Search This Blog

Friday, December 14, 2018

Charon (moon)

From Wikipedia, the free encyclopedia

Charon
Charon in True Color - High-Res.jpg
Charon in true color, imaged by New Horizons
Discovery
Discovered byJames W. Christy
Discovery date22 June 1978
Designations
Pronunciation/ˈʃærən/ SHARR-ən or /ˈkɛərən/ KAIR-ən
Named after
Charon
(134340) Pluto I
AdjectivesCharonian
Orbital characteristics 
Epoch 2452600.5
(2002 Nov 22)
Periapsis17,536 km
Apoapsis17,536 km
19591km
Eccentricity0.0002
6.3872304±0.0000011 d
(6 d, 9 h, 17 m, 36.7 ± 0.1 s)
Average orbital speed
0.21 km/s
Inclination0.080° (to Pluto's equator)
119.591°±0.014° (to Pluto's orbit)
112.783°±0.014° (to the ecliptic)
223.046°±0.014° (to vernal equinox)
Satellite ofPluto
Physical characteristics
Mean radius
606.0±0.5 km (0.095 Earths, 0.51 Plutos)
Flattening<0 .5="" nbsp="" span="">
4.6×106 km2 (0.0090 Earths)
Volume(9.32±0.14)×108 km3 (0.00086 Earths)
Mass(1.586±0.015)×1021 kg
(2.66×10−4 Earths)
(12.2% of Pluto)
Mean density
1.702±0.017 g/cm3
0.288 m/s2
0.59 km/s
0.37 mi/s
synchronous
Albedo0.2 to 0.5 at a solar phase angle of 15°
Temperature−220 °C (53 K)
16.8
1
55 milli-arcsec

Charon, also known as (134340) Pluto I, is the largest of the five known natural satellites of the dwarf planet Pluto. It has a mean radius of 606 km. It was discovered in 1978 at the United States Naval Observatory in Washington, D.C., using photographic plates taken at the United States Naval Observatory Flagstaff Station (NOFS).

With half the diameter and one eighth the mass of Pluto, Charon is a very large moon in comparison to its parent body. Its gravitational influence is such that the barycenter of the Plutonian system lies outside Pluto.

The reddish-brown cap of the north pole of Charon is composed of tholins; organic macromolecules that may be essential ingredients of life. These tholins were produced from methane, nitrogen and related gases released from the atmosphere of Pluto and transferred over 19,000 km (12,000 mi) to the orbiting moon.

The New Horizons spacecraft is the only probe that has visited the Pluto system. It approached Charon to within 27,000 km (17,000 mi) in 2015.

Discovery

Charon's discovery at the Naval Observatory Flagstaff Station as a time-varying bulge on the image of Pluto (seen near the top at left, but absent on the right). Negative image.
 
Mosaic of best-resolution images of Charon from different angles
 
Charon was discovered by United States Naval Observatory astronomer James Christy, using the 1.55-meter (61 in) telescope at United States Naval Observatory Flagstaff Station (NOFS), On June 22, 1978, he had been examining highly magnified images of Pluto on photographic plates taken with the telescope two months prior. Christy noticed that a slight elongation appeared periodically. The bulge was confirmed on plates dating back to April 29, 1965. The International Astronomical Union formally announced Christy's discovery to the world on July 7, 1978.

Subsequent observations of Pluto determined that the bulge was due to a smaller accompanying body. The periodicity of the bulge corresponded to Pluto's rotation period, which was previously known from Pluto's light curve. This indicated a synchronous orbit, which strongly suggested that the bulge effect was real and not spurious. This resulted in reassessments of Pluto's size, mass, and other physical characteristics because the calculated mass and albedo of the Pluto–Charon system had previously been attributed to Pluto alone. 

Doubts about Charon's existence were erased when it and Pluto entered a five-year period of mutual eclipses and transits between 1985 and 1990. This occurs when the Pluto–Charon orbital plane is edge-on as seen from Earth, which only happens at two intervals in Pluto's 248-year orbital period. It was fortuitous that one of these intervals happened to occur soon after Charon's discovery.

Name

Author Edmond Hamilton referred to three moons of Pluto in his 1940 science fiction novel Calling Captain Future, naming them Charon, Styx, and Cerberus.
 
