Search This Blog

Saturday, August 3, 2019

Huntingtin

From Wikipedia, the free encyclopedia
 
HTT
PDB 3io4 EBI.png
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesHTT, HD, IT15, huntingtin, LOMARS
External IDsOMIM: 613004 MGI: 96067 HomoloGene: 1593 GeneCards: HTT
Gene location (Human)
Chromosome 4 (human)
Chr.Chromosome 4 (human)
Chromosome 4 (human)
Genomic location for HTT
Genomic location for HTT
Band4p16.3Start3,041,422 bp
End3,243,960 bp
RNA expression pattern
PBB GE HD 202389 s at fs.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez


Ensembl


UniProt


RefSeq (mRNA)

NM_002111

NM_010414
RefSeq (protein)

NP_002102

NP_034544
Location (UCSC)Chr 4: 3.04 – 3.24 MbChr 5: 34.76 – 34.91 Mb

The huntingtin gene, also called the HTT or HD (Huntington disease) gene, is the IT15 ("interesting transcript 15") gene, which codes for a protein called the huntingtin protein. The gene and its product are under heavy investigation as part of Huntington's disease clinical research and the suggested role for huntingtin in long-term memory storage.

It is variable in its structure, as the many polymorphisms of the gene can lead to variable numbers of glutamine residues present in the protein. In its wild-type (normal) form, it contains 6-35 glutamine residues. However, in individuals affected by Huntington's disease (an autosomal dominant genetic disorder), it contains more than 36 glutamine residues (highest reported repeat length is about 250). Its commonly used name is derived from this disease; previously, the IT15 label was commonly used.
The mass of huntingtin protein is dependent largely on the number of glutamine residues it has, the predicted mass is around 350 kDa. Normal huntingtin is generally accepted to be 3144 amino acids in size. The exact function of this protein is not known, but it plays an important role in nerve cells. Within cells, huntingtin may or may not be involved in signaling, transporting materials, binding proteins and other structures, and protecting against programmed cell death (apoptosis). The huntingtin protein is required for normal development before birth. It is expressed in many tissues in the body, with the highest levels of expression seen in the brain.

Gene

The 5' end of the HD gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. This region is called a trinucleotide repeat. Normal persons have a CAG repeat count of between seven and 35 repeats.

The HD gene is located on the short (p) arm of chromosome 4 at position 16.3, from base pair 3,074,510 to base pair 3,243,960.

Protein

Function

The function of huntingtin is unclear. It is essential for development, and absence of huntingtin is lethal in mice. The protein has no sequence homology with other proteins and is highly expressed in neurons and testes in humans and rodents. Huntingtin upregulates the expression of Brain Derived Neurotrophic Factor (BDNF) at the transcription level, but the mechanism by which huntingtin regulates gene expression has not been determined. From immunohistochemistry, electron microscopy, and subcellular fractionation studies of the molecule, it has been found that huntingtin is primarily associated with vesicles and microtubules. These appear to indicate a functional role in cytoskeletal anchoring or transport of mitochondria. The Htt protein is involved in vesicle trafficking as it interacts with HIP1, a clathrin-binding protein, to mediate endocytosis, the trafficking of materials into a cell. Huntingtin has also been shown to have a role in the establishment in epithelial polarity through its interaction with RAB11A.

Interactions

Huntingtin has been found to interact directly with at least 19 other proteins, of which six are used for transcription, four for transport, three for cell signalling, and six others of unknown function (HIP5, HIP11, HIP13, HIP15, HIP16, and CGI-125). Over 100 interacting proteins have been found, such as huntingtin-associated protein 1 (HAP1) and huntingtin interacting protein 1 (HIP1), these were typically found using two-hybrid screening and confirmed using immunoprecipitation.

