Search This Blog

Thursday, October 24, 2019

Law of excluded middle

From Wikipedia, the free encyclopedia
 
In logic, the law of excluded middle (or the principle of excluded middle) states that for any proposition, either that proposition is true or its negation is true. It is one of the so called three laws of thought, along with the law of noncontradiction, and the law of identity. The law of excluded middle is logically equivalent to the law of noncontradiction by De Morgan's laws. However, no system of logic is built on just these laws, and none of these laws provide inference rules, such as modus ponens or De Morgan's laws.
 
The law is also known as the law (or principle) of the excluded third, in Latin principium tertii exclusi. Another Latin designation for this law is tertium non datur: "no third [possibility] is given". It is a tautology.

The principle should not be confused with the semantical principle of bivalence, which states that every proposition is either true or false.

Analogous laws

Some systems of logic have different but analogous laws. For some finite n-valued logics, there is an analogous law called the law of excluded n+1th. If negation is cyclic and "∨" is a "max operator", then the law can be expressed in the object language by (P ∨ ~P ∨ ~~P ∨ ... ∨ ~...~P), where "~...~" represents n−1 negation signs and "∨ ... ∨" n−1 disjunction signs. It is easy to check that the sentence must receive at least one of the n truth values (and not a value that is not one of the n).
Other systems reject the law entirely.

Examples

For example, if P is the proposition:
Socrates is mortal.
then the law of excluded middle holds that the logical disjunction:
Either Socrates is mortal, or it is not the case that Socrates is mortal.
is true by virtue of its form alone. That is, the "middle" position, that Socrates is neither mortal nor not-mortal, is excluded by logic, and therefore either the first possibility (Socrates is mortal) or its negation (it is not the case that Socrates is mortal) must be true. 

An example of an argument that depends on the law of excluded middle follows. We seek to prove that there exist two irrational numbers and such that
is rational.
It is known that is irrational. Consider the number
.
Clearly (excluded middle) this number is either rational or irrational. If it is rational, the proof is complete, and
and .
But if is irrational, then let
and .
Then
,
and 2 is certainly rational. This concludes the proof. 

In the above argument, the assertion "this number is either rational or irrational" invokes the law of excluded middle. An intuitionist, for example, would not accept this argument without further support for that statement. This might come in the form of a proof that the number in question is in fact irrational (or rational, as the case may be); or a finite algorithm that could determine whether the number is rational.

Non-constructive proofs over the infinite

The above proof is an example of a non-constructive proof disallowed by intuitionists:
The proof is non-constructive because it doesn't give specific numbers and that satisfy the theorem but only two separate possibilities, one of which must work. (Actually is irrational but there is no known easy proof of that fact.) (Davis 2000:220)
(Constructive proofs of the specific example above are not hard to produce; for example and are both easily shown to be irrational, and ; a proof allowed by intuitionists). 

By non-constructive Davis means that "a proof that there actually are mathematic entities satisfying certain conditions would not have to provide a method to exhibit explicitly the entities in question." (p. 85). Such proofs presume the existence of a totality that is complete, a notion disallowed by intuitionists when extended to the infinite—for them the infinite can never be completed:
In classical mathematics there occur non-constructive or indirect existence proofs, which intuitionists do not accept. For example, to prove there exists an n such that P(n), the classical mathematician may deduce a contradiction from the assumption for all n, not P(n). Under both the classical and the intuitionistic logic, by reductio ad absurdum this gives not for all n, not P(n). The classical logic allows this result to be transformed into there exists an n such that P(n), but not in general the intuitionistic... the classical meaning, that somewhere in the completed infinite totality of the natural numbers there occurs an n such that P(n), is not available to him, since he does not conceive the natural numbers as a completed totality. (Kleene 1952:49–50)
David Hilbert and Luitzen E. J. Brouwer both give examples of the law of excluded middle extended to the infinite. Hilbert's example: "the assertion that either there are only finitely many prime numbers or there are infinitely many" (quoted in Davis 2000:97); and Brouwer's: "Every mathematical species is either finite or infinite." (Brouwer 1923 in van Heijenoort 1967:336). 

