Search This Blog

Sunday, May 5, 2019

Spaceplane

From Wikipedia, the free encyclopedia

A Space Shuttle in orbit around Earth
 
A spaceplane is an aerospace vehicle that operates as an aircraft in Earth's atmosphere, as well as a spacecraft when it is in space. It combines features of an aircraft and a spacecraft, which can be thought of as an aircraft that can endure and maneuver in the vacuum of space or likewise a spacecraft that can fly like an airplane. Typically, it takes the form of a spacecraft equipped with wings, although lifting bodies have been designed and tested as well. The propulsion to reach space may be purely rocket based or may use the assistance of airbreathing jet engines. The spaceflight is then followed by an unpowered glide return to landing. 

Six kinds of spaceplanes have successfully flown to date, having reentered Earth's atmosphere, returned to Earth, and safely landed — the North American X-15, Space Shuttle, Buran, Boeing X-37, and Scaled Composites' SpaceShipOne and SpaceShipTwo. All six are considered rocket gliders. As of 2019, only these aircraft and conventional rockets have succeeded in reaching space. Three of these six (X-15, SpaceShipOne, and SpaceShipTwo) are rocket-powered aircraft, having been carried up to an altitude of several tens of thousands of feet by an atmospheric mother ship before being released, and then flying beyond the Kármán line (with the exception of SpaceShipTwo), the internationally-accepted boundary of Earth's atmosphere, under their own power. Three (Space Shuttle, Buran, and X-37) are vertical takeoff horizontal landing (VTHL) vehicles relying upon rocket lift for the ascent phase in reaching space and atmospheric lift for reentry, descent and landing. The three VTHL spaceplanes flew much further than the aircraft launched ones, not merely leaving Earth's atmosphere but also entering orbit around it, which requires at least 50 times more energy on the way up and heavy heat shielding for the trip back. Of the six vehicles, four have been piloted by astronauts, with the Buran and X-37 flying unmanned missions.

Description

Landing of NASA's Space Shuttle Atlantis. The American Space Shuttle orbiters were manned orbital spaceplanes.
 
Significant features distinguish spaceplanes from traditional spacecraft.

Aerodynamic lift

All aircraft utilize aerodynamic surfaces in order to generate lift. For spaceplanes a variety of wing shapes can be used. Delta wings are common, but straight wings, lifting bodies and even rotorcraft have been proposed. Typically the force of lift generated by these surfaces is many times that of the drag that they induce.

Atmospheric reentry

Because suborbital spaceplanes are designed for trajectories that do not reach orbital speed, they do not need the kinds of thermal protection orbital spacecraft required during the hypersonic phase of atmospheric reentry. The Space Shuttle thermal protection system, for example, protects the orbiter from surface temperatures that could otherwise reach as high as 1,650 °C (3,000 °F), well above the melting point of steel.

Aircraft landing

A spaceplane operates as an aircraft in Earth's atmosphere. Aircraft may land on firm runways, helicopter landing pads, or even water (amphibious aircraft), snow or ice. To land, the airspeed and the rate of descent are reduced such that the aircraft descends at a slow enough rate to allow for a gentle touch down. Landing is accomplished by slowing down and descending. This speed reduction is accomplished by reducing thrust and/or inducing a greater amount of drag using flaps, landing gear or speed brakes. Splashdown is an easier technical feat to accomplish, requiring only the deployment of a parachute (or parachutes), rather than successfully aviating the atmosphere. Project Gemini's original concept design was as a spaceplane, with paraglider and wheels (or skis) attached. However, this concept was abandoned in favor of parachute splashdowns, because of expensive technical failures during testing and development. Whereas Project Gemini's splashdown parachutes took only 5 months to develop in 1963, Gemini's spaceplane concept failed to materialize even after nearly 3 years of continued development.

Propulsion

Buran orbiter rear showing rocket engine nozzles, for maneuvering in low Earth orbit and thin air

Rocket engines

All spaceplanes to date have used rocket engines with chemical fuels. As the orbital insertion burn has to be done in space, orbital spaceplanes require rocket engines for at least that portion of the flight.

Airbreathing engines

A difference between rocket based and air-breathing aerospace plane launch systems is that aerospace plane designs typically include minimal oxidizer storage for propulsion. Air-breathing aerospace plane designs include engine inlets so they can use atmospheric oxygen for combustion. Since the mass of the oxidizer is, at takeoff, the single largest mass of most rocket designs (the Space Shuttle's liquid oxygen tank weighs 629,340 kg, more than one of its solid rocket boosters), this provides a huge potential weight savings benefit. However, air breathing engines are usually very much heavier than rocket engines and the empty weight of the oxidizer tank, and since, unlike oxidizer, this extra weight (which is not expended to add kinetic energy to the vessel, as is propellant mass) must be carried into space it may offset the overall system performance.

Types of air breathing engines proposed for spaceplanes include scramjet, liquid air cycle engines, precooled jet engines, pulse detonation engine and ramjets. Some engine designs combine several types of engines features into a combined cycle. For instance, the Rocket-based combined cycle (RBCC) engine uses a rocket engine inside a ramscoop so that at low speed, the rockets thrust is boosted by ejector augmented thrust. It then transitions to ramjet propulsion at near-supersonic speeds, then to supersonic combustion or scramjet propulsion, above Mach 6, then back to pure rocket propulsion above Mach 10.

Harsh flight environment

The flight trajectory required of air-breathing aerospace vehicles to reach orbit is to fly what is known as a 'depressed trajectory' which places the aerospace plane in the high-altitude hypersonic flight regime of the atmosphere. This environment induces high dynamic pressure, high temperature, and high heat flow loads particularly upon the leading edge surfaces of the aerospace plane. These loads typically require special advanced materials, active cooling, or both, for the structures to survive the environment. 

