Search This Blog

Wednesday, January 15, 2020

Geothermal energy (updated)

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Geothermal_energy
 
Geothermal power center in the Usulután Department, El Salvador.
 
 
A geothermal energy plant near the Salton Sea, California.
 
Geothermal energy is thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. The geothermal energy of the Earth's crust originates from the original formation of the planet and from radioactive decay of materials (in currently uncertain but possibly roughly equal proportions). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots γη (geo), meaning earth, and θερμος (thermos), meaning hot.

Earth's internal heat is thermal energy generated from radioactive decay and continual heat loss from Earth's formation. Temperatures at the core–mantle boundary may reach over 4000 °C (7,200 °F). The high temperature and pressure in Earth's interior cause some rock to melt and solid mantle to behave plastically, resulting in portions of the mantle convecting upward since it is lighter than the surrounding rock. Rock and water is heated in the crust, sometimes up to 370 °C (700 °F).

With water from hot springs, geothermal energy has been used for bathing since Paleolithic times and for space heating since ancient Roman times, but it is now better known for electricity generation. Worldwide, 11,700 megawatts (MW) of geothermal power was available in 2013. An additional 28 gigawatts of direct geothermal heating capacity is installed for district heating, space heating, spas, industrial processes, desalination and agricultural applications as of 2010.

Geothermal power is cost-effective, reliable, sustainable, and environmentally friendly, but has historically been limited to areas near tectonic plate boundaries. Recent technological advances have dramatically expanded the range and size of viable resources, especially for applications such as home heating, opening a potential for widespread exploitation. Geothermal wells release greenhouse gases trapped deep within the earth, but these emissions are much lower per energy unit than those of fossil fuels. 

The earth's geothermal resources are theoretically more than adequate to supply humanity's energy needs, but only a very small fraction may be profitably exploited. Drilling and exploration for deep resources is very expensive. Forecasts for the future of geothermal power depend on assumptions about technology, energy prices, subsidies, plate boundary movement and interest rates. Pilot programs like EWEB's customer opt in Green Power Program show that customers would be willing to pay a little more for a renewable energy source like geothermal. But as a result of government assisted research and industry experience, the cost of generating geothermal power has decreased by 25% over the 1980s and 1990s. In 2001, geothermal energy costs between two and ten US cents per kWh.

History

The oldest known pool fed by a hot spring, built in the Qin dynasty in the 3rd century BC

Hot springs have been used for bathing at least since Paleolithic times. The oldest known spa is a stone pool on China's Lisan mountain built in the Qin Dynasty in the 3rd century BC, at the same site where the Huaqing Chi palace was later built. In the first century AD, Romans conquered Aquae Sulis, now Bath, Somerset, England, and used the hot springs there to feed public baths and underfloor heating. The admission fees for these baths probably represent the first commercial use of geothermal power. The world's oldest geothermal district heating system in Chaudes-Aigues, France, has been operating since the 15th century. The earliest industrial exploitation began in 1827 with the use of geyser steam to extract boric acid from volcanic mud in Larderello, Italy.

In 1892, America's first district heating system in Boise, Idaho was powered directly by geothermal energy, and was copied in Klamath Falls, Oregon in 1900. The first known building in the world to utilize geothermal energy as its primary heat source was the Hot Lake Hotel in Union County, Oregon, whose construction was completed in 1907. A deep geothermal well was used to heat greenhouses in Boise in 1926, and geysers were used to heat greenhouses in Iceland and Tuscany at about the same time. Charlie Lieb developed the first downhole heat exchanger in 1930 to heat his house. Steam and hot water from geysers began heating homes in Iceland starting in 1943.

Global geothermal electric capacity. Upper red line is installed capacity; lower green line is realized production.
 
In the 20th century, demand for electricity led to the consideration of geothermal power as a generating source. Prince Piero Ginori Conti tested the first geothermal power generator on 4 July 1904, at the same Larderello dry steam field where geothermal acid extraction began. It successfully lit four light bulbs. Later, in 1911, the world's first commercial geothermal power plant was built there. It was the world's only industrial producer of geothermal electricity until New Zealand built a plant in 1958. In 2012, it produced some 594 megawatts.

Lord Kelvin invented the heat pump in 1852, and Heinrich Zoelly had patented the idea of using it to draw heat from the ground in 1912. But it was not until the late 1940s that the geothermal heat pump was successfully implemented. The earliest one was probably Robert C. Webber's home-made 2.2 kW direct-exchange system, but sources disagree as to the exact timeline of his invention. J. Donald Kroeker designed the first commercial geothermal heat pump to heat the Commonwealth Building (Portland, Oregon) and demonstrated it in 1946. Professor Carl Nielsen of Ohio State University built the first residential open loop version in his home in 1948. The technology became popular in Sweden as a result of the 1973 oil crisis, and has been growing slowly in worldwide acceptance since then. The 1979 development of polybutylene pipe greatly augmented the heat pump's economic viability.

In 1960, Pacific Gas and Electric began operation of the first successful geothermal electric power plant in the United States at The Geysers in California. The original turbine lasted for more than 30 years and produced 11 MW net power.

The binary cycle power plant was first demonstrated in 1967 in the USSR and later introduced to the US in 1981. This technology allows the generation of electricity from much lower temperature resources than previously. In 2006, a binary cycle plant in Chena Hot Springs, Alaska, came on-line, producing electricity from a record low fluid temperature of 57 °C (135 °F).