After its discovery, Charon was originally known by the temporary designation S/1978 P 1, according to the then recently instituted convention. On June 24, 1978, Christy first suggested the name Charon as a scientific-sounding version of his wife Charlene's nickname, "Char". Although colleagues at the Naval Observatory proposed Persephone, Christy stuck with Charon after discovering that it coincidentally refers to a Greek mythological figure: Charon (/ˈkɛərɒn/ or /ˈkɛərən/; Greek Χάρων) is the ferryman of the dead, closely associated in myth with the god Hades, whom the Romans identified with their god Pluto. The IAU officially adopted the name in late 1985 and it was announced on January 3, 1986.

There is minor debate over the preferred pronunciation of the name. The practice of following the classical pronunciation established for the mythological ferryman Charon (IPA [ˈkɛ:rən]) is used by major English-language dictionaries, such as the Merriam-Webster and Oxford English Dictionary. These indicate only one pronunciation of "Charon" when referring specifically to Pluto's moon: with an initial "k" sound. Speakers of many languages other than English, and many English-speaking astronomers as well, follow this pronunciation.

However, Christy himself pronounced the ch as sh (IPA [ʃ]), after his wife Charlene. Because of this, as an acknowledgement of Christy and sometimes as an in-joke or shibboleth, the initial sh pronunciation is common among astronomers when speaking English, and this is the prescribed pronunciation at NASA and of the New Horizons team.

Formation

Simulation work published in 2005 by Robin Canup suggested that Charon could have been formed by a collision around 4.5 billion years ago, much like Earth and the Moon. In this model, a large Kuiper belt object struck Pluto at high velocity, destroying itself and blasting off much of Pluto's outer mantle, and Charon coalesced from the debris. However, such an impact should result in an icier Charon and rockier Pluto than scientists have found. It is now thought that Pluto and Charon might have been two bodies that collided before going into orbit about each other. The collision would have been violent enough to boil off volatile ices like methane (CH
4
) but not violent enough to have destroyed either body. The very similar density of Pluto and Charon implies that the parent bodies were not fully differentiated when the impact occurred.

Orbit

Animation of moons of Pluto around the barycenter of Pluto:
 
Front view
 
Side view
   Pluto ·    Charon ·    Styx ·    Nix ·    Kerberos ·    Hydra
A view of the Pluto–Charon system showing that Pluto orbits a point outside itself. Also visible is the mutual tidal locking between the two bodies.
 
Charon and Pluto orbit each other every 6.387 days. The two objects are gravitationally locked to one another, so each keeps the same face towards the other. This is a case of mutual tidal locking, as compared to that of the Earth and the Moon, where the Moon always shows the same face to Earth, but not vice versa. The average distance between Charon and Pluto is 19,570 kilometres (12,160 mi). The discovery of Charon allowed astronomers to calculate accurately the mass of the Plutonian system, and mutual occultations revealed their sizes. However, neither indicated the two bodies' individual masses, which could only be estimated, until the discovery of Pluto's outer moons in late 2005. Details in the orbits of the outer moons revealed that Charon has approximately 12% of the mass of Pluto.

Physical characteristics

Size comparisons: Earth, the Moon, and Charon

Charon's diameter is 1,212 kilometres (753 mi), just over half that of Pluto, and larger than the dwarf planet Ceres, and the twelfth largest natural satellite in the solar system. Charon is sufficiently massive to have collapsed into a spheroid under its own gravity. Charon's slow rotation means that there is almost no flattening. Its equatorial and polar radii differ by less than 1%.

Interior

The two conflicting theories about Charon's internal structure
 
Charon's volume and mass allow calculation of its density, 1.702±0.017 g/cm3, from which it can be determined that Charon is slightly less dense than Pluto and suggesting a composition of 55% rock to 45% ice (± 5%), whereas Pluto is about 70% rock. The difference is considerably lower than that of most suspected collisional satellites. Before New Horizons' flyby, there were two conflicting theories about Charon's internal structure: some scientists thought Charon to be a differentiated body like Pluto, with a rocky core and an icy mantle, whereas others thought it would be uniform throughout. Evidence in support of the former position was found in 2007, when observations by the Gemini Observatory of patches of ammonia hydrates and water crystals on the surface of Charon suggested the presence of active cryogeysers. The fact that the ice was still in crystalline form suggested it had been deposited recently, because solar radiation would have degraded it to an amorphous state after roughly thirty thousand years.

