distributed in the room, and all the ways they could be moving.

Energy, matter, and information equivalence

Shannon's efforts to find a way to quantify the information contained in, for example, a telegraph message, led him unexpectedly to a formula with the same form as Boltzmann's. In an article in the August 2003 issue of Scientific American titled "Information in the Holographic Universe", Bekenstein summarizes that "Thermodynamic entropy and Shannon entropy are conceptually equivalent: the number of arrangements that are counted by Boltzmann entropy reflects the amount of Shannon information one would need to implement any particular arrangement..." of matter and energy. The only salient difference between the thermodynamic entropy of physics and Shannon's entropy of information is in the units of measure; the former is expressed in units of energy divided by temperature, the latter in essentially dimensionless "bits" of information.

The holographic principle states that the entropy of ordinary mass (not just black holes) is also proportional to surface area and not volume; that volume itself is illusory and the universe is really a hologram which is isomorphic to the information "inscribed" on the surface of its boundary.[11]

Experimental tests

The Fermilab physicist Craig Hogan claims that the holographic principle would imply quantum fluctuations in spatial position[20] that would lead to apparent background noise or "holographic noise" measurable at gravitational wave detectors, in particular GEO 600.[21] However these claims have not been widely accepted, or cited, among quantum gravity researchers and appear to be in direct conflict with string theory calculations.[22]

Analyses in 2011 of measurements of gamma ray burst GRB 041219A in 2004 by the INTEGRAL space observatory launched in 2002 by the European Space Agency shows that Craig Hogan's noise is absent down to a scale of 10−48 meters, as opposed to scale of 10−35 meters predicted by Hogan, and the scale of 10−16 meters found in measurements of the GEO 600 instrument.[23] Research continues at Fermilab under Hogan as of 2013.[24]

Jacob Bekenstein also claimed to have found a way to test the holographic principle with a tabletop photon experiment.[25]

Shape of the universe

From Wikipedia, the free encyclopedia
The shape of the universe is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes general global properties of its shape as of a continuous object. The shape of the universe is related to general relativity which describes how spacetime is curved and bent by mass and energy.

Cosmologists distinguish between the observable universe and the global universe. The observable universe consists of the part of the universe that can, in principle, be observed by light reaching Earth within the age of the universe. It encompasses a region of space which currently forms a ball centered at Earth of estimated radius 46 billion light-years (4.4×1026 m). This does not mean the universe is 46 billion years old; in fact the universe is believed to be 13.799 billion years old but space itself has also expanded causing the size of the observable universe to be as stated. (However, it is possible to observe these distant areas only in their very distant past, when the distance light had to travel was much less). Assuming an isotropic nature, the observable universe is similar for all contemporary vantage points.

According to the book Our Mathematical Universe[clarification needed], the shape of the global universe can be explained with three categories:[1]
  1. Finite or infinite
  2. Flat (no curvature), open (negative curvature), or closed (positive curvature)
  3. Connectivity, how the universe is put together, i.e., simply connected space or multiply connected.
There are certain logical connections among these properties. For example, a universe with positive curvature is necessarily finite.[2] Although it is usually assumed in the literature that a flat or negatively curved universe is infinite, this need not be the case if the topology is not the trivial one.[2]

The exact shape is still a matter of debate in physical cosmology, but experimental data from various, independent sources (WMAP, BOOMERanG, and Planck for example) confirm that the observable universe is flat with only a 0.4% margin of error.[3][4][5] Theorists have been trying to construct a formal mathematical model of the shape of the universe. In formal terms, this is a 3-manifold model corresponding to the spatial section (in comoving coordinates) of the 4-dimensional spacetime of the universe. The model most theorists currently use is the Friedmann–Lemaître–Robertson–Walker (FLRW) model. Arguments have been put forward that the observational data best fit with the conclusion that the shape of the global universe is infinite and flat,[6] but the data are also consistent with other possible shapes, such as the so-called Poincaré dodecahedral space[7][8] and the Sokolov–Starobinskii space (quotient of the upper half-space model of hyperbolic space by 2-dimensional lattice).[9]

Shape of the observable universe

As stated in the introduction, there are two aspects to consider:
  1. its local geometry, which predominantly concerns the curvature of the universe, particularly the observable universe, and
  2. its global geometry, which concerns the topology of the universe as a whole.
The observable universe can be thought of as a sphere that extends outwards from any observation point for 46.5 billion light years, going farther back in time and more redshifted the more distant away one looks. Ideally, one can continue to look back all the way to the Big Bang; in practice, however, the farthest away one can look using light and other electromagnetic radiation is the cosmic microwave background (CMB), as anything past that was opaque. Experimental investigations show that the observable universe is very close to isotropic and homogeneous.