Electricity

Direct Use Data 2015
Country Usage (MWt) 2015
United States 17,415.91
Philippines 3.30
Indonesia 2.30
Mexico 155.82
Italy 1,014.00
New Zealand 487.45
Iceland 2,040.00
Japan 2,186.17
Iran 81.50
El Salvador 3.36
Kenya 22.40
Costa Rica 1.00
Russia 308.20
Turkey 2,886.30
Papua-New Guinea 0.10
Guatemala 2.31
Portugal 35.20
China 17,870.00
France 2,346.90
Ethiopia 2.20
Germany 2,848.60
Austria 903.40
Australia 16.09
Thailand 128.51

The International Geothermal Association (IGA) has reported that 10,715 megawatts (MW) of geothermal power in 24 countries is online, which was expected to generate 67,246 GWh of electricity in 2010. This represents a 20% increase in online capacity since 2005. IGA projects growth to 18,500 MW by 2015, due to the projects presently under consideration, often in areas previously assumed to have little exploitable resources.

In 2010, the United States led the world in geothermal electricity production with 3,086 MW of installed capacity from 77 power plants. The largest group of geothermal power plants in the world is located at The Geysers, a geothermal field in California. The Philippines is the second highest producer, with 1,904 MW of capacity online. Geothermal power makes up approximately 27% of Philippine electricity generation.

In 2016, Indonesia set in third with 1,647 MW online behind USA at 3,450 MW and the Philippines at 1,870 MW, but Indonesia will become second due to an additional online 130 MW at the end of 2016 and 255 MW in 2017. Indonesia's 28,994 MW are the largest geothermal reserves in the world, and it is predicted to overtake the US in the next decade.

Installed geothermal electric capacity
Country Capacity
(MW)
2007
Capacity
(MW)
2010
% of national
electricity
production
% of global
geothermal
production
United States 2687 3086 0.3 29
Philippines 1969.7 1904 27 18
Indonesia 992 1197 3.7 11
Mexico 953 958 3 9
Italy 810.5 843 1.5 8
New Zealand 471.6 628 10 6
Iceland 421.2 575 30 5
Japan 535.2 536 0.1 5
Iran 250 250

El Salvador 204.2 204 25
Kenya 128.8 167 11.2
Costa Rica 162.5 166 14
Nicaragua 87.4 88 10
Russia 79 82
Turkey 38 82
Papua-New Guinea 56 56
Guatemala 53 52
Portugal 23 29
China 27.8 24
France 14.7 16
Ethiopia 7.3 7.3
Germany 8.4 6.6
Austria 1.1 1.4
Australia 0.2 1.1
Thailand 0.3 0.3
TOTAL 9,981.9 10,959.7

Geothermal electric plants were traditionally built exclusively on the edges of tectonic plates where high temperature geothermal resources are available near the surface. The development of binary cycle power plants and improvements in drilling and extraction technology enable enhanced geothermal systems over a much greater geographical range. Demonstration projects are operational in Landau-Pfalz, Germany, and Soultz-sous-Forêts, France, while an earlier effort in Basel, Switzerland was shut down after it triggered earthquakes. Other demonstration projects are under construction in Australia, the United Kingdom, and the United States of America.

The thermal efficiency of geothermal electric plants is low, around 10–23%, because geothermal fluids do not reach the high temperatures of steam from boilers. The laws of thermodynamics limits the efficiency of heat engines in extracting useful energy. Exhaust heat is wasted, unless it can be used directly and locally, for example in greenhouses, timber mills, and district heating. System efficiency does not materially affect operational costs as it would for plants that use fuel, but it does affect return on the capital used to build the plant. In order to produce more energy than the pumps consume, electricity generation requires relatively hot fields and specialized heat cycles. Because geothermal power does not rely on variable sources of energy, unlike, for example, wind or solar, its capacity factor can be quite large – up to 96% has been demonstrated. The global average was 73% in 2005. 

Types

Geothermal energy comes in either vapor-dominated or liquid-dominated forms. Larderello and The Geysers are vapor-dominated. Vapor-dominated sites offer temperatures from 240 to 300 °C that produce superheated steam. 

Liquid-dominated plants

Liquid-dominated reservoirs (LDRs) are more common with temperatures greater than 200 °C (392 °F) and are found near young volcanoes surrounding the Pacific Ocean and in rift zones and hot spots. Flash plants are the common way to generate electricity from these sources. Pumps are generally not required, powered instead when the water turns to steam. Most wells generate 2-10 MWe. Steam is separated from a liquid via cyclone separators, while the liquid is returned to the reservoir for reheating/reuse. As of 2013, the largest liquid system is Cerro Prieto in Mexico, which generates 750 MWe from temperatures reaching 350 °C (662 °F). The Salton Sea field in Southern California offers the potential of generating 2000 MWe.

Lower temperature LDRs (120–200 °C) require pumping. They are common in extensional terrains, where heating takes place via deep circulation along faults, such as in the Western US and Turkey. Water passes through a heat exchanger in a Rankine cycle binary plant. The water vaporizes an organic working fluid that drives a turbine. These binary plants originated in the Soviet Union in the late 1960s and predominate in new US plants. Binary plants have no emissions.