Interacting Protein PolyQ length dependence Function
α-adaptin C/HYPJ Yes Endocytosis
Akt/PKB No Kinase
CBP Yes Transcriptional co-activator with acetyltransferase activity
CA150 No Transcriptional activator
CIP4 Yes cdc42-dependent signal transduction
CtBP Yes Transcription factor
FIP2 Not known Cell morphogenesis
Grb2 Not known Growth factor receptor binding protein
HAP1 Yes Membrane trafficking
HAP40 Not known Unknown
HIP1 Yes Endocytosis, proapoptotic
HIP14/HYP-H Yes Trafficking, endocytosis
N-CoR Yes Nuclear receptor co-repressor
NF-κB Not known Transcription factor
p53 No Transcription factor
PACSIN1 Yes Endocytosis, actin cytoskeleton
PSD-95 Yes Postsynaptic Density 95
RasGAP Not known Ras GTPase activating protein
SH3GL3 Yes Endocytosis
SIN3A Yes Transcriptional repressor
Sp1 Yes Transcription factor

Huntingtin has also been shown to interact with:

Mitochondrial dysfunction

Mutant Huntingtin protein plays a key role in mitochondrial dysfunction involving inhibition of mitochondrial electron transport, higher levels of reactive oxygen species and increased oxidative stress. Mutant huntingtin protein also promotes oxidative damage to DNA that may contribute to Huntington disease pathology.

Clinical significance

Classification of the trinucleotide repeat, and resulting disease status, depends on the number of CAG repeats
Repeat count Classification Disease status
<26 span=""> Normal Unaffected
27–35 Intermediate Unaffected
36–40 Reduced penetrance +/- Affected
>40 Full penetrance Affected
Huntington's disease (HD) is caused by a mutated form of the huntingtin gene, where excessive (more than 36) CAG repeats result in formation of an unstable protein. These expanded repeats lead to production of a huntingtin protein that contains an abnormally long polyglutamine tract at the N-terminus. This makes it part of a class of neurodegenerative disorders known as trinucleotide repeat disorders or polyglutamine disorders. The key sequence which is found in Huntington's disease is a trinucleotide repeat expansion of glutamine residues beginning at the 18th amino acid. In unaffected individuals, this contains between 9 and 35 glutamine residues with no adverse effects. However, 36 or more residues produce an erroneous form of Htt, "mHtt" (standing for mutant Htt). Reduced penetrance is found in counts 36-39.

Enzymes in the cell often cut this elongated protein into fragments. The protein fragments form abnormal clumps, known as neuronal intranuclear inclusions (NIIs), inside nerve cells, and may attract other, normal proteins into the clumps. The presence of these clumps was once thought to play a causal role in Huntington disease. Further research undermined this conclusion by showing the presence of NIIs actually extended the life of neurons and acted to reduce intracellular mutant huntingtin in neighboring neurons. Thus, the likelihood of neuronal death can be predicted by accounting for two factors: (1) the length of CAG repeats in the Huntingtin gene and (2) the neuron's exposure to diffuse intracellular mutant huntingtin protein. NIIs (protein clumping) can thereby be construed as a coping mechanism—as opposed to a pathogenic mechanism—to stem neuronal death by decreasing the amount of diffuse huntingtin. This process is particularly likely to occur in the striatum (a part of the brain that coordinates movement) primarily, and the frontal cortex (a part of the brain that controls thinking and emotions).

People with 36 to 40 CAG repeats may or may not develop the signs and symptoms of Huntington disease, while people with more than 40 repeats will develop the disorder during a normal lifetime. When there are more than 60 CAG repeats, the person develops a severe form of HD known as juvenile HD. Therefore, the number of CAG (the sequence coding for the amino acid glutamine) repeats influences the age of onset of the disease. No case of HD has been diagnosed with a count less than 36.

As the altered gene is passed from one generation to the next, the size of the CAG repeat expansion can change; it often increases in size, especially when it is inherited from the father. People with 28 to 35 CAG repeats have not been reported to develop the disorder, but their children are at risk of having the disease if the repeat expansion increases.

Decline in amphibian populations

From Wikipedia, the free encyclopedia
 
The Golden toad of Monteverde, Costa Rica, was among the first casualties of amphibian declines. Formerly abundant, it was last seen in 1989.
 