Surface

Charon in enhanced color to bring out differences in surface composition.

Unlike Pluto's surface, which is composed of nitrogen and methane ices, Charon's surface appears to be dominated by the less volatile water ice. In 2007, observations by the Gemini Observatory of patches of ammonia hydrates and water crystals on the surface of Charon suggested the presence of active cryogeysers and cryovolcanoes.

Photometric mapping of Charon's surface shows a latitudinal trend in albedo, with a bright equatorial band and darker poles. The north polar region is dominated by a very large dark area informally dubbed "Mordor" by the New Horizons team. The favored explanation for this phenomenon is that they are formed by condensation of gases that escaped from Pluto's atmosphere. In winter, the temperature is −258 °C, and these gases, which include nitrogen, carbon monoxide, and methane, condense into their solid forms; when these ices are subjected to solar radiation, they chemically react to form various reddish tholins. Later, when the area is again heated by the Sun as Charon's seasons change, the temperature at the pole rises to −213 °C, resulting in the volatiles sublimating and escaping Charon, leaving only the tholins behind. Over millions of years, the residual tholin builds up thick layers, obscuring the icy crust. In addition to Mordor, New Horizons found evidence of extensive past geology that suggests that Charon is probably differentiated; in particular, the southern hemisphere has fewer craters than the northern and is considerably less rugged, suggesting that a massive resurfacing event—perhaps prompted by the partial or complete freezing of an internal ocean—occurred at some point in the past and removed many of the earlier craters.

Charon has a series of extensive grabens or canyons, such as Serenity Chasma, which extend as an equatorial belt for at least 1000 km. Argo Chasma potentially reaches as deep as 9 km, with steep cliffs that may rival Verona Rupes on Miranda for the title of tallest cliff in the solar system.

Organa, the youngest crater of Charon.

Mountain in a moat

In a released photo by New Horizons, an unusual surface feature has captivated and baffled the scientist team of the mission. The image reveals a mountain rising out of a depression. It's "a large mountain sitting in a moat", said Jeff Moore, of NASA’s Ames Research Center, in a statement. "This is a feature that has geologists stunned and stumped", he added. New Horizons captured the photo from a distance of 49,000 miles (79,000 km).

Observation and exploration

Since the first blurred images of the moon (1), images showing Pluto and Charon resolved into separate disks were taken for the first time by the Hubble Space Telescope in the 1990s (2). The telescope was responsible for the best, yet low quality images of the moon. In 1994, the clearest picture of the Pluto-Charon system showed two distinct and well defined circles (3). The image was taken by Hubble's Faint Object Camera (FOC) when the system was 2.6 billion miles (4.4 billion kilometers) away from Earth Later, the development of adaptive optics made it possible to resolve Pluto and Charon into separate disks using ground-based telescopes.

In June 2015, the New Horizons spacecraft captured consecutive images of the Pluto–Charon system as it approached it. The images were put together in an animation. It was the best image of Charon to that date (4). In July 2015, the New Horizons spacecraft made its closest approach to the Pluto system. It is the only spacecraft to date to have visited and studied Charon. Charon's discoverer James Christy and the children of Clyde Tombaugh were guests at the Johns Hopkins Applied Physics Laboratory during the New Horizons closest approach. 

Timeline of Charon observations
Discovery; 1978
 
HST – before correction; 1990
 
HST – after correction; 1994
 
1st color animated view;  2015

Classification

The center of mass (barycenter) of the Pluto–Charon system lies outside either body. Because neither object truly orbits the other, and Charon has 12.2% the mass of Pluto, it has been argued that Charon should be considered to be part of a binary system with Pluto. The International Astronomical Union (IAU) states that Charon is considered to be just a satellite of Pluto, but the idea that Charon might be classified a dwarf planet in its own right may be considered at a later date.

In a draft proposal for the 2006 redefinition of the term, the IAU proposed that a planet be defined as a body that orbits the Sun that is large enough for gravitational forces to render the object (nearly) spherical. Under this proposal, Charon would have been classified as a planet, because the draft explicitly defined a planetary satellite as one in which the barycenter lies within the major body. In the final definition, Pluto was reclassified as a dwarf planet, but the formal definition of a planetary satellite was not decided upon. Charon is not in the list of dwarf planets currently recognized by the IAU. Had the draft proposal been accepted, even the Moon would be classified as a planet in billions of years when the tidal acceleration that is gradually moving the Moon away from Earth takes it far enough away that the center of mass of the system no longer lies within Earth.