Thermal energy

Lower temperature sources produce the energy equivalent of 100M BBL per year. Sources with temperatures of 30–150 °C are used without conversion to electricity as district heating, greenhouses, fisheries, mineral recovery, industrial process heating and bathing in 75 countries. Heat pumps extract energy from shallow sources at 10–20 °C in 43 countries for use in space heating and cooling. Home heating is the fastest-growing means of exploiting geothermal energy, with global annual growth rate of 30% in 2005 and 20% in 2012.

Approximately 270 petajoules (PJ) of geothermal heating was used in 2004. More than half went for space heating, and another third for heated pools. The remainder supported industrial and agricultural applications. Global installed capacity was 28 GW, but capacity factors tend to be low (30% on average) since heat is mostly needed in winter. Some 88 PJ for space heating was extracted by an estimated 1.3 million geothermal heat pumps with a total capacity of 15 GW.

Heat for these purposes may also be extracted from co-generation at a geothermal electrical plant.

Heating is cost-effective at many more sites than electricity generation. At natural hot springs or geysers, water can be piped directly into radiators. In the hot, dry ground, earth tubes or downhole heat exchangers can collect the heat. However, even in areas where the ground is colder than room temperature, heat can often be extracted with a geothermal heat pump more cost-effectively and cleanly than by conventional furnaces. These devices draw on much shallower and colder resources than traditional geothermal techniques. They frequently combine functions, including air conditioning, seasonal thermal energy storage, solar energy collection, and electric heating. Heat pumps can be used for space heating essentially anywhere.

Iceland is the world leader in direct applications. Some 92.5% of its homes are heated with geothermal energy, saving Iceland over $100 million annually in avoided oil imports. Reykjavík, Iceland has the world's biggest district heating system, often used to heat pathways and roads to hinder the accumulation of ice. Once known as the most polluted city in the world, it is now one of the cleanest.

Enhanced geothermal

Enhanced geothermal systems (EGS) actively inject water into wells to be heated and pumped back out. The water is injected under high pressure to expand existing rock fissures to enable the water to freely flow in and out. The technique was adapted from oil and gas extraction techniques. However, the geologic formations are deeper and no toxic chemicals are used, reducing the possibility of environmental damage. Drillers can employ directional drilling to expand the size of the reservoir.

Small-scale EGS have been installed in the Rhine Graben at Soultz-sous-Forêts in France and at Landau and Insheim in Germany.

Economics

Geothermal power requires no fuel (except for pumps), and is therefore immune to fuel cost fluctuations. However, capital costs are significant. Drilling accounts for over half the costs, and exploration of deep resources entails significant risks. A typical well doublet (extraction and injection wells) in Nevada can support 4.5 megawatts (MW) and costs about $10 million to drill, with a 20% failure rate.

A power plant at The Geysers
 
In total, electrical plant construction and well drilling cost about €2–5 million per MW of electrical capacity, while the break–even price is 0.04–0.10 € per kW·h. Enhanced geothermal systems tend to be on the high side of these ranges, with capital costs above $4 million per MW and break–even above $0.054 per kW·h in 2007. Direct heating applications can use much shallower wells with lower temperatures, so smaller systems with lower costs and risks are feasible. Residential geothermal heat pumps with a capacity of 10  kilowatt (kW) are routinely installed for around $1–3,000 per  kilowatt. District heating systems may benefit from economies of scale if demand is geographically dense, as in cities and greenhouses, but otherwise, piping installation dominates capital costs. The capital cost of one such district heating system in Bavaria was estimated at somewhat over 1 million € per  MW. Direct systems of any size are much simpler than electric generators and have lower maintenance costs per kW·h, but they must consume electricity to run pumps and compressors. Some governments subsidize geothermal projects. 

Geothermal power is highly scalable: from a rural village to an entire city.

The most developed geothermal field in the United States is The Geysers in Northern California.

Geothermal projects have several stages of development. Each phase has associated risks. At the early stages of reconnaissance and geophysical surveys, many projects are canceled, making that phase unsuitable for traditional lending. Projects moving forward from the identification, exploration and exploratory drilling often trade equity for financing.

Resources

Enhanced geothermal system 1:Reservoir 2:Pump house 3:Heat exchanger 4:Turbine hall 5:Production well 6:Injection well 7:Hot water to district heating 8:Porous sediments 9:Observation well 10:Crystalline bedrock

The Earth's internal thermal energy flows to the surface by conduction at a rate of 44.2 terawatts (TW), and is replenished by radioactive decay of minerals at a rate of 30 TW. These power rates are more than double humanity's current energy consumption from all primary sources, but most of this energy flow is not recoverable. In addition to the internal heat flows, the top layer of the surface to a depth of 10 meters (33 ft) is heated by solar energy during the summer, and releases that energy and cools during the winter. 

Outside of the seasonal variations, the geothermal gradient of temperatures through the crust is 25–30 °C (77–86 °F) per kilometer of depth in most of the world. The conductive heat flux averages 0.1 MW/km2. These values are much higher near tectonic plate boundaries where the crust is thinner. They may be further augmented by fluid circulation, either through magma conduits, hot springs, hydrothermal circulation or a combination of these.