The decline in amphibian populations is an ongoing mass extinction of amphibian species worldwide. Since the 1980s, decreases in amphibian populations, including population crashes and mass localized extinctions, have been observed in locations all over the world. These declines are known as one of the most critical threats to global biodiversity, and several causes are believed to be involved, including disease, habitat destruction and modification, exploitation, pollution, pesticide use, introduced species, and ultraviolet-B radiation (UV-B). However, many of the causes of amphibian declines are still poorly understood, and the topic is currently a subject of much ongoing research. Calculations based on extinction rates suggest that the current extinction rate of amphibians could be 211 times greater than the background extinction rate and the estimate goes up to 25,000–45,000 times if endangered species are also included in the computation.

Although scientists began observing reduced populations of several European amphibian species already in the 1950s, awareness of the phenomenon as a global problem and its subsequent classification as a modern-day mass extinction only dates from the 1980s. By 1993, more than 500 species of frogs and salamanders present on all five continents were in decline. Today, the phenomenon of declining amphibian populations affects thousands of species in all types of ecosystems and is thus recognized as one of the most severe examples of the Holocene extinction, with severe implications for global biodiversity.

Background

In the past three decades, declines in populations of amphibians (the class of organisms that includes frogs, toads, salamanders, newts, and caecilians) have occurred worldwide. In 2004, the results were published of the first worldwide assessment of amphibian populations, the Global Amphibian Assessment. This found that 32% of species were globally threatened, at least 43% were experiencing some form of population decrease, and that between 9 and 122 species have become extinct since 1980. As of 2010, the IUCN Red List, which incorporates the Global Amphibian Assessment and subsequent updates, lists 486 amphibian species as "Critically Endangered". Despite the high risk this group faces, recent evidence suggests the public is growing largely indifferent to this and other environmental problems, posing serious problems for conservationists and environmental workers alike.

Habitat loss, disease and climate change are thought to be responsible for the drastic decline in populations in recent years. Declines have been particularly intense in the western United States, Central America, South America, eastern Australia and Fiji (although cases of amphibian extinctions have appeared worldwide). While human activities are causing a loss of much of the world's biodiversity, amphibians appear to be suffering much greater effects than other classes of organism. Because amphibians generally have a two-staged life cycle consisting of both aquatic (larvae) and terrestrial (adult) phases, they are sensitive to both terrestrial and aquatic environmental effects. Because their skins are highly permeable, they may be more susceptible to toxins in the environment than other organisms such as birds or mammals. Many scientists believe that amphibians serve as "canaries in a coal mine," and that declines in amphibian populations and species indicate that other groups of animals and plants will soon be at risk.

Declines in amphibian populations were first widely recognized in the late 1980s, when a large gathering of herpetologists reported noticing declines in populations in amphibians across the globe. Among these species, the Golden toad (Bufo periglenes) endemic to Monteverde, Costa Rica, featured prominently. It was the subject of scientific research until populations suddenly crashed in 1987 and it had disappeared completely by 1989. Other species at Monteverde, including the Monteverde Harlequin Frog (Atelopus varius), also disappeared at the same time. Because these species were located in the pristine Monteverde Cloud Forest Reserve, and these extinctions could not be related to local human activities, they raised particular concern among biologists.

Initial skepticism

When amphibian declines were first presented as a conservation issue in the late 1980s, some scientists remained unconvinced of the reality and gravity of the conservation issue. Some biologists argued that populations of most organisms, amphibians included, naturally vary through time. They argued that the lack of long-term data on amphibian populations made it difficult to determine whether the anecdotal declines reported by biologists were worth the (often limited) time and money of conservation efforts.

However, since this initial skepticism, biologists have come to a consensus that declines in amphibian populations are a real and severe threat to biodiversity. This consensus emerged with an increase in the number of studies that monitored amphibian populations, direct observation of mass mortality in pristine sites that lacked apparent cause, and an awareness that declines in amphibian populations are truly global in nature.

Potential causes

Numerous potential explanations for amphibian declines have been proposed. Most or all of these causes have been associated with some population declines, so each cause is likely to affect in certain circumstances but not others. Many of the causes of amphibian declines are well understood, and appear to affect other groups of organisms as well as amphibians. These causes include habitat modification and fragmentation, introduced predators or competitors, introduced species, pollution, pesticide use, or over-harvesting. However, many amphibian declines or extinctions have occurred in pristine habitats where the above effects are not likely to occur. The causes of these declines are complex, but many can be attributed to emerging diseases, climate change, increased ultraviolet-B radiation, or long-distance transmission of chemical contaminants by wind. 