The other moons of Pluto, Nix, Hydra, Kerberos and Styx, orbit the same barycenter, but they are not large enough to be spherical, and they are simply considered to be satellites of Pluto (or of Pluto–Charon).

Videos

Eris (dwarf planet -- updated)

From Wikipedia, the free encyclopedia

Eris
Eris and dysnomia2.jpg
Eris (center) and Dysnomia (left of center), taken by the Hubble Space Telescope
Discovery
Discovered by
Discovery dateOctober 21, 2003
Designations
MPC designation(136199) Eris
Pronunciation/ˈɪərɪs/ or /ˈɛrɪs/
Named after
Eris
2003 UB313
AdjectivesEridian
Orbital characteristics
Epoch December 9, 2014
(JD 2457000.5)
Earliest precovery dateSeptember 3, 1954
Aphelion
  • 97.651 AU
  • 14.602×109 km
Perihelion
  • 37.911 AU
  • 5.723×109 km
  • 67.781 AU
  • 10.166×109 km
Eccentricity0.44068
  • 203,830 d
  • 558.04 yr
Average orbital speed
3.4338 km/s
204.16°
Inclination44.0445°
35.9531°
150.977°
Known satellitesDysnomia
Physical characteristics
Dimensions2326±12 km
Mean radius
1163±6 km
(1.70±0.02)×107 km2
Volume(6.59±0.10)×109 km3
Mass
Mean density
2.52±0.07 g/cm3
Equatorial surface gravity
0.82±0.02 m/s2
0.083±0.002 g
Equatorial escape velocity
1.38±0.01 km/s
Sidereal rotation period
25.9±0.5 hr
0.96+0.09
−0.04
Surface temp. min mean max
(approx) 30 K 42.5 K 55 K
B−V=0.78, V−R=0.45
18.7
−1.17+0.06
−0.11
40 milli-arcsec

Eris (minor-planet designation 136199 Eris) is the most massive and second-largest (by volume) dwarf planet in the known Solar System. Eris was discovered in January 2005 by a Palomar Observatory-based team led by Mike Brown, and its discovery was verified later that year. In September 2006 it was named after Eris, the Greek goddess of strife and discord. Eris is the ninth most massive object directly orbiting the Sun, and the 16th most massive overall, because seven moons are more massive than all known dwarf planets. It is also the largest which has not yet been visited by a spacecraft. Eris was measured to be 2,326 ± 12 kilometers (1,445.3 ± 7.5 mi) in diameter. Eris's mass is about 0.27% of the Earth mass, about 27% more than dwarf planet Pluto, although Pluto is slightly larger by volume.

Eris is a trans-Neptunian object (TNO) and a member of a high-eccentricity population known as the scattered disk. It has one known moon, Dysnomia. As of February 2016, its distance from the Sun was 96.3 astronomical units (1.441×1010 km; 8.95×109 mi), roughly three times that of Pluto. With the exception of some long-period comets, Eris and Dysnomia are currently the most distant known natural objects in the Solar System.

Because Eris appeared to be larger than Pluto, NASA initially described it as the Solar System's tenth planet. This, along with the prospect of other objects of similar size being discovered in the future, motivated the International Astronomical Union (IAU) to define the term planet for the first time. Under the IAU definition approved on August 24, 2006, Eris is a "dwarf planet", along with objects such as Pluto, Ceres, Haumea and Makemake, thereby reducing the number of known planets in the Solar System to eight, the same as before Pluto's discovery in 1930. Observations of a stellar occultation by Eris in 2010, showed that its diameter was 2,326 ± 12 kilometers (1,445.3 ± 7.5 mi), very slightly less than Pluto, which was measured by New Horizons as 2,372 ± 4 kilometers (1,473.9 ± 2.5 mi) in July 2015.

History

Discovery

Animation showing the movement of Eris on the images used to discover it. Eris is indicated by the arrow. The three frames were taken over a period of three hours.
 