A geothermal heat pump can extract enough heat from shallow ground anywhere in the world to provide home heating, but industrial applications need the higher temperatures of deep resources. The thermal efficiency and profitability of electricity generation is particularly sensitive to temperature. The most demanding applications receive the greatest benefit from a high natural heat flux, ideally from using a hot spring. The next best option is to drill a well into a hot aquifer. If no adequate aquifer is available, an artificial one may be built by injecting water to hydraulically fracture the bedrock. This last approach is called hot dry rock geothermal energy in Europe, or enhanced geothermal systems in North America. Much greater potential may be available from this approach than from conventional tapping of natural aquifers.

Estimates of the potential for electricity generation from geothermal energy vary sixfold, from .035to2TW depending on the scale of investments. Upper estimates of geothermal resources assume enhanced geothermal wells as deep as 10 kilometres (6 mi), whereas existing geothermal wells are rarely more than 3 kilometres (2 mi) deep. Wells of this depth are now common in the petroleum industry. The deepest research well in the world, the Kola superdeep borehole, is 12 kilometres (7 mi) deep.

Myanmar Engineering Society has identified at least 39 locations (in Myanmar) capable of geothermal power production and some of these hydrothermal reservoirs lie quite close to Yangon which is a significant underutilized resource.

Production

According to the Geothermal Energy Association (GEA) installed geothermal capacity in the United States grew by 5%, or 147.05 MW, since the last annual survey in March 2012. This increase came from seven geothermal projects that began production in 2012. GEA also revised its 2011 estimate of installed capacity upward by 128 MW, bringing current installed U.S. geothermal capacity to 3,386 MW.

Renewability and sustainability

Geothermal power is considered to be renewable because any projected heat extraction is small compared to the Earth's heat content. The Earth has an internal heat content of 1031 joules (3·1015 TWh), approximately 100 billion times the 2010 worldwide annual energy consumption. About 20% of this is residual heat from planetary accretion, and the remainder is attributed to higher radioactive decay rates that existed in the past. Natural heat flows are not in equilibrium, and the planet is slowly cooling down on geologic timescales. Human extraction taps a minute fraction of the natural outflow, often without accelerating it. According to most official descriptions of geothermal energy use, it is currently called renewable and sustainable because it returns an equal volume of water to the area that the heat extraction takes place, but at a somewhat lower temperature. For instance, the water leaving the ground is 300 degrees, and the water returning is 200 degrees, the energy obtained is the difference in heat that is extracted. Current research estimates of impact on the heat loss from the earth’s core are based on a studies done up through 2012. However, if household and industrial uses of this energy source were to expand dramatically over coming years, based on a diminishing fossil fuel supply and a growing world population which is rapidly industrializing requiring additional energy sources, then the estimates on the impact on the earth's cooling rate would need to be re-evaluated.

A more technical description of the earth’s core energy would be to state that it is vast and enormous in quantity, but calling it unlimited and renewable in nature is a misnomer which might well fit today's current levels of use; but perhaps, just like humanity's impact on weather through global warming, there was a long held belief that human activity such as car emissions were minor, and could not impact weather conditions, but when an expanding number of cars reach a critical point, a global impact resulted.

Geothermal power is also considered to be sustainable thanks to its power to sustain the Earth's intricate ecosystems. By using geothermal sources of energy present generations of humans will not endanger the capability of future generations to use their own resources to the same amount that those energy sources are presently used. Further, due to its low emissions geothermal energy is considered to have excellent potential for mitigation of global warming [DJS -- by whom?]

Electricity Generation at Poihipi, New Zealand
 
Electricity Generation at Ohaaki, New Zealand
 
Electricity Generation at Wairakei, New Zealand
 
Even though geothermal power is globally sustainable, extraction must still be monitored to avoid local depletion. Over the course of decades, individual wells draw down local temperatures and water levels until a new equilibrium is reached with natural flows. The three oldest sites, at Larderello, Wairakei, and the Geysers have experienced reduced output because of local depletion. Heat and water, in uncertain proportions, were extracted faster than they were replenished. If production is reduced and water is reinjected, these wells could theoretically recover their full potential. Such mitigation strategies have already been implemented at some sites. The long-term sustainability of geothermal energy has been demonstrated at the Lardarello field in Italy since 1913, at the Wairakei field in New Zealand since 1958, and at The Geysers field in California since 1960.

Falling electricity production may be boosted through drilling additional supply boreholes, as at Poihipi and Ohaaki. The Wairakei power station has been running much longer, with its first unit commissioned in November 1958, and it attained its peak generation of 173 MW in 1965, but already the supply of high-pressure steam was faltering, in 1982 being derated to intermediate pressure and the station managing 157 MW. Around the start of the 21st century it was managing about 150 MW, then in 2005 two 8 MW isopentane systems were added, boosting the station's output by about 14 MW. Detailed data are unavailable, being lost due to re-organisations. One such re-organisation in 1996 causes the absence of early data for Poihipi (started 1996), and the gap in 1996/7 for Wairakei and Ohaaki; half-hourly data for Ohaaki's first few months of operation are also missing, as well as for most of Wairakei's history.

Environmental effects

Geothermal power station in the Philippines
 
Krafla Geothermal Station in northeast Iceland
 
Fluids drawn from the deep earth carry a mixture of gases, notably carbon dioxide (CO
2
), hydrogen sulfide (H
2
S
), methane (CH
4
) and ammonia (NH
3
). These pollutants contribute to global warming, acid rain, and noxious smells if released. Existing geothermal electric plants emit an average of 122 kilograms (269 lb) of CO
2
per megawatt-hour (MW·h) of electricity, a small fraction of the emission intensity of conventional fossil fuel plants. Plants that experience high levels of acids and volatile chemicals are usually equipped with emission-control systems to reduce the exhaust.