Artificial lighting has been suggested as another potential cause. Insects are attracted to lights making them scarcer within the amphibian habitats.

Habitat modification

Habitat modification or destruction is one of the most dramatic issues affecting amphibian species worldwide. As amphibians generally need aquatic and terrestrial habitats to survive, threats to either habitat can affect populations. Hence, amphibians may be more vulnerable to habitat modification than organisms that only require one habitat type. Large scale climate changes may further be modifying aquatic habitats, preventing amphibians from spawning altogether.

Habitat fragmentation

Habitat fragmentation occurs when habitats are isolated by habitat modification, such as when a small area of forest is completely surrounded by agricultural fields. Small populations that survive within such fragments are often susceptible to inbreeding, genetic drift, or extinction due to small fluctuations in the environment.

Pollution and chemical contaminants

There is evidence of chemical pollutants causing frog developmental deformities (extra limbs, or malformed eyes). Pollutants have varying effects on frogs. Some alter the central nervous system; others like atrazine cause a disruption in the production and secretion of hormones. Experimental studies have also shown that exposure to commonly used herbicides such as glyphosate (Tradename Roundup) or insecticides such as malathion or carbaryl greatly increase mortality of tadpoles. Additional studies have indicated that terrestrial adult stages of amphibians are also susceptible to non-active ingredients in Roundup, particularly POEA, which is a surfactant. Atrazine has been shown to cause male tadpoles of African clawed frogs to become hermaphroditic with development of both male and female organs. Such feminization has been reported in many parts of the world. In a study conducted in a laboratory at Uppsala University in Sweden, more than 50% of frogs exposed to levels of estrogen-like pollutants existing in natural bodies of water in Europe and the United States became females. Tadpoles exposed even to the weakest concentration of estrogen were twice as likely to become females while almost all of the control group given the heaviest dose became female.

While most pesticide effects are likely to be local and restricted to areas near agriculture, there is evidence from the Sierra Nevada mountains of the western United States that pesticides are traveling long distances into pristine areas, including Yosemite National Park in California.

Some recent evidence points to ozone as a possible contributing factor to the worldwide decline of amphibians.

Ozone depletion, ultraviolet radiation and cloud cover

Like many other organisms, increasing ultraviolet-B (UVB) radiation due to stratospheric ozone depletion and other factors may harm the DNA of amphibians, particularly their eggs. The amount of damage depends upon the life stage, the species type and other environmental parameters. Salamanders and frogs that produce less photolyase, an enzyme that counteracts DNA damage from UVB, are more susceptible to the effects of loss of the ozone layer. Exposure to ultraviolet radiation may not kill a particular species or life stage but may cause sublethal damage.

More than three dozen species of amphibians have been studied, with severe effects reported in more than 40 publications in peer-reviewed journals representing authors from North America, Europe and Australia. Experimental enclosure approaches to determine UVB effects on egg stages have been criticized; for example, egg masses were placed at water depths much shallower than is typical for natural oviposition sites. While UVB radiation is an important stressor for amphibians, its effect on the egg stage may have been overstated.

Anthropogenic climate change has likely exerted a major effect on amphibian declines. For example, in the Monteverde Cloud Forest, a series of unusually warm years led to the mass disappearances of the Monteverde Harlequin frog and the Golden Toad. An increased level of cloud cover, a result of geoengineering and global warming, which has warmed the nights and cooled daytime temperatures, has been blamed for facilitating the growth and proliferation of the fungus Batrachochytrium dendrobatidis (the causative agent of the fungal infection chytridiomycosis). 

An adult male Ecnomiohyla rabborum in the Atlanta Botanical Garden, a species ravaged by Batrachochytrium dendrobatidis in its native habitat. It was the last known surviving member of its species, and with its death on Sept 28, 2016, the species is believed to be extinct.
 