Eris was discovered by the team of Mike Brown, Chad Trujillo, and David Rabinowitz on January 5, 2005, from images taken on October 21, 2003. The discovery was announced on July 29, 2005, the same day as Makemake and two days after Haumea, due in part to events that would later lead to controversy about Haumea. The search team had been systematically scanning for large outer Solar System bodies for several years, and had been involved in the discovery of several other large TNOs, including 50000 Quaoar, 90482 Orcus, and 90377 Sedna

Routine observations were taken by the team on October 21, 2003, using the 1.2 m Samuel Oschin Schmidt telescope at Palomar Observatory, California, but the image of Eris was not discovered at that point due to its very slow motion across the sky: The team's automatic image-searching software excluded all objects moving at less than 1.5 arcseconds per hour to reduce the number of false positives returned. When Sedna was discovered in 2003, it was moving at 1.75 arcsec/h, and in light of that the team reanalyzed their old data with a lower limit on the angular motion, sorting through the previously excluded images by eye. In January 2005, the re-analysis revealed Eris's slow motion against the background stars

Follow-up observations were then carried out to make a preliminary determination of Eris's orbit, which allowed the object's distance to be estimated. The team had planned to delay announcing their discoveries of the bright objects Eris and Makemake until further observations and calculations were complete, but announced them both on July 29 when the discovery of another large TNO they had been tracking, Haumea, was controversially announced on July 27 by a different team in Spain.

Precovery images of Eris have been identified back to September 3, 1954.

More observations released in October 2005 revealed that Eris has a moon, later named Dysnomia. Observations of Dysnomia's orbit permitted scientists to determine the mass of Eris, which in June 2007 they calculated to be (1.66±0.02)×1022 kg, 27%±2% greater than Pluto's.

Name

Initially, Eris was given a provisional designation, the so called "license plate" name and then eventually a name based on Earth mythology. 

Eris is named after the Greek goddess Eris (Greek Ἔρις), a personification of strife and discord. The name was proposed by the Caltech Team on September 6, 2006, and it was assigned on September 13, 2006, following an unusually long period in which the object was known by the provisional designation 2003 UB313, which was granted automatically by the IAU under their naming protocols for minor planets. The regular adjectival form of Eris is Eridian.

Xena

Artistic vision of Eris and its moon
 
Due to uncertainty over whether the object would be classified as a planet or a minor planet, because different nomenclature procedures apply to these different classes of objects, the decision on what to name the object had to wait until after the August 24, 2006, IAU ruling. As a result, for a time the object became known to the wider public as Xena

"Xena" was an informal name used internally by the discovery team. It was inspired by the title character of the television series Xena: Warrior Princess. The discovery team had reportedly saved the nickname "Xena" for the first body they discovered that was larger than Pluto. According to Brown, 


"We assumed [that] a real name would come out fairly quickly, [but] the process got stalled", Mike Brown said in an interview: 

Choosing an official name

According to science writer Govert Schilling, Brown initially wanted to call the object "Lila", after a concept in Hindu mythology that described the cosmos as the outcome of a game played by Brahman. The name was very similar to "Lilah", the name of Brown's newborn daughter. Brown was mindful of not making his name public before it had been officially accepted. He had done so with Sedna a year previously, and had been heavily criticized. However, no objection was raised to the Sedna name other than the breach of protocol, and no competing names were suggested for Sedna.

He listed the address of his personal web page announcing the discovery as /~mbrown/planetlila and in the chaos following the controversy over the discovery of Haumea, forgot to change it. Rather than needlessly anger more of his fellow astronomers, he simply said that the webpage had been named for his daughter and dropped "Lila" from consideration.

Brown had also speculated that Persephone, the wife of the god Pluto, would be a good name for the object. The name had been used several times in science fiction, and was popular with the public, having handily won a poll conducted by New Scientist magazine ("Xena", despite only being a nickname, came fourth). This was not possible once the object was classified as a dwarf planet, because there is already an asteroid with that name, 399 Persephone.

With the dispute resolved, the discovery team proposed Eris on September 6, 2006. On September 13, 2006 this name was accepted as the official name by the IAU. Brown decided that, because the object had been considered a planet for so long, it deserved a name from Greek or Roman mythology, like the other planets. The asteroids had taken the vast majority of Graeco-Roman names. Eris, whom Brown described as his favorite goddess, had fortunately escaped inclusion. The name in part reflects the discord in the astronomical community caused by the debate over the object's (and Pluto's) classification.