In addition to dissolved gases, hot water from geothermal sources may hold in solution trace amounts of toxic elements such as mercury, arsenic, boron, and antimony. These chemicals precipitate as the water cools, and can cause environmental damage if released. The modern practice of injecting cooled geothermal fluids back into the Earth to stimulate production has the side benefit of reducing this environmental risk.

Direct geothermal heating systems contain pumps and compressors, which may consume energy from a polluting source. This parasitic load is normally a fraction of the heat output, so it is always less polluting than electric heating. However, if the electricity is produced by burning fossil fuels, then the net emissions of geothermal heating may be comparable to directly burning the fuel for heat. For example, a geothermal heat pump powered by electricity from a combined cycle natural gas plant would produce about as much pollution as a natural gas condensing furnace of the same size. Therefore, the environmental value of direct geothermal heating applications is highly dependent on the emissions intensity of the neighboring electric grid. 

Plant construction can adversely affect land stability. Subsidence has occurred in the Wairakei field in New Zealand. In Staufen im Breisgau, Germany, tectonic uplift occurred instead, due to a previously isolated anhydrite layer coming in contact with water and turning into gypsum, doubling its volume. Enhanced geothermal systems can trigger earthquakes as part of hydraulic fracturing. The project in Basel, Switzerland was suspended because more than 10,000 seismic events measuring up to 3.4 on the Richter Scale occurred over the first 6 days of water injection.

Geothermal has minimal land and freshwater requirements. Geothermal plants use 3.5 square kilometres (1.4 sq mi) per gigawatt of electrical production (not capacity) versus 32 square kilometres (12 sq mi) and 12 square kilometres (4.6 sq mi) for coal facilities and wind farms respectively.[13] They use 20 litres (5.3 US gal) of freshwater per MW·h versus over 1,000 litres (260 US gal) per MW·h for nuclear, coal, or oil.

Legal frameworks

Some of the legal issues raised by geothermal energy resources include questions of ownership and allocation of the resource, the grant of exploration permits, exploitation rights, royalties, and the extent to which geothermal energy issues have been recognized in existing planning and environmental laws. Other questions concern overlap between geothermal and mineral or petroleum tenements. Broader issues concern the extent to which the legal framework for encouragement of renewable energy assists in encouraging geothermal industry innovation and development.

Tidal power

From Wikipedia, the free encyclopedia
 
Sihwa Lake Tidal Power Station, located in Gyeonggi Province, South Korea, is the world's largest tidal power installation, with a total power output capacity of 254 MW.
 
Tidal power or tidal energy is the form of hydropower that converts the energy obtained from tides into useful forms of power, mainly electricity. 

Although not yet widely used, tidal energy has potential for future electricity generation. Tides are more predictable than the wind and the sun. Among sources of renewable energy, tidal energy has traditionally suffered from relatively high cost and limited availability of sites with sufficiently high tidal ranges or flow velocities, thus constricting its total availability. However, many recent technological developments and improvements, both in design (e.g. dynamic tidal power, tidal lagoons) and turbine technology (e.g. new axial turbines, cross flow turbines), indicate that the total availability of tidal power may be much higher than previously assumed, and that economic and environmental costs may be brought down to competitive levels.

Historically, tide mills have been used both in Europe and on the Atlantic coast of North America. The incoming water was contained in large storage ponds, and as the tide went out, it turned waterwheels that used the mechanical power it produced to mill grain. The earliest occurrences date from the Middle Ages, or even from Roman times. The process of using falling water and spinning turbines to create electricity was introduced in the U.S. and Europe in the 19th century.

The world's first large-scale tidal power plant was the Rance Tidal Power Station in France, which became operational in 1966. It was the largest tidal power station in terms of output until Sihwa Lake Tidal Power Station opened in South Korea in August 2011. The Sihwa station uses sea wall defense barriers complete with 10 turbines generating 254 MW.
 
 

Principle

Variation of tides over a day
Tidal power is taken from the Earth's oceanic tides. Tidal forces are periodic variations in gravitational attraction exerted by celestial bodies. These forces create corresponding motions or currents in the world's oceans. Due to the strong attraction to the oceans, a bulge in the water level is created, causing a temporary increase in sea level. As the Earth rotates, this bulge of ocean water meets the shallow water adjacent to the shoreline and creates a tide. This occurrence takes place in an unfailing manner, due to the consistent pattern of the moon's orbit around the earth. The magnitude and character of this motion reflects the changing positions of the Moon and Sun relative to the Earth, the effects of Earth's rotation, and local geography of the sea floor and coastlines

Tidal power is the only technology that draws on energy inherent in the orbital characteristics of the EarthMoon system, and to a lesser extent in the Earth–Sun system. Other natural energies exploited by human technology originate directly or indirectly with the Sun, including fossil fuel, conventional hydroelectric, wind, biofuel, wave and solar energy. Nuclear energy makes use of Earth's mineral deposits of fissionable elements, while geothermal power utilizes the Earth's internal heat, which comes from a combination of residual heat from planetary accretion (about 20%) and heat produced through radioactive decay (80%).

A tidal generator converts the energy of tidal flows into electricity. Greater tidal variation and higher tidal current velocities can dramatically increase the potential of a site for tidal electricity generation.