Although the immediate cause of the die offs was the chytrid, climate change played a pivotal role in the extinctions. Researchers included this subtle connection in their inclusive climate-linked epidemic hypothesis, which acknowledged climatic change as a key factor in amphibian extinctions both in Costa Rica and elsewhere.

New evidence has shown global warming to also be capable of directly degrading toads' body condition and survivorship. Additionally, the phenomenon often colludes with landscape alteration, pollution, and species invasions to effect amphibian extinctions.

Disease

A number of diseases have been related to mass die-offs or declines in populations of amphibians, including "red-leg" disease (Aeromonas hydrophila), Ranavirus (family Iridoviridae), Anuraperkinsus, and chytridiomycosis. It is not entirely clear why these diseases have suddenly begun to affect amphibian populations, but some evidence suggests that these diseases may have been spread by humans, or may be more virulent when combined with other environmental factors.

Trematodes

Trematode cyst-infected Pacific Tree Frog (Hyla regilla) with supernumerary limbs, from La Pine, Deschutes County, Oregon, 1998-9. This 'category I' deformity (polymelia) is believed to be caused by the trematode cyst infection. The cartilage is stained blue and calcified bones in red.
 
There is considerable evidence that parasitic trematode platyhelminths (a type of fluke) have contributed to developmental abnormalities and population declines of amphibians in some regions. These trematodes of the genus Ribeiroia have a complex life cycle with three host species. The first host includes a number of species of aquatic snails. The early larval stages of the trematodes then are transmitted into aquatic tadpoles, where the metacercariae (larvae) encyst in developing limb buds. These encysted life stages produce developmental abnormalities in post-metamorphic frogs, including additional or missing limbs. These abnormalities increase frog predation by aquatic birds, the final host of the trematode. 

Pacific Tree Frog with limb malformation induced by Ribeiroia ondatrae
 
A study showed that high levels of nutrients used in farming and ranching activities fuel parasite infections that have caused frog deformities in ponds and lakes across North America. The study showed increased levels of nitrogen and phosphorus cause sharp hikes in the abundance of trematodes, and that the parasites subsequently form cysts in the developing limbs of tadpoles causing missing limbs, extra limbs and other severe malformations including five or six extra or even no limbs.

Chytridiomycosis

A chytrid-infected frog

In 1998, following large-scale frog deaths in Australia and Central America, research teams in both areas came up with identical results: a previously undescribed species of pathogenic fungus, Batrachochytrium dendrobatidis. It is now clear that many recent extinctions of amphibians in Australia and the Americas are linked to this fungus. This fungus belongs to a family of saprobes known as chytrids that are not generally pathogenic. 

The disease caused by Batrachochytrium dendrobatidis is called chytridiomycosis. Frogs infected by this disease generally show skin lesions and hyperkeratosis, and it is believed that death occurs because of interference with skin functions including maintenance of fluid balance, electrolyte homeostasis, respiration and role as a barrier to infections. The time from infection to death has been found to be 1–2 weeks in experimental tests, but infected animals can carry the fungus as long as 220 days. There are several hypotheses on the transmission and vectors of the fungus.

Subsequent research has established that the fungus has been present in Australia since at least 1978, and present in North America since at least the 1970s. The first known record of chytrid infection in frogs is in the African Clawed Frog, Xenopus laevis. Because Xenopus are sold in pet shops and used in laboratories around the world, it is possible that the chytrid fungus may have been exported from Africa.

Introduced predators

Non-native predators and competitors have also been found to affect the viability of frogs in their habitats. The mountain yellow-legged frog which typically inhabits the Sierra Nevada lakes have seen a decline in numbers due to stocking of non-native fish (trout) for recreational fishing. The developing tadpoles and froglets fall prey to the fish in large numbers. This interference in the frog's three-year metamorphosis is causing a decline that is manifest throughout their ecosystem.

Increased noise levels

Frogs and toads are highly vocal, and their reproductive behaviour often involves the use of vocalizations. There have been suggestions that increased noise levels caused by human activities may be contributing to their declines. In a study in Thailand, increased ambient noise levels were shown to decrease calling in some species and to cause an increase in others. This has, however, not been shown to be a cause for the widespread decline.