Classification

Distribution of trans-Neptunian objects
 
Eris is a trans-Neptunian dwarf planet (plutoid). Its orbital characteristics more specifically categorize it as a scattered-disk object (SDO), or a TNO that has been "scattered" from the Kuiper belt into more-distant and unusual orbits following gravitational interactions with Neptune as the Solar System was forming. Although its high orbital inclination is unusual among the known SDOs, theoretical models suggest that objects that were originally near the inner edge of the Kuiper belt were scattered into orbits with higher inclinations than objects from the outer belt. Inner-belt objects are expected to be generally more massive than outer-belt objects, and so astronomers expect to discover more large objects like Eris in high-inclination orbits, which planetary searches have traditionally neglected. 

Because Eris was initially thought to be larger than Pluto, it was described as the "tenth planet" by NASA and in media reports of its discovery. In response to the uncertainty over its status, and because of ongoing debate over whether Pluto should be classified as a planet, the IAU delegated a group of astronomers to develop a sufficiently precise definition of the term planet to decide the issue. This was announced as the IAU's Definition of a Planet in the Solar System, adopted on 24 August 2006. At this time, both Eris and Pluto were classified as dwarf planets, a category distinct from the new definition of planet. Brown has since stated his approval of this classification. The IAU subsequently added Eris to its Minor Planet Catalogue, designating it (136199) Eris.

Orbit

The orbit of Eris (blue) compared to those of Saturn, Uranus, Neptune, and Pluto (white/gray). The arcs below the ecliptic are plotted in darker colors, and the red dot is the Sun. The diagram on the left is a polar view whereas the diagrams on the right are different views from the ecliptic.
 
Eris has an orbital period of 558 years. Its maximum possible distance from the Sun (aphelion) is 97.65 AU, and its closest (perihelion) is 37.91 AU. It came to perihelion between 1698 and 1699, to aphelion around 1977, and will return to perihelion around 2256 to 2258. Eris and its moon are currently the most distant known objects in the Solar System, apart from long-period comets and space probes.

As of 2008 there were approximately forty known TNOs, most notably 2006 SQ372, 2000 OO67 and Sedna, that are currently closer to the Sun than Eris even though their semimajor axis is larger than that of Eris (67.8 AU).

The distances of Eris and Pluto from the Sun in the next 1,000 years
 
Eris's orbit is highly eccentric, and brings Eris to within 37.9 AU of the Sun, a typical perihelion for scattered objects. This is within the orbit of Pluto, but still safe from direct interaction with Neptune (29.8–30.4 AU). Pluto, on the other hand, like other plutinos, follows a less inclined and less eccentric orbit and, protected by orbital resonance, can cross Neptune's orbit. Unlike the eight planets, whose orbits all lie roughly in the same plane as the Earth's, Eris's orbit is highly inclined: It is tilted at an angle of about 44 degrees to the ecliptic. In about 800 years, Eris will be closer to the Sun than Pluto for some time (see the graph at the left). 

As of February 2016, Eris has an apparent magnitude of 18.7, making it bright enough to be detectable to some amateur telescopes. A 200-millimeter (7.9 in) telescope with a CCD can detect Eris under favorable conditions. The reason it had not been noticed until now is its steep orbital inclination; searches for large outer Solar System objects tend to concentrate on the ecliptic plane, where most bodies are found. 

Seen from earth, Eris makes small loops in the sky through the constellation of Cetus
 
Because of the high inclination of its orbit, Eris only passes through a few constellations of the traditional Zodiac; it is now in the constellation Cetus. It was in Sculptor from 1876 until 1929 and Phoenix from roughly 1840 until 1875. In 2036 it will enter Pisces and stay there until 2065, when it will enter Aries. It will then move into the northern sky, entering Perseus in 2128 and Camelopardalis (where it will reach its northernmost declination) in 2173.

Size, mass and density

Size estimates
Year Radius (diameter) Source
2005 1,199 (2,397) km Hubble
2007 1,300 (2,600) km Spitzer
2011 1,163 (2,326) km Occultation

In November 2010, Eris was the subject of one of the most distant stellar occultations yet from Earth. Preliminary data from this event cast doubt on previous size estimates. The teams announced their final results from the occultation in October 2011, with an estimated diameter of 2326+6
−6
 km
.