Rocket-powered spaceplanes also face a significant thermal environment if they are burning for orbit, but this is nevertheless far less severe than air-breathing spaceplanes.

Suborbital space planes designed to briefly reach space do not require significant thermal protection, as they experience peak heating for only a short time during re-entry. Intercontinental suborbital trajectories require much higher speeds and thermal protection more similar to orbital spacecraft reentry.

Center of mass issues

A wingless launch vehicle has lower aerodynamic forces affecting the vehicle, and attitude control can be active perhaps with some fins to aid stability. For a winged vehicle the centre of lift moves during the atmospheric flight as well as the centre of mass; and the vehicle spends longer in the atmosphere as well. Historically, the X-33 and HOTOL spaceplanes were rear engined and had relatively heavy engines. This puts a heavy mass at the rear of the aircraft with wings that had to hold up the vehicle. As the wet mass reduces, the centre of mass tends to move rearward behind the centre of lift, which tends to be around the centre of the wings. This can cause severe instability that is usually solved by extra fins which add weight and decrease performance.

Flown spaceplanes

World's first spaceplanes: North American X-15, Space Shuttle, Buran, SpaceShipOne, Boeing X-37. The X-15 reached space in 1962/1963 (USAF/FAI Kármán line classifications). SpaceShipOne was piloted by the first commercial astronaut. Both X-15 and SpaceShipOne ascend horizontally from a mother ship. Both Buran and X-37 spaceflights were unmanned. The X-37 launches atop an Atlas V 501 launch vehicle.

Orbital spaceplanes

All three of the orbital spaceplanes successfully flown to date utilize a VTHL (vertical takeoff, horizontal landing) design. They include the piloted United States Space Shuttle and two unmanned spaceplanes: the late-1980s Soviet Buran and the early-2010s Boeing X-37.

The early-1980s BOR-4 (subscale test vehicle for the Spiral spaceplane that was subsequently cancelled) was a spacecraft that did successfully reenter the atmosphere and fly like an aircraft. But it was not designed to sustain atmospheric flight. It was designed to stop flying, open a parachute and then splash in the ocean

These vehicles have used wings to provide aerobraking to return from orbit and to provide lift, allowing them to land on a runway like conventional aircraft. These vehicles are still designed to ascend to orbit vertically under rocket power like conventional expendable launch vehicles. One drawback of spaceplanes is that they have a significantly smaller payload fraction than a ballistic design with the same takeoff weight. This is in part due to the weight of the wings — around 9–12% of the weight of the atmospheric flight weight of the vehicle. This significantly reduces the payload size, but the reusability is intended to offset this disadvantage.

While all spaceplanes have used atmospheric lift for the reentry phase, none to date have succeeded in a design that relies on aerodynamic lift for the ascent phase in reaching space (excluding a mother ship first stage). Efforts such as the Silbervogel and X-30/X-33 have all failed to materialize into a vehicle capable of successfully reaching space. The Pegasus winged booster has had many successful flights to deploy orbital payloads, but since its aerodynamic vehicle component operates only as a booster, and not operate in space as a spacecraft, it is not typically considered to be a spaceplane.

On the other hand, OREX is a test vehicle of HOPE-X and launched into 450 km LEO using H-II in 1994. OREX succeeded to reenter, but it was only hemispherical head of HOPE-X, that is, not plane-shaped.

Suborbital spaceplanes

The X-15's rocket engine used ammonia and liquid oxygen.

Other spaceplane designs are suborbital, requiring far less energy for propulsion, and can use the vehicle's wings to provide lift for the ascent to space in addition to the rocket. As of 2018, three such crafts flew successfully to and from space, back to Earth, namely the North American X-15 and Virgin Galactic SpaceShipOne and SpaceShipTwo. All these crafts were not capable of entering orbit and all of them began their independent flight only after being lifted to high altitude by a carrier aircraft.

SpaceShipTwo
 
Scaled Composites and Virgin Galactic unveiled on 7 December 2009, the SpaceShipTwo space plane, the VSS Enterprise, and its WhiteKnightTwo mothership, "Eve". SpaceShipTwo is designed to carry two pilots and six passengers on suborbital flights. On 13 December 2018 SpaceShipTwo VSS Unity successfully crossed the space (above 50 miles altitude) boundary.

HYFLEX was a miniaturized suborbital demonstrator of HOPE-X launched in 1996. HYFLEX flew to 110 km altitude and succeeded in atmospheric reentry, subsequently achieving hypersonic flight. Though HYFLEX achieved a controlled aircraft descent, it was not designed for a planned aircraft landing, the engineers opting instead for a splashdown without a parachute. Recovery of the HYFLEX failed and it sank in the Pacific Ocean.

Proposed spaceplanes

United States Gemini tested the use of a Rogallo wing rather than a parachute. August 1964.
 
Various types of spaceplanes have been suggested since the early twentieth century. Notable early designs include Friedrich Zander's spaceplane equipped with wings made of combustible alloys that it would burn during its ascent, and Eugen Sänger's Silbervogel bomber design. Also in Germany and then in the US, winged versions of the V-2 rocket were considered during and after World War II, and when public interest in space exploration was high in the 1950s and '60s, winged rocket designs by Wernher von Braun and Willy Ley served to inspire science fiction artists and filmmakers.

United States

The U.S. Air Force invested some effort in a paper study of a variety of spaceplane projects under their Aerospaceplane efforts of the late 1950s, but later ended these when they decided to use a modified version of Sänger's design. The result, Boeing X-20 Dyna-Soar, was to have been the first orbital spaceplane, but was canceled in the early 1960s in lieu of NASA's Project Gemini and the U.S. Air Force's Manned Orbiting Laboratory program.