In general, intuitionists allow the use of the law of excluded middle when it is confined to discourse over finite collections (sets), but not when it is used in discourse over infinite sets (e.g. the natural numbers). Thus intuitionists absolutely disallow the blanket assertion: "For all propositions P concerning infinite sets D: P or ~P" (Kleene 1952:48). 

Putative counterexamples to the law of excluded middle include the liar paradox or Quine's paradox. Certain resolutions of these paradoxes, particularly Graham Priest's dialetheism as formalised in LP, have the law of excluded middle as a theorem, but resolve out the Liar as both true and false. In this way, the law of excluded middle is true, but because truth itself, and therefore disjunction, is not exclusive, it says next to nothing if one of the disjuncts is paradoxical, or both true and false.

History

Aristotle

The earliest known formulation is in Aristotle's discussion of the principle of non-contradiction, first proposed in On Interpretation, where he says that of two contradictory propositions (i.e. where one proposition is the negation of the other) one must be true, and the other false. He also states it as a principle in the Metaphysics book 3, saying that it is necessary in every case to affirm or deny, and that it is impossible that there should be anything between the two parts of a contradiction.

Aristotle wrote that ambiguity can arise from the use of ambiguous names, but cannot exist in the facts themselves:
It is impossible, then, that "being a man" should mean precisely "not being a man", if "man" not only signifies something about one subject but also has one significance. ... And it will not be possible to be and not to be the same thing, except in virtue of an ambiguity, just as if one whom we call "man", and others were to call "not-man"; but the point in question is not this, whether the same thing can at the same time be and not be a man in name, but whether it can be in fact. (Metaphysics 4.4, W.D. Ross (trans.), GBWW 8, 525–526).
Aristotle's assertion that "...it will not be possible to be and not to be the same thing", which would be written in propositional logic as ¬(P ∧ ¬P), is a statement modern logicians could call the law of excluded middle (P ∨ ¬P), as distribution of the negation of Aristotle's assertion makes them equivalent, regardless that the former claims that no statement is both true and false, while the latter requires that any statement is either true or false. 

However, Aristotle also writes, "since it is impossible that contradictories should be at the same time true of the same thing, obviously contraries also cannot belong at the same time to the same thing" (Book IV, CH 6, p. 531). He then proposes that "there cannot be an intermediate between contradictories, but of one subject we must either affirm or deny any one predicate" (Book IV, CH 7, p. 531). In the context of Aristotle's traditional logic, this is a remarkably precise statement of the law of excluded middle, P ∨ ¬P.

Also in On Interpretation, Aristotle seemed to deny the law of excluded middle in the case of future contingents, in his discussion on the sea battle.

Leibniz

Its usual form, "Every judgment is either true or false" [footnote 9]..."(from Kolmogorov in van Heijenoort, p. 421) footnote 9: "This is Leibniz's very simple formulation (see Nouveaux Essais, IV,2)...." (ibid p 421)

Bertrand Russell and Principia Mathematica

The principle was stated as a theorem of propositional logic by Russell and Whitehead in Principia Mathematica as: 

.

So just what is "truth" and "falsehood"? At the opening PM quickly announces some definitions:
Truth-values. The "truth-value" of a proposition is truth if it is true and falsehood if it is false* [*This phrase is due to Frege]...the truth-value of "p ∨ q" is truth if the truth-value of either p or q is truth, and is falsehood otherwise ... that of "~ p" is the opposite of that of p..." (p. 7-8)
This is not much help. But later, in a much deeper discussion, ("Definition and systematic ambiguity of Truth and Falsehood" Chapter II part III, p. 41 ff ) PM defines truth and falsehood in terms of a relationship between the "a" and the "b" and the "percipient". For example "This 'a' is 'b'" (e.g. "This 'object a' is 'red'") really means "'object a' is a sense-datum" and "'red' is a sense-datum", and they "stand in relation" to one another and in relation to "I". Thus what we really mean is: "I perceive that 'This object a is red'" and this is an undeniable-by-3rd-party "truth".