If the observable universe encompasses the entire universe, we may be able to determine the global structure of the entire universe by observation. However, if the observable universe is smaller than the entire universe, our observations will be limited to only a part of the whole, and we may not be able to determine its global geometry through measurement. From experiments, it is possible to construct different mathematical models of the global geometry of the entire universe all of which are consistent with current observational data and so it is currently unknown whether the observable universe is identical to the global universe or it is instead many orders of magnitude smaller than it. The universe may be small in some dimensions and not in others (analogous to the way a cuboid is longer in the dimension of length than it is in the dimensions of width and depth). To test whether a given mathematical model describes the universe accurately, scientists look for the model's novel implications—what are some phenomena in the universe that we have not yet observed, but that must exist if the model is correct—and they devise experiments to test whether those phenomena occur or not. For example, if the universe is a small closed loop, one would expect to see multiple images of an object in the sky, although not necessarily images of the same age.

Cosmologists normally work with a given space-like slice of spacetime called the comoving coordinates, the existence of a preferred set of which is possible and widely accepted in present-day physical cosmology. The section of spacetime that can be observed is the backward light cone (all points within the cosmic light horizon, given time to reach a given observer), while the related term Hubble volume can be used to describe either the past light cone or comoving space up to the surface of last scattering. To speak of "the shape of the universe (at a point in time)" is ontologically naive from the point of view of special relativity alone: due to the relativity of simultaneity we cannot speak of different points in space as being "at the same point in time" nor, therefore, of "the shape of the universe at a point in time". However, the comoving coordinates (if well-defined) provide a strict sense to those by using the time since the Big Bang (measured in the reference of CMB) as a distinguished universal time.

Curvature of the universe

The curvature is a quantity describing how the geometry of a space differs locally from the one of the flat space. The curvature of any locally isotropic space (and hence of a locally isotropic universe) falls into one of the three following cases:
  1. Zero curvature (flat); a drawn triangle's angles add up to 180° and the Pythagorean theorem holds; such 3-dimensional space is locally modeled by Euclidean space E3.
  2. Positive curvature; a drawn triangle's angles add up to more than 180°; such 3-dimensional space is locally modeled by a region of a 3-sphere S3.
  3. Negative curvature; a drawn triangle's angles add up to less than 180°; such 3-dimensional space is locally modeled by a region of a hyperbolic space H3.
Curved geometries are in the domain of Non-Euclidean geometry. An example of a positively curved space would be the surface of a sphere such as the Earth. A triangle drawn from the equator to a pole will have at least two angles equal 90°, which makes the sum of the 3 angles greater than 180°. An example of a negatively curved surface would be the shape of a saddle or mountain pass. A triangle drawn on a saddle surface will have the sum of the angles adding up to less than 180°.


The local geometry of the universe is determined by whether the density parameter Ω is greater than, less than, or equal to 1.

From top to bottom: a spherical universe with Ω > 1, a hyperbolic universe with Ω < 1, and a flat universe with Ω = 1. These depictions of two-dimensional surfaces are merely easily visualizable analogs to the 3-dimensional structure of (local) space.