Because the Earth's tides are ultimately due to gravitational interaction with the Moon and Sun and the Earth's rotation, tidal power is practically inexhaustible and classified as a renewable energy resource. Movement of tides causes a loss of mechanical energy in the Earth–Moon system: this is a result of pumping of water through natural restrictions around coastlines and consequent viscous dissipation at the seabed and in turbulence. This loss of energy has caused the rotation of the Earth to slow in the 4.5 billion years since its formation. During the last 620 million years the period of rotation of the earth (length of a day) has increased from 21.9 hours to 24 hours; in this period the Earth has lost 17% of its rotational energy. While tidal power will take additional energy from the system, the effect is negligible and would only be noticed over millions of years.

Methods

The world's first commercial-scale and grid-connected tidal stream generator – SeaGen – in Strangford Lough. The strong wake shows the power in the tidal current.

Tidal power can be classified into four generating methods: 

Tidal stream generator

Tidal stream generators make use of the kinetic energy of moving water to power turbines, in a similar way to wind turbines that use wind to power turbines. Some tidal generators can be built into the structures of existing bridges or are entirely submersed, thus avoiding concerns over impact on the natural landscape. Land constrictions such as straits or inlets can create high velocities at specific sites, which can be captured with the use of turbines. These turbines can be horizontal, vertical, open, or ducted.

Stream energy can be used at a much higher rate than wind turbines due to water being more dense than air. Using similar technology to wind turbines converting energy in tidal energy is much more efficient. Close to 10 mph (about 8.6 knots in nautical terms) ocean tidal current would have an energy output equal or greater than a 90 mph wind speed for the same size of turbine system.

Tidal barrage

Tidal barrages make use of the potential energy in the difference in height (or hydraulic head) between high and low tides. When using tidal barrages to generate power, the potential energy from a tide is seized through strategic placement of specialized dams. When the sea level rises and the tide begins to come in, the temporary increase in tidal power is channeled into a large basin behind the dam, holding a large amount of potential energy. With the receding tide, this energy is then converted into mechanical energy as the water is released through large turbines that create electrical power through the use of generators. Barrages are essentially dams across the full width of a tidal estuary.

Dynamic tidal power

Top-down diagram of a DTP dam. Blue and dark red colors indicate low and high tides, respectively.
 
Dynamic tidal power (or DTP) is an untried but promising[according to whom?] technology that would exploit an interaction between potential and kinetic energies in tidal flows. It proposes that very long dams (for example: 30–50 km length) be built from coasts straight out into the sea or ocean, without enclosing an area. Tidal phase differences are introduced across the dam, leading to a significant water-level differential in shallow coastal seas – featuring strong coast-parallel oscillating tidal currents such as found in the UK, China, and Korea. Induced tides (TDP) could extend the geographic viability of a new hydro-atmospheric concept 'LPD' (lunar pulse drum) discovered by a Devon innovator in which a tidal 'water piston' pushes or pulls a metered jet of air to a rotary air-actuator & generator. The principle was demonstrated at London Bridge June 2019. Plans for a 30m, 62.5kwh 'pilot' installation on a (Local Authority) tidal estuary shoreline in the Bristol Channel are underway. 

Tidal lagoon

A new tidal energy design option is to construct circular retaining walls embedded with turbines that can capture the potential energy of tides. The created reservoirs are similar to those of tidal barrages, except that the location is artificial and does not contain a pre-existing ecosystem. The lagoons can also be in double (or triple) format without pumping or with pumping that will flatten out the power output. The pumping power could be provided by excess to grid demand renewable energy from for example wind turbines or solar photovoltaic arrays. Excess renewable energy rather than being curtailed could be used and stored for a later period of time. Geographically dispersed tidal lagoons with a time delay between peak production would also flatten out peak production providing near base load production though at a higher cost than some other alternatives such as district heating renewable energy storage. The cancelled Tidal Lagoon Swansea Bay in Wales, United Kingdom would have been the first tidal power station of this type once built.

US and Canadian studies in the twentieth century

The first study of large scale tidal power plants was by the US Federal Power Commission in 1924 which if built would have been located in the northern border area of the US state of Maine and the south eastern border area of the Canadian province of New Brunswick, with various dams, powerhouses, and ship locks enclosing the Bay of Fundy and Passamaquoddy Bay (note: see map in reference). Nothing came of the study and it is unknown whether Canada had been approached about the study by the US Federal Power Commission.

In 1956, utility Nova Scotia Light and Power of Halifax commissioned a pair of studies into the feasibility of commercial tidal power development on the Nova Scotia side of the Bay of Fundy. The two studies, by Stone & Webster of Boston and by Montreal Engineering Company of Montreal independently concluded that millions of horsepower could be harnessed from Fundy but that development costs would be commercially prohibitive at that time.

There was also a report on the international commission in April 1961 entitled "Investigation of the International Passamaquoddy Tidal Power Project" produced by both the US and Canadian Federal Governments. According to benefit to costs ratios, the project was beneficial to the US but not to Canada. A highway system along the top of the dams was envisioned as well.

A study was commissioned by the Canadian, Nova Scotian and New Brunswick governments (Reassessment of Fundy Tidal Power) to determine the potential for tidal barrages at Chignecto Bay and Minas Basin – at the end of the Fundy Bay estuary. There were three sites determined to be financially feasible: Shepody Bay (1550 MW), Cumberline Basin (1085 MW), and Cobequid Bay (3800 MW). These were never built despite their apparent feasibility in 1977.