PM further defines a distinction between a "sense-datum" and a "sensation":
That is, when we judge (say) "this is red", what occurs is a relation of three terms, the mind, and "this", and "red". On the other hand, when we perceive "the redness of this", there is a relation of two terms, namely the mind and the complex object "the redness of this" (pp. 43–44).
Russell reiterated his distinction between "sense-datum" and "sensation" in his book The Problems of Philosophy (1912) published at the same time as PM (1910–1913):
Let us give the name of "sense-data" to the things that are immediately known in sensation: such things as colours, sounds, smells, hardnesses, roughnesses, and so on. We shall give the name "sensation" to the experience of being immediately aware of these things... The colour itself is a sense-datum, not a sensation. (p. 12)
Russell further described his reasoning behind his definitions of "truth" and "falsehood" in the same book (Chapter XII Truth and Falsehood).

Consequences of the law of excluded middle in Principia Mathematica

From the law of excluded middle, formula ✸2.1 in Principia Mathematica, Whitehead and Russell derive some of the most powerful tools in the logician's argumentation toolkit. (In Principia Mathematica, formulas and propositions are identified by a leading asterisk and two numbers, such as "✸2.1".) 

✸2.1 ~pp "This is the Law of excluded middle" (PM, p. 101).

The proof of ✸2.1 is roughly as follows: "primitive idea" 1.08 defines pq = ~pq. Substituting p for q in this rule yields pp = ~pp. Since pp is true (this is Theorem 2.08, which is proved separately), then ~pp must be true.

✸2.11 p ∨ ~p (Permutation of the assertions is allowed by axiom 1.4)
 
✸2.12 p → ~(~p) (Principle of double negation, part 1: if "this rose is red" is true then it's not true that "'this rose is not-red' is true".)
 
✸2.13 p ∨ ~{~(~p)} (Lemma together with 2.12 used to derive 2.14)
 
✸2.14 ~(~p) → p (Principle of double negation, part 2)
✸2.15 (~pq) → (~qp) (One of the four "Principles of transposition". Similar to 1.03, 1.16 and 1.17. A very long demonstration was required here.)
 
✸2.16 (pq) → (~q → ~p) (If it's true that "If this rose is red then this pig flies" then it's true that "If this pig doesn't fly then this rose isn't red.")
 
✸2.17 ( ~p → ~q ) → (qp) (Another of the "Principles of transposition".)
 
✸2.18 (~pp) → p (Called "The complement of reductio ad absurdum. It states that a proposition which follows from the hypothesis of its own falsehood is true" (PM, pp. 103–104).)

Most of these theorems—in particular ✸2.1, ✸2.11, and ✸2.14—are rejected by intuitionism. These tools are recast into another form that Kolmogorov cites as "Hilbert's four axioms of implication" and "Hilbert's two axioms of negation" (Kolmogorov in van Heijenoort, p. 335).

Propositions ✸2.12 and ✸2.14, "double negation": The intuitionist writings of L. E. J. Brouwer refer to what he calls "the principle of the reciprocity of the multiple species, that is, the principle that for every system the correctness of a property follows from the impossibility of the impossibility of this property" (Brouwer, ibid, p. 335).

This principle is commonly called "the principle of double negation" (PM, pp. 101–102). From the law of excluded middle (✸2.1 and ✸2.11), PM derives principle ✸2.12 immediately. We substitute ~p for p in 2.11 to yield ~p ∨ ~(~p), and by the definition of implication (i.e. 1.01 p → q = ~p ∨ q) then ~p ∨ ~(~p)= p → ~(~p). QED (The derivation of 2.14 is a bit more involved.)

Reichenbach

It is correct, at least for bivalent logic—i.e. it can be seen with a Karnaugh map—that this law removes "the middle" of the inclusive-or used in his law (3). And this is the point of Reichenbach's demonstration that some believe the exclusive-or should take the place of the inclusive-or.