This makes Eris a little smaller than Pluto, which is 2372±4 km across. It also indicates an albedo of 0.96, higher than that of any other large body in the Solar System except Enceladus. It is speculated that the high albedo is due to the surface ices being replenished because of temperature fluctuations as Eris's eccentric orbit takes it closer and farther from the Sun.

The mass of Eris can be calculated with much greater precision. Based on the currently accepted value for Dysnomia's period—15.774 days—Eris is 27 percent more massive than Pluto. Using the 2011 occultation results, Eris has a density of 2.52±0.07 g/cm3, substantially denser than Pluto, and thus must be composed largely of rocky materials.

Models of internal heating via radioactive decay suggest that Eris could have an internal ocean of liquid water at the mantle–core boundary.

In July 2015, after nearly ten years of Eris being considered the ninth-largest object known to directly orbit the sun, close-up imagery from the New Horizons mission more accurately determined Pluto's volume to be slightly larger than Eris's, rather than slightly smaller as previously thought. Eris is now the tenth-largest object known to directly orbit the sun by volume, but remains the ninth-largest by mass.

Surface and atmosphere

The infrared spectrum of Eris, compared to that of Pluto, shows the marked similarities between the two bodies. Arrows denote methane absorption lines.

The discovery team followed up their initial identification of Eris with spectroscopic observations made at the 8 m Gemini North Telescope in Hawaii on January 25, 2005. Infrared light from the object revealed the presence of methane ice, indicating that the surface may be similar to that of Pluto, which at the time was the only TNO known to have surface methane, and of Neptune's moon Triton, which also has methane on its surface. No surface details can be resolved from Earth or its orbit with any instrument currently available. 

Due to Eris's distant eccentric orbit, its surface temperature is estimated to vary between about 30 and 56 K (−243.2 and −217.2 °C).

Unlike the somewhat reddish Pluto and Triton, Eris appears almost white. Pluto's reddish color is thought to be due to deposits of tholins on its surface, and where these deposits darken the surface, the lower albedo leads to higher temperatures and the evaporation of methane deposits. In contrast, Eris is far enough from the Sun that methane can condense onto its surface even where the albedo is low. The condensation of methane uniformly over the surface reduces any albedo contrasts and would cover up any deposits of red tholins.

Even though Eris can be up to three times farther from the Sun than Pluto, it approaches close enough that some of the ices on the surface might warm enough to sublime. Because methane is highly volatile, its presence shows either that Eris has always resided in the distant reaches of the Solar System, where it is cold enough for methane ice to persist, or that the celestial body has an internal source of methane to replenish gas that escapes from its atmosphere. This contrasts with observations of another discovered TNO, Haumea, which reveal the presence of water ice but not methane.

Satellite Dysnomia

Artist's impression of the dwarf planet Eris and its large moon Dysnomia. This artistic representation is based on observations made at ESO's La Silla Observatory.
 
In 2005, the adaptive optics team at the Keck telescopes in Hawaii carried out observations of the four brightest TNOs (Pluto, Makemake, Haumea, and Eris), using the newly commissioned laser guide star adaptive optics system. Images taken on September 10 revealed a moon in orbit around Eris. In keeping with the "Xena" nickname already in use for Eris, Brown's team nicknamed the moon "Gabrielle", after the television warrior princess' sidekick. When Eris received its official name from the IAU, the moon received the name Dysnomia, after the Greek goddess of lawlessness who was Eris's daughter. Brown says he picked it for similarity to his wife's name, Diane. The name also retains an oblique reference to Eris's old informal name Xena, portrayed on TV by Lucy Lawless.

Exploration

In the 2010s, on the heels of the successful Pluto flyby there were multiple studies for follow-on missions to explore the Kuiper belt, and Eris was evaluated among the candidates. It was calculated that a flyby mission to Eris could take 24.66 years using a Jupiter gravity assist, based on launch dates of 3 April 2032 or 7 April 2044. Eris would be 92.03 or 90.19 AU from the Sun when the spacecraft arrives.

Samaritans

From Wikipedia, the free encyclopedia https://en.wikipedia.org/w...