US studies in the twenty first century

The Snohomish PUD, a public utility district located primarily in Snohomish county, Washington State, began a tidal energy project in 2007; in April 2009 the PUD selected OpenHydro, a company based in Ireland, to develop turbines and equipment for eventual installation. The project as initially designed was to place generation equipment in areas of high tidal flow and operate that equipment for four to five years. After the trial period the equipment would be removed. The project was initially budgeted at a total cost of $10 million, with half of that funding provided by the PUD out of utility reserve funds, and half from grants, primarily from the US federal government. The PUD paid for a portion of this project with reserves and received a $900,000 grant in 2009 and a $3.5 million grant in 2010 in addition to using reserves to pay an estimated $4 million of costs. In 2010 the budget estimate was increased to $20 million, half to be paid by the utility, half by the federal government. The Utility was unable to control costs on this project, and by Oct of 2014 the costs had ballooned to an estimated $38 million and were projected to continue to increase. The PUD proposed that the federal government provide an additional $10 million towards this increased cost citing a "gentlemans agreement". When the federal government refused to provide the additional funding the project was cancelled by the PUD after spending nearly $10 million in reserves and grants. The PUD abandoned all tidal energy exploration after this project was cancelled and does not own or operate any tidal energy sources. 

Rance tidal power plant in France

In 1966, Électricité de France opened the Rance Tidal Power Station, located on the estuary of the Rance River in Brittany. It was the world's first tidal power station. The plant was for 45 years the largest tidal power station in the world by installed capacity: Its 24 turbines reach peak output at 240 megawatts (MW) and average 57 MW, a capacity factor of approximately 24%. 

Tidal power development in the UK

The world's first marine energy test facility was established in 2003 to start the development of the wave and tidal energy industry in the UK. Based in Orkney, Scotland, the European Marine Energy Centre (EMEC) has supported the deployment of more wave and tidal energy devices than at any other single site in the world. EMEC provides a variety of test sites in real sea conditions. Its grid connected tidal test site is located at the Fall of Warness, off the island of Eday, in a narrow channel which concentrates the tide as it flows between the Atlantic Ocean and North Sea. This area has a very strong tidal current, which can travel up to 4 m/s (8 knots) in spring tides. Tidal energy developers that have tested at the site include: Alstom (formerly Tidal Generation Ltd); ANDRITZ HYDRO Hammerfest; Atlantis Resources Corporation; Nautricity; OpenHydro; Scotrenewables Tidal Power; Voith. The resource could be 4 TJ per year. Elsewhere in the UK, annual energy of 50 TWh can be extracted if 25 GW capacity is installed with pivotable blades.

Current and future tidal power schemes

  • The Rance tidal power plant built over a period of 6 years from 1960 to 1966 at La Rance, France. It has 240 MW installed capacity.
  • 254 MW Sihwa Lake Tidal Power Plant in South Korea is the largest tidal power installation in the world. Construction was completed in 2011.
  • The first tidal power site in North America is the Annapolis Royal Generating Station, Annapolis Royal, Nova Scotia, which opened in 1984 on an inlet of the Bay of Fundy. It has 20 MW installed capacity.
  • The Jiangxia Tidal Power Station, south of Hangzhou in China has been operational since 1985, with current installed capacity of 3.2 MW. More tidal power is planned near the mouth of the Yalu River.
  • The first in-stream tidal current generator in North America (Race Rocks Tidal Power Demonstration Project) was installed at Race Rocks on southern Vancouver Island in September 2006. The Race Rocks project was shut down after operating for five years (2006-2011) because high operating costs produced electricity at a rate that was not economically feasible. The next phase in the development of this tidal current generator will be in Nova Scotia (Bay of Fundy).
  • A small project was built by the Soviet Union at Kislaya Guba on the Barents Sea. It has 0.4 MW installed capacity. In 2006 it was upgraded with a 1.2 MW experimental advanced orthogonal turbine.
  • Jindo Uldolmok Tidal Power Plant in South Korea is a tidal stream generation scheme planned to be expanded progressively to 90 MW of capacity by 2013. The first 1 MW was installed in May 2009.
  • A 1.2 MW SeaGen system became operational in late 2008 on Strangford Lough in Northern Ireland.
  • The contract for an 812 MW tidal barrage near Ganghwa Island (South Korea) north-west of Incheon has been signed by Daewoo. Completion is planned for 2015.
  • A 1,320 MW barrage built around islands west of Incheon was proposed by the South Korean government in 2009. Project halted since 2012 due to environmental concerns.
  • The Scottish Government has approved plans for a 10 MW array of tidal stream generators near Islay, Scotland, costing 40 million pounds, and consisting of 10 turbines – enough to power over 5,000 homes. The first turbine is expected to be in operation by 2013.
  • The Indian state of Gujarat is planning to host South Asia's first commercial-scale tidal power station. The company Atlantis Resources planned to install a 50 MW tidal farm in the Gulf of Kutch on India's west coast, with construction starting early in 2012.
  • Ocean Renewable Power Corporation was the first company to deliver tidal power to the US grid in September, 2012 when its pilot TidGen system was successfully deployed in Cobscook Bay, near Eastport.
  • In New York City, 30 tidal turbines will be installed by Verdant Power in the East River by 2015 with a capacity of 1.05 MW.
  • Construction of a 320 MW tidal lagoon power plant outside the city of Swansea in the UK was granted planning permission in June 2015 and work is expected to start in 2016. Once completed, it will generate over 500 GWh of electricity per year, enough to power roughly 155,000 homes.
  • A turbine project is being installed in Ramsey Sound in 2014.
  • The largest tidal energy project entitled MeyGen (398 MW) is currently in construction in the Pentland Firth in northern Scotland 
  • A combination of 5 tidal stream turbines from Tocardo are placed in the Oosterscheldekering, the Netherlands, and have been operational since 2015 with a capacity of 1.2 MW