In 1961, NASA originally planned to have the Gemini spacecraft land on a firm, solid ground runway with a Rogallo wing airfoil, rather than as a splashdown with parachute. The test vehicle became known as the Paraglider Research Vehicle. Development work on both Gemini's splashdown parachute and spaceplane paraglider began in 1963. By December 1963, the parachute was already to undergo full-scale deployment testing. On the other hand, by December 1963 the paraglider spaceplane concept was running into technical difficulties and subsequently became replaced by the parachute splashdown concept. Though attempts to revive Gemini's paraglider spaceplane concept persisted within NASA and North American Aviation as late as 1964, NASA Headquarters Gemini Chief William Schneider discontinued development as technical hurdles became too expensive.

United States STS concepts, circa 1970s
 
Illustration of NASP taking off
 
The Rockwell X-30 National Aero-Space Plane (NASP), begun in the 1980s, was an attempt to build a scramjet vehicle capable of operating like an aircraft and achieving orbit like the shuttle. President Ronald Reagan described NASP in his 1986 State of the Union address as "...a new Orient Express that could, by the end of the next decade, take off from Dulles Airport and accelerate up to twenty-five times the speed of sound, attaining low Earth orbit or flying to Tokyo within two hours..." There were six identifiable technologies which were considered critical to the success of the NASP project. Three of these "enabling" technologies were related to the propulsion system, which would consist of a hydrogen-fueled scramjet.

The NASP program became the Hypersonic Systems Technology Program (HySTP) in late 1994. HySTP was designed to transfer the accomplishments made in hypersonic technologies by the National Aero-Space Plane (NASP) program into a technology development program. On 27 January 1995 the Air Force terminated participation in (HySTP). It was canceled due to increasing technical challenges, and growing budgets.

In 1994 Mitchell Burnside Clapp proposed a single stage to orbit peroxide/kerosene spaceplane called "Black Horse". It was to take off almost empty and undergo mid-air refueling before launching to orbit.

The Lockheed Martin X-33 was a 1/3 scale prototype made as part of an attempt by NASA to build a SSTO hydrogen-fuelled spaceplane VentureStar that failed when the hydrogen tank design proved to be unconstructable in the planned way.

The edition of 5 March 2006 of Aviation Week & Space Technology published a story purporting to be "outing" a highly classified U.S. military two-stage-to-orbit spaceplane system with the code name Blackstar, SR-3/XOV among other nicknames.

Boeing X-37B being prepared for launch in 2010 on an expendable orbital rocket
 
In 1999 NASA started the Boeing X-37 project, an unmanned, remote controlled spaceplane. The project was transferred to the U.S. Department of Defense in 2004.

Boeing has proposed that a larger variant of the X-37B, the X-37C could be built to carry up to six passengers up to LEO. The spaceplane would also be usable for carrying cargo, with both upmass and downmass (return to Earth) cargo capacity. The ideal size for the proposed derivative "is approximately 165 to 180 percent of the current X-37B."

In December 2010, Orbital Sciences made a commercial proposal to NASA to develop the Prometheus, a lifting-body spaceplane vehicle about one-quarter the size of the Space Shuttle, in response to NASA's Commercial Crew Development (CCDev) phase 2 solicitation. The vehicle would be launched on a human-rated (upgraded) Atlas V rocket but would land on a runway. For the same solicitation, Sierra Nevada Corporation proposed phase 2 extensions of its Dream Chaser spaceplane technology, partially developed under the first phase of NASA's CCDev program. Both the Orbital Sciences proposal and the Dream Chaser are lifting body designs. Sierra Nevada will utilize Virgin Galactic to market Dream Chaser commercial services and may use "Virgin's WhiteKnightTwo carrier aircraft as a platform for drop trials of the Dream Chaser atmospheric test vehicle" NASA expects to make approximately $200 million of phase 2 awards by March 2011, for technology development projects that could last up to 14 months.

Soviet Union and Russia

Buran orbiter being transported via An-225
 
The Soviet Union firstly considered a preliminary design of rocket-launch small spaceplane Lapotok in early 1960s. Then the Spiral airspace system with small orbital spaceplane and rocket as second stage was widely developed in the 1960s–1980s. Mikoyan-Gurevich MiG-105 was a manned test vehicle to explore low-speed handling and landing.

Cosmoplane

In recent times, an orbital spaceplane, called cosmoplane (Russian: космоплан) capable of transporting passengers has been proposed by Russia's Institute of Applied Mechanics. According to researchers, it could take about 20 minutes to fly from Moscow to Paris, using hydrogen and oxygen-fueled engines.

United Kingdom

The Skylon spaceplane is designed as a two-engine, "tailless" aircraft, which is fitted with a steerable canard.
 
The Multi-Unit Space Transport And Recovery Device (MUSTARD) was a concept explored by the British Aircraft Corporation (BAC) around 1968 for launching payloads weighing as much as 2,300 kg (5,000 lb) into orbit. It was never constructed. The British Government also began development of a SSTO-spaceplane, called HOTOL, but the project was canceled due to technical and financial issues.

The lead engineer from the HOTOL project has since set up a private company dedicated to creating a similar plane called Skylon with a different combined cycle rocket/turbine precooled jet engine called SABRE. This vehicle is intended to be capable of a single stage to orbit launch carrying a 15,000 kg (33,000 lb) payload into low Earth orbit. If successful it would be far in advance of anything currently in operation.

The British company Bristol Spaceplanes has undertaken design and prototyping of three potential spaceplanes since its founding by David Ashford in 1991. The European Space Agency has endorsed these designs on several occasions.