About this issue (in admittedly very technical terms) Reichenbach observes:
The tertium non datur
29. (x)[f(x) ∨ ~f(x)]
is not exhaustive in its major terms and is therefore an inflated formula. This fact may perhaps explain why some people consider it unreasonable to write (29) with the inclusive-'or', and want to have it written with the sign of the exclusive-'or'
30. (x)[f(x) ⊕ ~f(x)], where the symbol "⊕" signifies exclusive-or
in which form it would be fully exhaustive and therefore nomological in the narrower sense. (Reichenbach, p. 376)
In line (30) the "(x)" means "for all" or "for every", a form used by Russell and Reichenbach; today the symbolism is usually x. Thus an example of the expression would look like this:
  • (pig): (Flies(pig) ⊕ ~Flies(pig))
  • (For all instances of "pig" seen and unseen): ("Pig does fly" or "Pig does not fly" but not both simultaneously)

Logicists versus the intuitionists

In late 1800s through the 1930s a bitter, persistent debate raged between Hilbert and his followers versus Hermann Weyl and L. E. J. Brouwer. Brouwer's philosophy, called intuitionism, started in earnest with Leopold Kronecker in the late 1800s. 

Hilbert intensely disliked Kronecker's ideas:
...Kronecker insisted that there could be no existence without construction. For him, as for Paul Gordan [another elderly mathematician], Hilbert's proof of the finiteness of the basis of the invariant system was simply not mathematics. Hilbert, on the other hand, throughout his life was to insist that if one can prove that the attributes assigned to a concept will never lead to a contradiction, the mathematical existence of the concept is thereby established (Reid p. 34)
It was his [Kronecker's] contention that nothing could be said to have mathematical existence unless it could actually be constructed with a finite number of positive integers (Reid p. 26)
The debate had a profound effect on Hilbert. Reid indicates that Hilbert's second problem (one of Hilbert's problems from the Second International Conference in Paris in 1900) evolved from this debate (italics in the original):
In his second problem [Hilbert] had asked for a mathematical proof of the consistency of the axioms of the arithmetic of real numbers.
To show the significance of this problem, he added the following observation:
"If contradictory attributes be assigned to a concept, I say that mathematically the concept does not exist"... (Reid p. 71)
Thus Hilbert was saying: "If p and ~p are both shown to be true, then p does not exist" and he was thereby invoking the law of excluded middle cast into the form of the law of contradiction.
And finally constructivists ... restricted mathematics to the study of concrete operations on finite or potentially (but not actually) infinite structures; completed infinite totalities ... were rejected, as were indirect proof based on the Law of Excluded Middle. Most radical among the constructivists were the intuitionists, led by the erstwhile topologist L. E. J. Brouwer ... (Dawson p. 49)
The rancorous debate continued through the early 1900s into the 1920s; in 1927 Brouwer complained about "polemicizing against it [intuitionism] in sneering tones" (Brouwer in van Heijenoort, p. 492). However, the debate had been fertile: it had resulted in Principia Mathematica (1910–1913), and that work gave a precise definition to the law of excluded middle, and all this provided an intellectual setting and the tools necessary for the mathematicians of the early twentieth century:
Out of the rancor, and spawned in part by it, there arose several important logical developments...Zermelo's axiomatization of set theory (1908a) ... that was followed two years later by the first volume of Principia Mathematica ... in which Russell and Whitehead showed how, via the theory of types, much of arithmetic could be developed by logicist means (Dawson p. 49)
Brouwer reduced the debate to the use of proofs designed from "negative" or "non-existence" versus "constructive" proof:
According to Brouwer, a statement that an object exists having a given property means that, and is only proved, when a method is known which in principle at least will enable such an object to be found or constructed...
Hilbert naturally disagreed.
"...pure existence proofs have been the most important landmarks in the historical development of our science," he maintained. (Reid p. 155)
Brouwer ... refused to accept the logical principle of the excluded middle... His argument was the following:
"Suppose that A is the statement "There exists a member of the set S having the property P." If the set is finite, it is possible—in principle—to examine each member of S and determine whether there is a member of S with the property P or that every member of S lacks the property P. For finite sets, therefore, Brouwer accepted the principle of the excluded middle as valid. He refused to accept it for infinite sets because if the set S is infinite, we cannot—even in principle—examine each member of the set. If, during the course of our examination, we find a member of the set with the property P, the first alternative is substantiated; but if we never find such a member, the second alternative is still not substantiated.
Since mathematical theorems are often proved by establishing that the negation would involve us in a contradiction, this third possibility which Brouwer suggested would throw into question many of the mathematical statements currently accepted.
"Taking the Principle of the Excluded Middle from the mathematician," Hilbert said, "is the same as ... prohibiting the boxer the use of his fists."
"The possible loss did not seem to bother Weyl... Brouwer's program was the coming thing, he insisted to his friends in Zürich." (Reid, p. 149)}}
In his lecture in 1941 at Yale and the subsequent paper Gödel proposed a solution: "...that the negation of a universal proposition was to be understood as asserting the existence ... of a counterexample" (Dawson, p. 157)) 