General relativity explains that mass and energy bend the curvature of spacetime and is used to determine what curvature the universe has by using a value called the density parameter, represented with Omega (Ω). The density parameter is the average density of the universe divided by the critical energy density, that is, the mass energy needed for a universe to be flat. Put another way,
  • If Ω = 1, the universe is flat
  • If Ω > 1, there is positive curvature
  • if Ω < 1 there is negative curvature
One can experimentally calculate this Ω to determine the curvature two ways. One is to count up all the mass-energy in the universe and take its average density then divide that average by the critical energy density. Data from Wilkinson Microwave Anisotropy Probe (WMAP) as well as the Planck spacecraft give values for the three constituents of all the mass-energy in the universe – normal mass (baryonic matter and dark matter), relativistic particles (photons and neutrinos), and dark energy or the cosmological constant:[10][11]

Ωmass ≈ 0.315±0.018
Ωrelativistic ≈ 9.24×10−5
ΩΛ ≈ 0.6817±0.0018
Ωtotal= Ωmass + Ωrelativistic + ΩΛ= 1.00±0.02

The actual value for critical density value is measured as ρcritical= 9.47×10−27 kg m−3. From these values, within experimental error, the universe seems to be flat.

Another way to measure Ω is to do so geometrically by measuring an angle across the observable universe. We can do this by using the CMB and measuring the power spectrum and temperature anisotropy. For an intuition, one can imagine finding a gas cloud that is not in thermal equilibrium due to being so large that light speed cannot propagate the thermal information. Knowing this propagation speed, we then know the size of the gas cloud as well as the distance to the gas cloud, we then have two sides of a triangle and can then determine the angles. Using a method similar to this, the BOOMERanG experiment has determined that the sum of the angles to 180° within experimental error, corresponding to an Ωtotal ≈ 1.00±0.12.[12]

These and other astronomical measurements constrain the spatial curvature to be very close to zero, although they do not constrain its sign. This means that although the local geometries of spacetime are generated by the theory of relativity based on spacetime intervals, we can approximate 3-space by the familiar Euclidean geometry.

The Friedmann–Lemaître–Robertson–Walker (FLRW) model using Friedmann equations is commonly used to model the universe. The FLRW model provides a curvature of the universe based on the mathematics of fluid dynamics, that is, modeling the matter within the universe as a perfect fluid. Although stars and structures of mass can be introduced into an "almost FLRW" model, a strictly FLRW model is used to approximate the local geometry of the observable universe. Another way of saying this is that if all forms of dark energy are ignored, then the curvature of the universe can be determined by measuring the average density of matter within it, assuming that all matter is evenly distributed (rather than the distortions caused by 'dense' objects such as galaxies). This assumption is justified by the observations that, while the universe is "weakly" inhomogeneous and anisotropic (see the large-scale structure of the cosmos), it is on average homogeneous and isotropic.

Global universe structure

Global structure covers the geometry and the topology of the whole universe—both the observable universe and beyond. While the local geometry does not determine the global geometry completely, it does limit the possibilities, particularly a geometry of a constant curvature. The universe is often taken to be a geodesic manifold, free of topological defects; relaxing either of these complicates the analysis considerably. A global geometry is a local geometry plus a topology. It follows that a topology alone does not give a global geometry: for instance, Euclidean 3-space and hyperbolic 3-space have the same topology but different global geometries.

As stated in the introduction, investigations within the study of the global structure of the universe include:
  • Whether the universe is infinite or finite in extent
  • Whether the geometry of the global universe is flat, positively curved, or negatively curved
  • Whether the topology is simply connected like a sphere or multiply connected, like a torus[13]

Infinite or finite

One of the presently unanswered questions about the universe is whether it is infinite or finite in extent. For intuition, it can be understood that a finite universe has a finite volume that, for example, could be in theory filled up with a finite amount of material, while an infinite universe is unbounded and no numerical volume could possibly fill it. Mathematically, the question of whether the universe is infinite or finite is referred to as boundedness. An infinite universe (unbounded metric space) means that there are points arbitrarily far apart: for any distance d, there are points that are of a distance at least d apart. A finite universe is a bounded metric space, where there is some distance d such that all points are within distance d of each other. The smallest such d is called the diameter of the universe, in which case the universe has a well-defined "volume" or "scale."

With or without boundary

Assuming a finite universe, the universe can either have an edge or no edge. Many finite mathematical spaces, e.g., a disc, have an edge or boundary. Spaces that have an edge are difficult to treat, both conceptually and mathematically. Namely, it is very difficult to state what would happen at the edge of such a universe. For this reason, spaces that have an edge are typically excluded from consideration.