France and the European Space Agency

France worked on the Hermes manned spaceplane launched by Ariane rocket in the late 20th century, and proposed in January 1985 to go through with Hermes development under the auspices of the ESA. Hopper was one of several proposals for a European reusable launch vehicle (RLV) planned to cheaply ferry satellites into orbit by 2015. One of those was 'Phoenix', a German project which is a one-seventh scale model of the Hopper concept vehicle. The suborbital Hopper was a FESTIP (Future European Space Transportation Investigations Programme) system study design A test project, the Intermediate eXperimental Vehicle (IXV), has demonstrated lifting reentry technologies and will be extended under the PRIDE programme. The FAST20XX Future High-Altitude High Speed Transport 20XX aims to establish sound technological foundations for the introduction of advanced concepts in suborbital high-speed transportation with air-launch-to-orbit ALPHA vehicle.

Japan

HOPE was a Japanese experimental spaceplane project designed by a partnership between NASDA and NAL (both now part of JAXA), started in the 1980s. It was positioned for most of its lifetime as one of the main Japanese contributions to the International Space Station, the other being the Japanese Experiment Module. The project was eventually cancelled in 2003, by which point test flights of a sub-scale testbed had flown successfully. As of 2018, Japan is developing the Winged Reusable Sounding rocket (WIRES), which if successful, may be used as a recoverable first-stage or as a crewed sub-orbital spaceplane.

Germany

After the German Sänger-Bredt RaBo and Silbervogel of the 1930s and 1940s, Eugen Sänger worked for time on various space plane projects, coming up with several designs for Messerschmitt-Bölkow-Blohm such as the MBB Raumtransporter-8. In the 1980s, West Germany funded design work on the MBB Sänger II with the Hypersonic Technology Program. Development continued on MBB/Deutsche Aerospace Sänger II/HORUS until the late 1980s when it was canceled. Germany went on to participate in the Ariane rocket, Columbus space station and Hermes spaceplane of ESA, Spacelab of ESA-NASA and Deutschland missions (non-U.S. funded Space Shuttle flights with Spacelab). The Sänger II had predicted cost savings of up to 30 percent over expendable rockets. The Daimler-Chrysler Aerospace RLV was a much later small reusable spaceplane prototype for ESA Future Launchers Preparatory Programme/FLTP program. Most recent project is SpaceLiner.

India

AVATAR (Aerobic Vehicle for Hypersonic Aerospace Transportation; Sanskrit: अवतार) was a concept study for an unmanned single-stage reusable spaceplane capable of horizontal takeoff and landing, presented to India's Defence Research and Development Organisation. The mission concept was for low cost military and commercial satellite launches. No further studies or development have taken place since 2001. 

As of 2016, the Indian Space Research Organisation is developing a launch system named the Reusable Launch Vehicle (RLV). It is India's first step towards realizing a two-stage-to-orbit reusable launch system. A space plane serves as the second stage. The plane is expected to have air-breathing scramjet engines as well as rocket engines. Tests with miniature spaceplanes and a working scramjet have been conducted by ISRO in 2016.

China

Shenlong (Chinese: 神龙; pinyin: shén lóng; literally: 'divine dragon') is a proposed Chinese robotic spaceplane that is similar to the American Boeing X-37. Only a few images have been released since late 2007.

Lockheed Martin X-33

From Wikipedia, the free encyclopedia

X-33
2009VersionX33.JPG
Simulated in-flight view of the X-33
FunctionUnmanned re-usable spaceplane technology demonstrator
ManufacturerLockheed Martin
Country of originUnited States
Project cost$922 million NASA + $357 million Lockheed Martin
Size
Height20 m (69 ft)
DiameterN/A
Mass285,000 lb (130,000 kg)
Stages1
Capacity
Launch history
StatusCanceled (2001)
Total launches0
First stage - X-33
Engines2 XRS-2200 linear aerospikes
Thrust410,000 lbf (1.82 MN)
FuelLOX/LH2

The Lockheed Martin X-33 was an unmanned, sub-scale technology demonstrator suborbital spaceplane developed in the 1990s under the U.S. government-funded Space Launch Initiative program. The X-33 was a technology demonstrator for the VentureStar orbital spaceplane, which was planned to be a next-generation, commercially operated reusable launch vehicle. The X-33 would flight-test a range of technologies that NASA believed it needed for single-stage-to-orbit reusable launch vehicles (SSTO RLVs), such as metallic thermal protection systems, composite cryogenic fuel tanks for liquid hydrogen, the aerospike engine, autonomous (unmanned) flight control, rapid flight turn-around times through streamlined operations, and its lifting body aerodynamics.

Failures of its 21-meter wingspan and multi-lobed, composite material fuel tank during pressure testing ultimately led to the withdrawal of federal support for the program in early 2001. Lockheed Martin has conducted unrelated testing, and has had a single success after a string of failures as recently as 2009 using a 2-meter scale model.

History

In 1994 NASA initiated the Reusable Launch Vehicle (RLV) program, which among other things lead to the development of the X-33 within a few years. Another important vehicle in this program was the Orbital Sciences X-34, which was developed concurrently with the X-33 by 1996. Goals of the RLV program:
  • To "demonstrate technologies leading to a new generation of space boosters capable of delivering payloads at significantly lower cost"
  • To "provide a technology base for development of advanced commercial launch systems that will make U.S. aerospace manufacturers more competitive in the global market."
The proposals for the X-33 included designs from:
  • Rockwell
  • Lockheed Martin
  • McDonnell Douglas
The X-33 contract was awarded to LM in 1996, and $1 billion was spent through 1999 with about 80 percent coming from NASA and additional money contributed by private companies. The goals was to have a first flight by 1999, and operating space vehicle by 2005.
... to build a vehicle that takes days, not months, to turn around; dozens, not thousands, of people to operate; with launch costs that are a tenth of what they are now. Our goal is a reusable launch vehicle that will cut the cost of getting a pound of payload to orbit from $10,000 to $1,000.
— D. Goldin NASA administrator on the RLV program
There were three design proposals submitted for the X-33, and the L.M. version won and was further developed. The Lockheed Martin proposal was chosen on July 2, 1996. However, the X-33 program was cancelled in early 2001 after the project had problems with a carbon composite hydrogen fuel tank. The program was managed by the NASA's Marshall Space Flight Center.