Gödel's approach to the law of excluded middle was to assert that objections against "the use of 'impredicative definitions'" "carried more weight" than "the law of excluded middle and related theorems of the propositional calculus" (Dawson p. 156). He proposed his "system Σ ... and he concluded by mentioning several applications of his interpretation. Among them were a proof of the consistency with intuitionistic logic of the principle ~ (∀A: (A ∨ ~A)) (despite the inconsistency of the assumption ∃ A: ~ (A ∨ ~A)..." (Dawson, p. 157) 

The debate seemed to weaken: mathematicians, logicians and engineers continue to use the law of excluded middle (and double negation) in their daily work.

Intuitionist definitions of the law (principle) of excluded middle

The following highlights the deep mathematical and philosophic problem behind what it means to "know", and also helps elucidate what the "law" implies (i.e. what the law really means). Their difficulties with the law emerges: that they do not want to accept as true, implications drawn from that which is unverifiable (untestable, unknowable) or from the impossible or the false. (All quotes are from van Heijenoort, italics added). 

Brouwer offers his definition of "principle of excluded middle"; we see here also the issue of "testability":
On the basis of the testability just mentioned, there hold, for properties conceived within a specific finite main system, the "principle of excluded middle", that is, the principle that for every system every property is either correct [richtig] or impossible, and in particular the principle of the reciprocity of the complementary species, that is, the principle that for every system the correctness of a property follows from the impossibility of the impossibility of this property. (335)
Kolmogorov's definition cites Hilbert's two axioms of negation
  1. A → (~AB)
  2. (AB) → { (~AB) → B}
Hilbert's first axiom of negation, "anything follows from the false", made its appearance only with the rise of symbolic logic, as did the first axiom of implication.... while... the axiom under consideration [axiom 5] asserts something about the consequences of something impossible: we have to accept B if the true judgment A is regarded as false...
Hilbert's second axiom of negation expresses the principle of excluded middle. The principle is expressed here in the form in which is it used for derivations: if B follows from A as well as from ~A, then B is true. Its usual form, "every judgment is either true or false" is equivalent to that given above".
From the first interpretation of negation, that is, the interdiction from regarding the judgment as true, it is impossible to obtain the certitude that the principle of excluded middle is true... Brouwer showed that in the case of such transfinite judgments the principle of excluded middle cannot be considered obvious
footnote 9: "This is Leibniz's very simple formulation (see Nouveaux Essais, IV,2). The formulation "A is either B or not-B" has nothing to do with the logic of judgments.
footnote 10: "Symbolically the second form is expessed thus
A ∨ ~A
where ∨ means "or". The equivalence of the two forms is easily proved... (p. 421)

Criticisms

Many modern logic systems replace the law of excluded middle with the concept of negation as failure. Instead of a proposition's being either true or false, a proposition is either true or not able to be proved true. These two dichotomies only differ in logical systems that are not complete. The principle of negation as failure is used as a foundation for autoepistemic logic, and is widely used in logic programming. In these systems, the programmer is free to assert the law of excluded middle as a true fact, but it is not built-in a priori into these systems.