Symptoms of stressed populations

Amphibian populations in the beginning stages of decline often exude a number of signs, which may potentially be used to identify at-risk segments in conservation efforts. One such sign is developmental instability, which has been proven as evidence of environmental stress. This environmental stress can potentially raise susceptibility to diseases such as chytridiomycosis, and thus lead to amphibian declines. In a study conducted in Queensland, Australia, for example, populations of two amphibian species, Litoria nannotis and Litoria genimaculata, were found to exhibit far greater levels of limb asymmetry in pre-decline years than in control years, the latter of which preceded die offs by an average of 16 years. Learning to identify such signals in the critical period before population declines occur might greatly improve conservation efforts.

Conservation measures

The first response to reports of declining amphibian populations was the formation of the Declining Amphibian Population Task Force (DAPTF) in 1990. DAPFT led efforts for increased amphibian population monitoring in order to establish the extent of the problem, and established working groups to look at different issues. Results were communicated through the newsletter Froglog. 

Much of this research went into the production of the first Global Amphibian Assessment (GAA), which was published in 2004 and assessed every known amphibian species against the IUCN Red List criteria. This found that approximately one third of amphibian species were threatened with extinction. As a result of these shocking findings an Amphibian Conservation Summit was held in 2005, because it was considered "morally irresponsible to document amphibian declines and extinctions without also designing and promoting a response to this global crisis".

Outputs from the Amphibian Conservation Summit included the first Amphibian Conservation Action Plan (ACAP) and to merge the DAPTF and the Global Amphibian Specialist Group into the IUCN SSC Amphibian Specialist Group (ASG). The ACAP established the elements required to respond to the crisis, including priority actions on a variety of thematic areas. The ASG is a global volunteer network of dedicated experts who work to provide the scientific foundation for effective amphibian conservation action around the world. 

On 16 February 2007, scientists worldwide met in Atlanta, U.S., to form a group called the Amphibian Ark to help save more than 6,000 species of amphibians from disappearing by starting captive breeding programmes.

Areas with noticed frog extinctions, like Australia, have few policies that have been created to prevent the extinction of these species. However, local initiatives have been placed where conscious efforts to decrease global warming will also turn into a conscious effort towards saving the frogs. In South America, where there is also an increased decline of amphibian populations, there is no set policy to try to save frogs. Some suggestions would include getting entire governments to place a set of rules and institutions as a source of guidelines that local governments have to abide by.

A critical issue is how to design protected areas for amphibians which will provide suitable conditions for their survival. Conservation efforts through the use of protected areas have shown to generally be a temporary solution to population decline and extinction because the amphibians become inbred. It is crucial for most amphibians to maintain a high level of genetic variation through large and more diverse environments.

Education of local people to protect amphibians is crucial, along with legislation for local protection and limiting the use of toxic chemicals, including some fertilizers and pesticides in sensitive amphibian areas.

Founder effect

From Wikipedia, the free encyclopedia

Founder effect: The original population (left) could give rise to different founder populations (right).
 
In population genetics, the founder effect is the loss of genetic variation that occurs when a new population is established by a very small number of individuals from a larger population. It was first fully outlined by Ernst Mayr in 1942, using existing theoretical work by those such as Sewall Wright. As a result of the loss of genetic variation, the new population may be distinctively different, both genotypically and phenotypically, from the parent population from which it is derived. In extreme cases, the founder effect is thought to lead to the speciation and subsequent evolution of new species.

In the figure shown, the original population has nearly equal numbers of blue and red individuals. The three smaller founder populations show that one or the other color may predominate (founder effect), due to random sampling of the original population. A population bottleneck may also cause a founder effect, though it is not strictly a new population.

The founder effect occurs when a small group of migrants that is not genetically representative of the population from which they came establish in a new area. In addition to founder effects, the new population is often a very small population, so shows increased sensitivity to genetic drift, an increase in inbreeding, and relatively low genetic variation.