Several years after it was cancelled the problems with hydrogen fuel tank were resolved by aerospace companies.

Design and development

X-33 model being prepared for testing in a wind-tunnel in 1997
 
Test of the X-33's thermal protection system, 1998
 
Space art of X-33 in orbit
 
Another concept of it in space
 
Through the use of the lifting body shape, composite multi-lobed liquid fuel tanks, and the aerospike engine, NASA and Lockheed Martin hoped to test fly a craft that would demonstrate the viability of a single-stage-to-orbit (SSTO) design. A spacecraft capable of reaching orbit in a single stage would not require external fuel tanks or boosters to reach low Earth orbit. Doing away with the need for "staging" with launch vehicles, such as with the Shuttle and the Apollo rockets, would lead to an inherently more reliable and safer space launch vehicle. While the X-33 would not approach airplane-like safety, the X-33 would attempt to demonstrate 0.997 reliability, or 3 mishaps out of 1,000 launches, which would be an order of magnitude more reliable than the Space Shuttle. The 15 planned experimental X-33 flights could only begin this statistical evaluation. 

X-33 launch facility already completed at Edwards Air Force Base.
 
The unmanned craft would have been launched vertically from a specially designed facility constructed on Edwards Air Force Base, and landed horizontally (VTHL) on a runway at the end of its mission. Initial sub-orbital test flights were planned from Edwards AFB to Dugway Proving Grounds southwest of Salt Lake City, Utah. Once those test flights were completed, further flight tests were to be conducted from Edwards AFB to Malmstrom AFB in Great Falls, Montana, to gather more complete data on aircraft heating and engine performance at higher speeds and altitudes.

On July 2, 1996, NASA selected Lockheed Martin Skunk Works of Palmdale, California, to design, build, and test the X-33 experimental vehicle for the RLV program. Lockheed Martin's design concept for the X-33 was selected over competing designs from Boeing and McDonnell Douglas. Boeing featured a Space Shuttle-derived design, and McDonnell Douglas featured a design based on its vertical takeoff and landing (VTVL) DC-XA test vehicle. 

The unmanned X-33 was slated to fly 15 suborbital hops to near 75.8 km altitude. It was to be launched upright like a rocket and rather than having a straight flight path it would fly diagonally up for half the flight, reaching extremely high altitudes, and then for the rest of the flight glide back down to a runway. 

The X-33 was never intended to fly higher than an altitude of 100 km, nor faster than one-half of orbital velocity. Had any successful tests occurred, extrapolation would have been necessary to apply the results to a proposed orbital vehicle.

The decision to design and build the X-33 grew out of an internal NASA study titled "Access to Space". Unlike other space transport studies, "Access to Space" was to result in the design and construction of a vehicle.

Commercial spaceflight

Based on the X-33 experience shared with NASA, Lockheed Martin hoped to make the business case for a full-scale SSTO RLV, called VentureStar, that would be developed and operated through commercial means. The intention was that rather than operate space transport systems as it has with the Space Shuttle, NASA would instead look to private industry to operate the reusable launch vehicle and NASA would purchase launch services from the commercial launch provider. Thus, the X-33 was not only about honing space flight technologies, but also about successfully demonstrating the technology required to make a commercial reusable launch vehicle possible. 

The VentureStar was to be the first commercial aircraft to fly into space. The VentureStar was intended for long inter-continental flights and supposed to be in service by 2012, but this project was never funded or begun.

Aerospike engine test at Stennis Space Center, August 6, 2001

Cancellation

The program was cancelled in February 2001. The main reason for this was reported as being a delay caused in completing the fuel tanks.

Construction of the prototype was some 85% assembled with 96% of the parts and the launch facility 100% complete when the program was canceled by NASA in 2001, after a long series of technical difficulties including flight instability and excess weight

In particular, the composite liquid hydrogen fuel tank failed during testing in November 1999. The tank was constructed of honeycomb composite walls and internal structures to reduce its weight. A lighter tank was needed for the craft to demonstrate necessary technologies for single-stage-to-orbit operations. A hydrogen fueled SSTO craft's mass fraction requires that the weight of the vehicle without fuel be 10% of the fully fueled weight. This would allow a vehicle to fly to low Earth orbit without the need for the sort of external boosters and fuel tanks used by the Space Shuttle. But, after the composite tank failed on the test stand during fueling and pressure tests, NASA came to the conclusion that the technology of the time was simply not advanced enough for such a design. While the composite tank walls themselves were lighter, the odd hydrogen tank shape resulted in complex joints increasing the total mass of the composite tank to above that of an aluminum-based tank.

Microcracking problem discovered in the liquid-hydrogen (LH2) multi-lobed tank core by NASA scientists at Goddard Space Flight Center ultimately caused NASA to cancel the X-33 program
 
NASA had invested $922 million in the project before cancellation, and Lockheed Martin a further $357 million. Due to changes in the space launch business—including the challenges faced by companies such as Globalstar, Teledesic, and Iridium and the resulting drop in the anticipated number of commercial satellite launches per year—Lockheed Martin deemed that continuing development of the X-33 privately without government support would not be profitable.

Specifications

  • Length: 69 feet (21 m)
  • Width: 77 feet (23 m)
  • Takeoff weight: 285,000 pounds (129,000 kg)
  • Fuel: LH2/LO2
  • Fuel weight: 210,000 pounds (95,000 kg)
  • Main Propulsion: 2 XRS-2200 linear aerospikes
  • Take-off thrust: 410,000 pounds-force (1,800,000 N)
  • Maximum speed: > Mach 13 (16,000 km/h)
  • Payload to low Earth orbit: N/A

Continued research

After the cancellation in 2001, engineers were able to make a working liquid-oxygen tank from carbon-fiber composite. Tests showed that composites were feasible materials for liquid-oxygen tanks.