Mathematicians such as L. E. J. Brouwer and Arend Heyting have also contested the usefulness of the law of excluded middle in the context of modern mathematics.

In mathematical logic

In modern mathematical logic, the excluded middle has been shown to result in possible self-contradiction. It is possible in logic to make well-constructed propositions that can be neither true nor false; a common example of this is the "Liar's paradox", the statement "this statement is false", which can itself be neither true nor false. In set theory, such a self-referential paradox can be constructed by examining the set "the set of all sets that do not contain themselves". This set is unambiguously defined, but leads to a Russell's paradox: does the set contain, as one of its elements, itself? However, in the modern Zermelo–Fraenkel set theory, this type of contradiction is no longer admitted.

Proof by contradiction

From Wikipedia, the free encyclopedia
 
In logic and mathematics proof by contradiction is a form of proof that establishes the truth or validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known as indirect proof, proof by assuming the opposite, and reductio ad impossibile. It is a particular kind of the more general form of argument known as reductio ad absurdum.

G. H. Hardy described proof by contradiction as "one of a mathematician's finest weapons", saying "It is a far finer gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers the game."

Principle

Proof by contradiction is based on the law of noncontradiction as first formalized as a metaphysical principle by Aristotle. Noncontradiction is also a theorem in propositional logic. This states that an assertion or mathematical statement cannot be both true and false. That is, a proposition Q and its negation Q ("not-Q") cannot both be true. In a proof by contradiction, it is shown that the denial of the statement being proved results in such a contradiction. It has the form of a reductio ad absurdum argument. If P is the proposition to be proved:
  1. P is assumed to be false, that is P is true.
  2. It is shown that P implies two mutually contradictory assertions, Q and Q.
  3. Since Q and Q cannot both be true, the assumption that P is false must be wrong, and P must be true.
An alternate form derives a contradiction with the statement to be proved itself by showing that P implies P. Thus P is false, which implies that P is true. 

An existence proof by contradiction assumes that some object doesn't exist, and then proves that this would lead to a contradiction; thus, such an object must exist. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid.

Law of the excluded middle

Proof by contradiction also depends on the law of the excluded middle, also first formulated by Aristotle. This states that either an assertion or its negation must be true
(For all propositions P, either P or not-P is true)
That is, there is no other truth value besides "true" and "false" that a proposition can take. Combined with the principle of noncontradiction, this means that exactly one of and is true. In proof by contradiction, this permits the conclusion that since the possibility of has been excluded, must be true. 

The law of the excluded middle is accepted in virtually all formal logics; however, some intuitionist mathematicians do not accept it, and thus reject proof by contradiction as a proof technique.

Relationship with other proof techniques

Proof by contradiction is closely related to proof by contrapositive, and the two are sometimes confused, though they are distinct methods. The main distinction is that a proof by contrapositive applies only to statements that can be written in the form (i.e., implications), whereas the technique of proof by contradiction applies to statements of any form:
  • Proof by contradiction (general): assume and derive a contradiction.
This corresponds, in the framework of propositional logic, to the equivalence , where is the logical contradiction, or false value.
In the case where the statement to be proven is an implication , let us look at the differences between direct proof, proof by contrapositive, and proof by contradiction:
  • Direct proof: assume and show .
  • Proof by contrapositive: assume and show .
This corresponds to the equivalence .
  • Proof by contradiction: assume and and derive a contradiction.
This corresponds to the equivalences .

Examples

Irrationality of the square root of 2

A classic proof by contradiction from mathematics is the proof that the square root of 2 is irrational. If it were rational, it could be expressed as a fraction a/b in lowest terms, where a and b are integers, at least one of which is odd. But if a/b = 2, then a2 = 2b2. Therefore, a2 must be even. Because the square of an odd number is odd, that in turn implies that a is even. This means that b must be odd because a/b is in lowest terms. 