Founder mutation

In genetics, a founder mutation is a mutation that appears in the DNA of one or more individuals which are founders of a distinct population. Founder mutations initiate with changes that occur in the DNA and can be passed down to other generations. Any organism—from a simple virus to something complex like a mammal—whose progeny carry its mutation has the potential to express the founder effect, for instance a goat or a human.

Founder mutations originate in long stretches of DNA on a single chromosome; indeed, the original haplotype is the whole chromosome. As the generations progress, the proportion of the haplotype that is common to all carriers of the mutation is shortened (due to genetic recombination). This shortening allows scientists to roughly estimate the age of the mutation.

General

The founder effect is a special case of genetic drift, occurring when a small group in a population splinters off from the original population and forms a new one. The new colony may have less genetic variation than the original population, and through the random sampling of alleles during reproduction of subsequent generations, continue rapidly towards fixation. This consequence of inbreeding makes the colony more vulnerable to extinction.

When a newly formed colony is small, its founders can strongly affect the population's genetic makeup far into the future. In humans, who have a slow reproduction rate, the population will remain small for many generations, effectively amplifying the drift effect generation after generation until the population reaches a certain size. Alleles which were present but relatively rare in the original population can move to one of two extremes. The most common one is that the allele is soon lost altogether, but the other possibility is that the allele survives and within a few generations has become much more dispersed throughout the population. The new colony can experience an increase in the frequency of recessive alleles, as well, and as a result, an increased number who are homozygous for certain recessive traits.

The variation in gene frequency between the original population and colony may also trigger the two groups to diverge significantly over the course of many generations. As the variance, or genetic distance, increases, the two separated populations may become distinctively different, both genetically and phenotypically, although not only genetic drift, but also natural selection, gene flow and mutation all contribute to this divergence. This potential for relatively rapid changes in the colony's gene frequency led most scientists to consider the founder effect (and by extension, genetic drift) a significant driving force in the evolution of new species. Sewall Wright was the first to attach this significance to random drift and small, newly isolated populations with his shifting balance theory of speciation. Following behind Wright, Ernst Mayr created many persuasive models to show that the decline in genetic variation and small population size accompanying the founder effect were critically important for new species to develop. However, much less support for this view is shown today, since the hypothesis has been tested repeatedly through experimental research, and the results have been equivocal at best. Speciation by genetic drift is a specific case of peripatric speciation which in itself occurs in rare instances. It takes place when a random change in genetic frequency of population favours the survival of a few organisms of the species with rare genes which cause reproductive mutation. These surviving organisms then breed among themselves over a long period of time to create a whole new species whose reproductive systems or behaviors are no longer compatible with the original population.

Serial founder effect

Serial founder effects have occurred when populations migrate over long distances. Such long-distance migrations typically involve relatively rapid movements followed by periods of settlement. The populations in each migration carry only a subset of the genetic diversity carried from previous migrations. As a result, genetic differentiation tends to increase with geographic distance as described by the "isolation by distance" model. The migration of humans out of Africa is characterized by serial founder effects. Africa has the highest degree of genetic diversity of any continent, which is consistent with an African origin of modern humans. After the initial migration from Africa, the Indian subcontinent was the first major settling point for modern humans. Consequently, India has the second-highest genetic diversity in the world. In general, the genetic diversity of the Indian subcontinent is a subset of Africa, and the genetic diversity outside Africa is a subset of India.

In island ecology

Founder populations are essential to the study of island biogeography and island ecology. A natural "blank slate" is not easily found, but a classic series of studies on founder population effects was done following the catastrophic 1883 eruption of Krakatoa, which erased all life on the island. Another continuing study has been following the biocolonization of Surtsey, Iceland, a new volcanic island that erupted offshore between 1963 and 1967. An earlier event, the Toba eruption in Sumatra about 73,000 years ago, covered some parts of India with 3–6 m (10–20 ft) of ash, and must have coated the Nicobar Islands and Andaman Islands, much nearer in the ash fallout cone, with life-smothering layers, forcing the restart of their biodiversity.