On September 7, 2004, Northrop Grumman and NASA engineers unveiled a liquid-hydrogen tank made of carbon-fiber composite material that had demonstrated the ability for repeated fuelings and simulated launch cycles. Northrop Grumman concluded that these successful tests have enabled the development and refinement of new manufacturing processes that will allow the company to build large composite tanks without an autoclave; and design and engineering development of conformal fuel tanks appropriate for use on a single-stage-to-orbit vehicle.

The alternative proposals

Five companies expressed interest and proposed concepts. Three (LM, Rockwell and McDonnell Douglas) were selected for workup into more detailed proposals.

Rockwell

Rockwell proposed a Space Shuttle-derived design. It would have used one Space Shuttle Main Engine (SSME) and two RL-10-5A engines.

In a subsequent full-scale system to reach orbit Rockwell planned to use six Rocketdyne RS-2100 engines.

McDonnell Douglas

McDonnell Douglas featured a design using liquid oxygen/hydrogen bell engines based on its vertical takeoff and landing (VTVL) DC-XA test vehicle. It would have used a single SSME for the main propulsion system.

Commercial Resupply Services

From Wikipedia, the free encyclopedia

In March 2013, a SpaceX Dragon is berthed to the ISS
 
Cygnus 5 near ISS, 2015
 
Commercial Resupply Services (CRS) are a series of contracts awarded by NASA from 2008–2016 for delivery of cargo and supplies to the International Space Station (ISS) on commercially operated spacecraft. The first CRS contracts were signed in 2008 and awarded $1.6 billion to SpaceX for 12 cargo transport missions and $1.9 billion to Orbital Sciences for 8 missions, covering deliveries to 2016. In 2015, NASA extended the Phase 1 contracts by ordering an additional three resupply flights from SpaceX and one from Orbital Sciences. After additional extensions late in 2015, SpaceX is currently scheduled to have a total of 20 missions and Orbital 10.

SpaceX began flying resupply missions in 2012, using Dragon cargo spacecraft launched on Falcon 9 rockets from Space Launch Complex 40 at Cape Canaveral Air Force Station, Cape Canaveral, Florida. Orbital Sciences began deliveries in 2013 using Cygnus spacecraft launched on the Antares rocket from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS), Wallops Island, Virginia.

A second phase of contracts (known as CRS2) were solicited and proposed in 2014. They were awarded in January 2016 to Orbital ATK, Sierra Nevada Corporation, and SpaceX, for cargo transport flights beginning in 2019 and expected to last through 2024.

History

The Dragon is seen being berthed to the ISS in May 2012
 
The Standard variant of Cygnus is seen berthed to the ISS in September 2013
 
ISS crew inside Dragon C2, docked to ISS in 2012
 
US public laws dating back to 1984 and 1990 have directed NASA to pursue commercial options for launching spaceflight missions, whenever such commercial offerings are available. By the 2000s, other more specific Congressional authorizations began to fund explicit development of commercial options for NASA, first for cargo services, and later for ISS crew transport services as well.

The selection of the firms resupplying the space station was publicly discussed by NASA on December 22, 2008. NASA announced the awarding of contracts for 12 flights by SpaceX and 8 flights by Orbital Sciences Corporation in a press conference on December 23, 2008. PlanetSpace submitted a protest to the Government Accountability Office after receiving a NASA briefing on the outcome of the award. On April 22, 2009 GAO publicly released its decision to deny the protest.

The launch vehicles and cargo carriers were developed using Space Act Agreements under NASA's Commercial Orbital Transportation Services (COTS) program.

SpaceX launched their first Falcon 9 rocket and a mock-up Dragon capsule successfully on June 4, 2010. Their first flight contracted by NASA, COTS Demo Flight 1, took place on December 8, 2010, demonstrating the Dragon capsule's multiple orbit capability, ability to receive and respond to ground commands, and ability to gain and maintain directional alignment with NASA's Tracking and Data Relay Satellite System narrow-band satellite communication system. On August 15, 2011, SpaceX announced NASA had combined the mission objectives of the COTS Demo Flight 2 and 3 missions into a single mission, with the COTS 3 validation tests beginning only if all of the COTS 2 objectives were successfully demonstrated first.

The COTS Demo Flight 2+ mission successfully launched on May 22, 2012, delivered cargo to the ISS and on May 31, landed in the Pacific and was recovered. On August 23, 2012, NASA announced that SpaceX had successfully completed its COTS Space Act Agreement and NASA certified SpaceX to begin their CRS contracted spaceflights. SpaceX began their first CRS flight in October 2012. 

Orbital Sciences completed their COTS certification with a flight on September 29, 2013 and their first CRS mission was launched January 9, 2014. In February 2016, five additional missions were added to the CRS contract for an estimated $700 million.

NASA began a formal process to initiate Phase 2 of the Commercial Resupply Services, CRS2, in early 2014. Three companies were awarded contracts on January 14, 2016.

The docking of SpaceX CRS-8 at the ISS on April 10, 2016, while Cygnus CRS OA-6 was also docked, marked the first time a Dragon spacecraft and a Cygnus spacecraft were docked with the ISS at the same time. At the time, Dragon was docked at Harmony nadir, while Cygnus was docked at Unity nadir.

Phase 1 Missions

Transport flights began under phase 1 of the Commercial Resupply Services contract, CRS 1, in 2012 and are planned to continue until the CRS 2 contracts commence in 2019.