On the other hand, if a is even, then a2 is a multiple of 4. If a2 is a multiple of 4 and a2 = 2b2, then 2b2 is a multiple of 4, and therefore b2 is even, and so is b

So b is odd and even, a contradiction. Therefore, the initial assumption—that 2 can be expressed as a fraction—must be false.

The length of the hypotenuse

The method of proof by contradiction has also been used to show that for any non-degenerate right triangle, the length of the hypotenuse is less than the sum of the lengths of the two remaining sides. The proof relies on the Pythagorean theorem. Letting c be the length of the hypotenuse and a and b the lengths of the legs, the claim is that a + b > c.

The claim is negated to assume that a + b ≤ c. Squaring both sides results in (a + b)2 ≤ c2 or, equivalently, a2 + 2ab + b2 ≤ c2. A triangle is non-degenerate if each edge has positive length, so it may be assumed that a and b are greater than 0. Therefore, a2 + b2 < a2 + 2ab + b2 ≤ c2. The transitive relation may be reduced to a2 + b2 < c2. It is known from the Pythagorean theorem that a2 + b2 = c2. This results in a contradiction since strict inequality and equality are mutually exclusive. The latter was a result of the Pythagorean theorem and the former the assumption that a + b ≤ c. The contradiction means that it is impossible for both to be true and it is known that the Pythagorean theorem holds. It follows that the assumption that a + b ≤ c must be false and hence a + b > c, proving the claim.

No least positive rational number

Consider the proposition, P: "there is no smallest rational number greater than 0". In a proof by contradiction, we start by assuming the opposite, ¬P: that there is a smallest rational number, say, r

Now r/2 is a rational number greater than 0 and smaller than r. But that contradicts our initial assumption, ¬P, that r was the smallest rational number. (In the above symbolic argument, "r is the smallest rational number" would be Q and "r/2 is a rational number smaller than r" would be ¬Q.) So we can conclude that the original proposition, P, must be true — "there is no smallest rational number greater than 0".

Other

For other examples, see proof that the square root of 2 is not rational (where indirect proofs different from the above one can be found) and Cantor's diagonal argument.

Notation

Proofs by contradiction sometimes end with the word "Contradiction!". Isaac Barrow and Baermann used the notation Q.E.A., for "quod est absurdum" ("which is absurd"), along the lines of Q.E.D., but this notation is rarely used today. A graphical symbol sometimes used for contradictions is a downwards zigzag arrow "lightning" symbol (U+21AF: ↯), for example in Davey and Priestley. Others sometimes used include a pair of opposing arrows (as or ), struck-out arrows (), a stylized form of hash (such as U+2A33: ⨳), or the "reference mark" (U+203B: ※). The "up tack" symbol (U+22A5: ⊥) used by philosophers and logicians (see contradiction) also appears, but is often avoided due to its usage for orthogonality.

Principle of explosion

A curious logical consequence of the principle of non-contradiction is that a contradiction implies any statement; if a contradiction is accepted as true, any proposition (or its negation) can be proved from it. This is known as the principle of explosion (Latin: ex falso quodlibet, "from a falsehood, anything [follows]", or ex contradictione sequitur quodlibet, "from a contradiction, anything follows"), or the principle of pseudo-scotus.
(for all Q, P and not-P implies Q)
Thus a contradiction in a formal axiomatic system is disastrous; since any theorem can be proven true it destroys the conventional meaning of truth and falsity. 

The discovery of contradictions at the foundations of mathematics at the beginning of the 20th century, such as Russell's paradox, threatened the entire structure of mathematics due to the principle of explosion. This motivated a great deal of work during the 20th century to create consistent axiomatic systems to provide a logical underpinning for mathematics. This has also led a few philosophers such as Newton da Costa, Walter Carnielli and Graham Priest to reject the principle of non-contradiction, giving rise to theories such as paraconsistent logic and dialethism, which accepts that there exist statements that are both true and false.

Two-state solution

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Two-state_solution A peace movement po...