However, there exist many finite spaces, such as the 3-sphere and 3-torus, which have no edges. Mathematically, these spaces are referred to as being compact without boundary. The term compact basically means that it is finite in extent ("bounded") and complete. The term "without boundary" means that the space has no edges. Moreover, so that calculus can be applied, the universe is typically assumed to be a differentiable manifold. A mathematical object that possesses all these properties, compact without boundary and differentiable, is termed a closed manifold. The 3-sphere and 3-torus are both closed manifolds.

Curvature

The curvature of the universe places constraints on the topology. If the spatial geometry is spherical, i.e., possess positive curvature, the topology is compact. For a flat (zero curvature) or a hyperbolic (negative curvature) spatial geometry, the topology can be either compact or infinite.[14] Many textbooks erroneously state that a flat universe implies an infinite universe; however, the correct statement is that a flat universe that is also simply connected implies an infinite universe.[14] For example, Euclidean space is flat, simply connected, and infinite, but the torus is flat, multiply connected, finite, and compact.

In general, local to global theorems in Riemannian geometry relate the local geometry to the global geometry. If the local geometry has constant curvature, the global geometry is very constrained, as described in Thurston geometries.

The latest research shows that even the most powerful future experiments (like SKA, Planck..) will not be able to distinguish between flat, open and closed universe if the true value of cosmological curvature parameter is smaller than 10−4. If the true value of the cosmological curvature parameter is larger than 10−3 we will be able to distinguish between these three models even now.[15]

Results of the Planck mission released in 2015 show the cosmological curvature parameter, ΩK, to be 0.000±0.005, consistent with a flat universe.[16]

Universe with zero curvature

In a universe with zero curvature, the local geometry is flat. The most obvious global structure is that of Euclidean space, which is infinite in extent. Flat universes that are finite in extent include the torus and Klein bottle. Moreover, in three dimensions, there are 10 finite closed flat 3-manifolds, of which 6 are orientable and 4 are non-orientable. These are the Bieberbach manifolds. The most familiar is the aforementioned 3-torus universe.

In the absence of dark energy, a flat universe expands forever but at a continually decelerating rate, with expansion asymptotically approaching zero. With dark energy, the expansion rate of the universe initially slows down, due to the effect of gravity, but eventually increases. The ultimate fate of the universe is the same as that of an open universe.

A flat universe can have zero total energy.

Universe with positive curvature

A positively curved universe is described by elliptic geometry, and can be thought of as a three-dimensional hypersphere, or some other spherical 3-manifold (such as the Poincaré dodecahedral space), all of which are quotients of the 3-sphere.

Poincaré dodecahedral space, a positively curved space, colloquially described as "soccerball-shaped", as it is the quotient of the 3-sphere by the binary icosahedral group, which is very close to icosahedral symmetry, the symmetry of a soccer ball. This was proposed by Jean-Pierre Luminet and colleagues in 2003[7][17] and an optimal orientation on the sky for the model was estimated in 2008.[8]

Universe with negative curvature


Universe in an expanding sphere. The galaxies farthest away are moving fastest and hence experience length contraction and so become smaller to an observer in the centre.

A hyperbolic universe, one of a negative spatial curvature, is described by hyperbolic geometry, and can be thought of locally as a three-dimensional analog of an infinitely extended saddle shape. There are a great variety of hyperbolic 3-manifolds, and their classification is not completely understood. Those of finite volume can be understood via the Mostow rigidity theorem. For hyperbolic local geometry, many of the possible three-dimensional spaces are informally called "horn topologies", so called because of the shape of the pseudosphere, a canonical model of hyperbolic geometry. An example is the Picard horn, a negatively curved space, colloquially described as "funnel-shaped".[9]

Curvature: open or closed

When cosmologists speak of the universe as being "open" or "closed", they most commonly are referring to whether the curvature is negative or positive. These meanings of open and closed are different from the mathematical meaning of open and closed used for sets in topological spaces and for the mathematical meaning of open and closed manifolds, which gives rise to ambiguity and confusion. In mathematics, there are definitions for a closed manifold (i.e., compact without boundary) and open manifold (i.e., one that is not compact and without boundary). A "closed universe" is necessarily a closed manifold. An "open universe" can be either a closed or open manifold. For example, in the Friedmann–Lemaître–Robertson–Walker (FLRW) model the universe is considered to be without boundaries, in which case "compact universe" could describe a universe that is a closed manifold.