SpaceX

SpaceX Dragon spacecraft being integrated with Falcon 9 launch rocket, 2012
 
CRS-8 Dragon at ISS, 2016
 
The first CRS mission, SpaceX CRS-1, was scheduled for October 8, 2012 at 00:35 UTC from Cape Canaveral Air Force Station Space Launch Complex 40 in Florida. It was the first of 12 planned resupply missions. CRS-1 took off on October 8, 2012 at 03:03:52 AM GMT, achieved orbit, berthing and remained on station until October 28, 2012. Dragon then re-entered the earth's atmosphere and successfully splashed down in the Pacific Ocean.

SpaceX CRS-2, the second CRS mission from SpaceX, was successfully launched on March 1, 2013.

SpaceX CRS-3, SpaceX's third CRS mission, was scheduled for launch on March 30, 2014, but was delayed due to a fire at one of the radar facilities on the Eastern Range. The launch completed successfully on April 18. 

SpaceX CRS-4, SpaceX's fourth CRS mission, was scheduled for launch on September 20, 2014, but was delayed due to adverse weather conditions; the launch occurred on Sunday, September 21, 2014 at 1:52 a.m. EDT (0552 GMT) from Cape Canaveral Air Force Station in Florida. The capsule was subsequently reused in CRS-11 mission on June 3, 2017.

SpaceX CRS-5, SpaceX's fifth CRS mission, was scheduled for launch on December 9, 2014, but was delayed over several dates in December due to manifest adjustments for items lost from the Cygnus CRS Orb-3 launch failure, technical issues found from a static fire test, the U.S. holiday season and staff scheduling, as well as a beta angle period during late December where thermal and operational constraints would make a Dragon berthing prohibited. The launch was rescheduled for January 6, 2015. At 1 minute 27 seconds to launch, the launch was scrubbed due to a thrust vector actuator problem with the second stage engine. The launch was rescheduled to Saturday, January 10, 2015, which completed successfully at 4:47 AM Central time.

SpaceX CRS-6, SpaceX's sixth CRS mission, was successfully launched on April 14, 2015, at 20:10:41 UTC from Cape Canaveral Air Force Station in Florida.

SpaceX CRS-7, SpaceX's seventh CRS mission, was attempted on June 28, 2015 from Cape Canaveral Air Force Station in Florida. The mission suffered a catastrophic failure, with an anomaly occurring during the ascent of the first stage, resulting in an explosion and a total loss of the vehicle.

SpaceX CRS-8, SpaceX's eighth CRS mission, was successfully launched on April 8, 2016 from Cape Canaveral Air Force Station in Florida. The first stage landed successfully on SpaceX's drone ship in the Atlantic Ocean, and was subsequently reused to launch SES-10 on March 30, 2017.

SpaceX CRS-9, SpaceX's ninth CRS mission, was successfully launched on July 18, 2016 from Cape Canaveral Air Force Station in Florida. The first stage landed successfully at Landing Zone 1

SpaceX CRS-10, SpaceX's tenth CRS mission, was aborted on February 18, 2017 due to an anomaly in the Thrust Vector Control (TVC) of the second stage but successfully launched on the February 19 from Kennedy Space Center in Florida. The first stage landed successfully on Landing Zone 1.

SpaceX CRS-11, SpaceX's 11th CRS mission, was successfully launched on June 3, 2017 from Kennedy Space Center LC-39A, being the 100th mission to be launched from that pad. Launch attempt on June 1 was aborted due to bad weather. This mission was the first to re-fly a recovered Dragon capsule that previously flew on CRS-4 mission. This mission delivered 2,708 kilograms of cargo to the International Space Station, including NICER. The first stage of the Falcon 9 launch vehicle landed successfully at Landing Zone 1

SpaceX CRS-12, SpaceX's 12th CRS mission, was successfully launched on the first 'Block 4' version of the Falcon 9 on August 14, 2017 from Kennedy Space Center LC-39A at the first attempt. This mission delivered 2,349 kg (5,179 lb) of pressurized mass and 961 kg (2,119 lb) unpressurized. The external payload manifested for this flight was the CREAM cosmic-ray detector. Last flight of a newly-built Dragon capsule; further missions will use refurbished spacecraft.

SpaceX CRS-13, SpaceX's 13th CRS mission, was successfully launched on December 15, 2017.

SpaceX CRS-14, launched at 16:30 EDT (20:30 UTC) on April 2, 2018 and berthed at the ISS on April 4, 2018.

SpaceX CRS-15, launched at 05:42 EDT (09:42 UTC) on June 29, 2018 and berthed at the ISS on July 2, 2018.

SpaceX CRS-16, was successfully launched on December 5, 2018 at 13:16 EDT (18:16 UTC) and berthed at the ISS on December 8, 2018, marking the success of SpaceX's primary mission.  However, their secondary mission of landing the Falcon 9 booster was unsuccessful. 

Orbital Sciences

Standard size Cygnus spacecraft
 
Enhanced size Cygnus spacecraft
 
Cygnus approaching ISS to support Expedition 47
 
Orbital Sciences rolled out its Antares rocket to the launchpad at the Mid-Atlantic Regional Spaceport in October 2012 in preparation for an on-pad hot-fire test of the rocket in early November 2012. The rocket successfully made its initial launch with a test payload on April 21, 2013.

Orbital Sciences' first COTS demonstration mission was successfully carried out on September 29, 2013, a week behind schedule due to a software malfunction; this is a predecessor mission to the start of Orbital Commercial Resupply Services missions contracted by NASA to resupply the International Space Station. CRS-1 and CRS-2 followed on. 