Issues and challenges


Environmental concerns

Tidal power can have effects on marine life. The turbines can accidentally kill swimming sea life with the rotating blades, although projects such as the one in Strangford feature a safety mechanism that turns off the turbine when marine animals approach. Even though, there is this technology in place to turn off the turbines it is causing a major loss in energy because of the amount of marine life that passes through the turbines. Some fish may no longer utilize the area if threatened with a constant rotating or noise-making object. Marine life is a huge factor when placing tidal power energy generators in the water and precautions are made to ensure that as many marine animals as possible will not be affected by it. The Tethys database provides access to scientific literature and general information on the potential environmental effects of tidal energy.

Tidal turbines

The main environmental concern with tidal energy is associated with blade strike and entanglement of marine organisms as high speed water increases the risk of organisms being pushed near or through these devices. As with all offshore renewable energies, there is also a concern about how the creation of electromagnetic fields and acoustic outputs may affect marine organisms. Because these devices are in the water, the acoustic output can be greater than those created with offshore wind energy. Depending on the frequency and amplitude of sound generated by the tidal energy devices, this acoustic output can have varying effects on marine mammals (particularly those who echolocate to communicate and navigate in the marine environment, such as dolphins and whales). Tidal energy removal can also cause environmental concerns such as degrading farfield water quality and disrupting sediment processes. Depending on the size of the project, these effects can range from small traces of sediment building up near the tidal device to severely affecting nearshore ecosystems and processes.

Tidal barrage

Installing a barrage may change the shoreline within the bay or estuary, affecting a large ecosystem that depends on tidal flats. Inhibiting the flow of water in and out of the bay, there may also be less flushing of the bay or estuary, causing additional turbidity (suspended solids) and less saltwater, which may result in the death of fish that act as a vital food source to birds and mammals. Migrating fish may also be unable to access breeding streams, and may attempt to pass through the turbines. The same acoustic concerns apply to tidal barrages. Decreasing shipping accessibility can become a socio-economic issue, though locks can be added to allow slow passage. However, the barrage may improve the local economy by increasing land access as a bridge. Calmer waters may also allow better recreation in the bay or estuary. In August 2004, a humpback whale swam through the open sluice gate of the Annapolis Royal Generating Station at slack tide, ending up trapped for several days before eventually finding its way out to the Annapolis Basin.

Tidal lagoon

Environmentally, the main concerns are blade strike on fish attempting to enter the lagoon, acoustic output from turbines, and changes in sedimentation processes. However, all these effects are localized and do not affect the entire estuary or bay.

Corrosion

Salt water causes corrosion in metal parts. It can be difficult to maintain tidal stream generators due to their size and depth in the water. The use of corrosion-resistant materials such as stainless steels, high-nickel alloys, copper-nickel alloys, nickel-copper alloys and titanium can greatly reduce, or eliminate, corrosion damage.

Mechanical fluids, such as lubricants, can leak out, which may be harmful to the marine life nearby. Proper maintenance can minimize the amount of harmful chemicals that may enter the environment. 

Fouling

The biological events that happen when placing any structure in an area of high tidal currents and high biological productivity in the ocean will ensure that the structure becomes an ideal substrate for the growth of marine organisms. In the references of the Tidal Current Project at Race Rocks in British Columbia this is documented. Also see this page and Several structural materials and coatings were tested by the Lester Pearson College divers to assist Clean Current in reducing fouling on the turbine and other underwater infrastructure. 

Cost

Tidal Energy has an expensive initial cost which may be one of the reasons tidal energy is not a popular source of renewable energy. It is important to realize that the methods for generating electricity from tidal energy is a relatively new technology. It is projected that tidal power will be commercially profitable within 2020 with better technology and larger scales. Tidal Energy is however still very early in the research process and the ability to reduce the price of tidal energy can be an option. The cost effectiveness depends on each site tidal generators are being placed. To figure out the cost effectiveness they use the Gilbert ratio, which is the length of the barrage in metres to the annual energy production in kilowatt hours.

Due to tidal energy reliability the expensive upfront cost of these generators will slowly be paid off. Due to the success of a greatly simplified design, the orthogonal turbine offers considerable cost savings. As a result, the production period of each generating unit is reduced, lower metal consumption is needed and technical efficiency is greater. Scientific research has the capability to have a renewable resource like tidal energy that is affordable as well as profitable. 

Structural health monitoring

The high load factors resulting from the fact that water is 800 times denser than air and the predictable and reliable nature of tides compared with the wind makes tidal energy particularly attractive for electric power generation. Condition monitoring is the key for exploiting it cost-efficiently.

Marriage in Islam

From Wikipedia, the free encyclopedia ...