Milne model ("spherical" expanding)

If one applies Minkowski space-based special relativity to expansion of the universe, without resorting to the concept of a curved spacetime, then one obtains the Milne model. Any spatial section of the universe of a constant age (the proper time elapsed from the Big Bang) will have a negative curvature; this is merely a pseudo-Euclidean geometric fact analogous to one that concentric spheres in the flat Euclidean space are nevertheless curved. Spatial geometry of this model is an unbounded hyperbolic space. The entire universe is contained within a light cone, namely the future cone of the Big Bang. For any given moment t> 0 of coordinate time (assuming the Big Bang has t = 0), the entire universe is bounded by a sphere of radius exactly c t. The apparent paradox of an infinite universe contained within a sphere is explained with length contraction: the galaxies farther away, which are travelling away from the observer the fastest, will appear thinner.

This model is essentially a degenerate FLRW for Ω = 0. It is incompatible with observations that definitely rule out such a large negative spatial curvature. However, as a background in which gravitational fields (or gravitons) can operate, due to diffeomorphism invariance, the space on the macroscopic scale, is equivalent to any other (open) solution of Einstein's field equations.

The Universe is Flat – Here’s How Astrophysicists Know

 
The universe is flat, according to scientists. But to say our universe is flat and leave it there would be irresponsible – it’s not quite that simple. So, we must first delve into what scientist mean by “flat” and how they came to such a conclusion. The Baryon Oscillation Spectroscopic Survey (BOSS) telescope gave astrophysicists a new view of the universe, and a pretty accurate one, too.


The telescope down in New Mexico mapped out 1.2 million galaxies in the universe, plotting their locations to an accuracy of one percent. This map represents a tiny sliver of the universe and it was still able to tell us a lot about how it functions on a large scale. With this accurate measurement, cosmologists were able to determine the universe is “extraordinarily flat” and infinite, extending forever throughout space and time.
What does a “flat” universe mean?
When scientists say the universe is flat, they are speaking in geometric terms. At this point, I’m going to ask you to go back to math class, when you learned about parallel lines. So, let's scale down how cosmologists might rule out that the universe is round, by asking how do we know the Earth is not flat?
Well, one way would be to draw two lines from the equator, going directly north. These lines may start out parallel, but eventually they will intersect. The distance between them does not remain constant.

 
 
 
 
 
 
 
 
 
 
 
Diagrams of three possible geometries of the universe: closed, open and flat from top to bottom. The closed universe is of finite size and, due to its curvature, traveling far enough in one direction will lead back to one's starting point. The open and flat universes are infinite and traveling in a constant direction will never lead to the same point. Image and caption text permission of NASA Official: Gary Hinshaw
By using this as the basis for our knowledge, we then must observe how light from a few of these 1.2 million observable galaxies behaves. Scientists noted the light from several galaxies from the observable universe remained parallel to one another; these two lines will stay parallel forever.
“One of the reasons we care is that a flat universe has implications for whether the universe is infinite,” said David Schlegel, a member of the Physics Division of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory. “That means – while we can’t say with certainty that it will never come to an end – it’s likely the universe extends forever in space and will go on forever in time. Our results are consistent with an infinite universe.”
Geometry vs. Topology
Geometrically, the universe is flat. Parallel lines stay parallel, but it doesn’t tell us about the topology of the universe. Scientists believe the universe could have one of 18 different shapes. It could be a Möbius strip for all we know—a shape where space bends and distorts, but lines stay parallel, ultimately connecting one end of space to another. That is to say, you could start from one point in the universe and drive in a straight line; you would end up back where you came.

But we cannot yet determine what shape the universe has taken because of our small view.

Marriage in Islam

From Wikipedia, the free encyclopedia ...