Orbital Sciences' 3rd Resupply mission (CRS-3) from NASA's Wallops Flight Facility on October 28, 2014 failed. First Antares launch to use Castor 30XL upperstage, delayed due to boat in launch safe zone. Second takeoff attempt suffered a catastrophic anomaly resulting in an explosion shortly after launch. Contents of the cargo included: Food and care packages for the crew, parts, experiments, and the Arkyd-3 Flight Test (Non-optical) Satellite from Planetary Resources. Shortly after lift-off from the Mid-Atlantic Regional Spaceport Pad 0A at 6:22 p.m. (EDT), the vehicle suffered a catastrophic failure. According to NASA's emergency operations officials, there were no casualties and property damage was limited to the south end of Wallops Island. The company decided to discontinue the Antares 100 series and accelerate the introduction of a new propulsion. The Antares 230 system was upgraded with newly built RD-181 first-stage engines to provide greater payload performance and increased reliability.

In the meantime, the company had contracted with United Launch Alliance for an Atlas V launch of OA-4 in late 2015 from Cape Canaveral, FL which flew on December 6, 2015. That mission also marked the debut of the bigger Enhanced Cygnus, intended for use on all following CRS contracted missions. The company planned Cygnus missions for the first (OA-5), second (OA-6) and fourth quarters (OA-7) of 2016. CRS OA-6 was successfully launched on March 23, 2016 by the Atlas V. CRS OA-5 and CRS OA-7, launched on the new Antares 230, on October 17, 2016 and April 18, 2017 respectively. The switch to the more powerful Atlas V and Antares 230, along with Enhanced Cygnus increased volume, enabled Orbital ATK to cover their initial CRS contracted payload obligation by OA-7.

During August 2015, Orbital ATK disclosed that they had received an extension of the resupply program for three extra missions. These additional missions enables NASA to cover the ISS resupply needs until the Commercial Resupply Services 2 contract enters in effect. The OA-8E flight was tentatively scheduled for June 12, 2017 and flew on November 12, 2017. 

OA-9E was successfully launched on May 20, 2018.

Cygnus NG-10 (formally called OA-10E) was successfully launched on November 17, 2018. 

Cygnus NG-11 was successfully launched on 17 April, 2019 at 8:46 UTC. It is arrived to the ISS on 19 April 2019.

Commercial Resupply Services 2

The Commercial Resupply Services 2 (CRS2) contract definition/solicitation period commenced in 2014 and a result announced on January 14, 2016. The CRS2 launches are expected to commence in 2019, and extend to at least 2024.

Solicitation and proposal period

On February 21, 2014 NASA posted Request For Information (RFI) NNJ14ZBG007L about a possible follow on to the current Commercial Resupply Services (CRS1) to the International Space Station (ISS).

An "Industry Day" set of meetings was held in Houston on April 10, 2014, where seven high-level requirements for the second Cargo Resupply Services contract solicitation were disclosed to parties who may be interested in contracting with the government to supply "nonscheduled chartered freight air transportation" resupply services to the ISS in the 2015–2024 time period. The contracts were expected to include "delivery of pressurized and unpressurized cargo, return and disposal of pressurized cargo, disposal of unpressurized cargo, and ground support services for the end-to-end resupply mission":
  • delivery of approximately 14,000 to 17,000 kg (31,000 to 37,000 lb) per year 55 to 70 m3 (1,900 to 2,500 cu ft) of pressurized cargo in four or five transport trips
  • delivery of 24–30 powered lockers per year, requiring continuous power of up to 120 watts at 28 volts, with cooling and two-way communication services
  • delivery of approximately 1,500 to 4,000 kg (3,300 to 8,800 lb) per year of unpressurized cargo, consisting of 3 to 8 items, each item requiring continuous power of up to 250 watts at 28 volts, with cooling and two-way communication services
  • return/disposal of approximately 14,000 to 17,000 kg (31,000 to 37,000 lb) per year 55 to 70 m3 (1,900 to 2,500 cu ft) of pressurized cargo
  • disposal of 1,500 to 4,000 kg (3,300 to 8,800 lb) per year of unpressurized cargo, consisting of 3 to 8 items
  • various ground support services for the end-to-end ISS resupply mission
NASA planned to release the draft request for proposal (RFP) in May 2014 with a final RFP in June 2014. Proposals were due in July 2014, and at least two contracts were expected to be awarded. 

Five companies were known to have submitted proposals to NASA: SpaceX, Orbital ATK, Boeing, Sierra Nevada (SNC), and Lockheed Martin. Although the contract awards were originally anticipated by NASA in April 2015, they moved back to a June target date, and in April, delayed again to a contract award target date of September 2015 and the selection for the contract was not made until January 14, 2016. 

CRS1 contractors Orbital Sciences and SpaceX each submitted CRS2 proposals. In addition, Boeing, Lockheed Martin, and SNC submitted proposals for CRS2. SNC's proposal would use a cargo version of its Dream Chaser crew vehicle, the Dream Chaser Cargo System, while Boeing's proposal would likewise use a cargo version of its CST-100 crew vehicle. The proposed cargo Dream Chaser included an additional expendable cargo module for uplift and trash disposal. Downmass would only be provided via the Dream Chaser spaceplane itself.

Lockheed Martin proposed a cargo transport system called Jupiter, a spacecraft that was to be derived from designs of the Mars Atmosphere and Volatile Evolution Mission and the Juno spacecraft. It would include a robotic arm, from MDA based on Shuttle Arm technology. The Lockheed proposal included a new 4.4-meter (14 ft) diameter cargo transport module called Exoliner, based on the ESA Automated Transfer Vehicle, to be jointly developed with Thales Alenia Space.

Contracts awarded

Sierra Nevada Dream Chaser in development, 2013 drop-test preparations shown
 
On January 14, 2016, NASA announced that three companies had been awarded contracts for a minimum of six launches each: SpaceX, Orbital ATK and SNC. The maximum potential value of all the contracts was indicated to be $14 billion but the minimum requirements would be considerably less. No further financial information was disclosed. The missions involved would be from late 2019 through to 2024.

Inbreeding depression

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inb...