However, not all founder effect studies are initiated after a natural disaster; some scientists study the reinstatement of a species that became locally extinct. Hajji and others, and Hundertmark & Van Daele, studied the current population statuses of past founder effects in Corsican red deer and Alaskan elk, respectively. Corsican red deer are still listed as an endangered species, decades after a severe bottleneck. They inhabit the Tyrrhenian islands and surrounding mainlands currently, and before the bottleneck, but Hajji and others wanted to know how the deer originally got to the islands, and from what parent population or species they were derived. Through molecular analysis, they were able to determine a possible lineage, with red deer from the islands of Corsica and Sardinia being the most related to one another. These results are promising, as the island of Corsica was repopulated with red deer from the Sardinian island after the original Corsican red deer population became extinct, and the deer now inhabiting the island of Corsica are diverging from those inhabiting Sardinia.

Kolbe and others set up a pair of genetically sequenced and morphologically examined lizards on seven small islands to watch each new population's growth and adaptation to its new environment. Specifically, they were looking at the effects on limb length and perch width, both widely varying phenotypic ranges in the parent population. Unfortunately, immigration did occur, but the founder effect and adaptive differentiation, which could eventually lead to peripatric speciation, were statistically and biologically significant between the island populations after a few years. The authors also point out that although adaptive differentiation is significant, the differences between island populations best reflect the differences between founders and their genetic diversity that has been passed down through the generations.

Founder effects can affect complex traits, such as song diversity. In the Common Myna (Acridotheres tristis), the percentage of unique songs within a repertoire and within‐song complexity were significantly lower in birds from founder populations.

Among human populations

Due to various migrations throughout human history, founder effects are somewhat common among humans in different times and places. The French Canadians of Quebec are a classical example of founder population. Over 150 years of French colonization, between 1608 and 1760, an estimated 8,500 pioneers married and left at least one descendant on the territory. Following the takeover of the colony by the British crown in 1760, immigration from France effectively stopped, but descendants of French settlers continued to grow in number mainly because of high fertility rate. Intermarriage occurred mostly with the deported Acadians and migrants coming from the British Isles. Since the 20th century, immigration in Quebec and mixing of French Canadians involve people from all over the world. While the French Canadians of Quebec today may be partly of other ancestries, the genetic contribution of the original French founders is predominant, explaining about 90% of regional gene pools, while Acadians (descended from other French settlers in eastern Canada) explain 4% and British 2%, with Native American and other groups contributing less.

In humans, founder effects can arise from cultural isolation, and inevitably, endogamy. For example, the Amish populations in the United States exhibit founder effects because they have grown from a very few founders, have not recruited newcomers, and tend to marry within the community. Though still rare, phenomena such as polydactyly (extra fingers and toes, a symptom of a condition such as Weyers acrodental dysostosis or Ellis-van Creveld syndrome) are more common in Amish communities than in the American population at large. Maple syrup urine disease affects about one out of 180,000 infants in the general population. Due in part to the founder effect, however, the disease has a much higher prevalence in children of Amish, Mennonite, and Jewish descent. Similarly, a high frequency of fumarase deficiency exists among the 10,000 members of the Fundamentalist Church of Jesus Christ of Latter Day Saints, a community which practices both endogamy and polygyny, where an estimated 75-80% of the community are blood relatives of just two men—founders John Y. Barlow and Joseph Smith Jessop.

The island of Pingelap also suffered a population bottleneck in 1775 following a typhoon that had reduced the population to only 20 people. As a result complete achromatopsia with a rate of occurrence of roughly 10% with an additional 30% being carriers of this recessive condition.

Around 1814, a small group of British colonists founded a settlement on Tristan da Cunha, a group of small islands in the Atlantic Ocean, midway between Africa and South America. One of the early colonists apparently carried a rare, recessive allele for retinitis pigmentosa, a progressive form of blindness that afflicts homozygous individuals. As late as 1961, the majority of the genes in the gene pool on Tristan were still derived from 15 original ancestors; as a consequence of the inbreeding, of 232 people tested in 1961, four were suffering from retinitis pigmentosa. This represents a prevalence of 1 in 58, compared with a worldwide prevalence of around 1 in 4,000.

The abnormally high rate of twin births in Cândido Godói could be explained by the founder effect.

Spouse

From Wikipedia, the free encyclopedia ...